Biography

Prof. Longbo Huang is a professor at the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University, Beijing, China. He received his Ph.D. in EE from the University of Southern California, and then worked as a postdoctoral researcher in the EECS dept. at University of California at Berkeley before joining IIIS. Prof. Huang’s research focuses on decision intelligence (AI for Decisions), including deep reinforcement learning, online learning and reinforcement learning, learning-augmented network optimization, distributed optimization and machine learning.

Prof. Huang has held visiting positions at the LIDS lab at MIT, the Chinese University of Hong Kong, Bell-labs France, and Microsoft Research Asia (MSRA). He was a visiting scientist at the Simons Institute for the Theory of Computing at UC Berkeley in Fall 2016. Prof. Huang serves/served on 70+ TPCs and 10+ organizing committees for ACM/AI/IEEE conferences, including the General Chair for ACM Sigmetrics 2021, the TPC co-chair for IEEE WiOpt 2024, ITC 2022, IEEE WiOpt 2020 and NetEcon 2020. Prof. Huang serves/served on the editorial board for IEEE Journal on Selected Areas in Communications Special Issue on Human-in-the-loop Mobile Network (Lead guest editor 2016), IEEE Transactions on Communications (TCOM 2017-2020), ACM Transactions on Modeling and Performance Evaluation of Computing Systems (ToMPECS 2017-present), IEEE/ACM Transactions on Networking (ToN 2019-present), Elsevier Performance Evaluation (PEVA 2022-present) and IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2023-present). He is an ACM Distinguished Member, CCF Distinguished Member, IEEE Senior Member, an ACM Distinguished Speaker and an IEEE ComSoc Distinguished Lecturer.

Prof. Huang received 9 best paper nomination/premier paper recognitions at top-tier conferences, including ICLR 2023 (2 Spotlight), UAI 2023 (Spotlight), NeurIPS 2022 (Spotlight), NeurIPS 2021 (Oral presentation), AAMAS 2020 (Selected for fast-track publication at JAAMAS), IEEE INFOCOM 2018 (Invited to fast-track review at IEEE TNSE), ACM e-Energy 2016 (Best paper runner-up) and ACM MobiHoc 2014 (Best paper candidate). Prof. Huang received the Outstanding Teaching Award from Tsinghua university in 2014. He received the Google Research Award and the Microsoft Research Asia Collaborative Research Award in 2014, and was selected into the MSRA StarTrack Program in 2015. Prof. Huang won the ACM SIGMETRICS Rising Star Research Award in 2018.


黄隆波是清华大学交叉信息研究院长聘教授,博士生导师,ACM杰出科学家,CCF杰出会员与IEEE高级会员,ACM杰出讲者与IEEE通信学会杰出讲师。加入清华之前,于美国南加州大学电子工程系获得博士学位,并于美国加州大学伯克利分校电子工程与计算机科学系担任博士后研究员。曾先后于美国麻省理工学院与加州大学伯克利分校担任访问学者,于法国贝尔实验室与香港中文大学网络编码研究所担任访问教授,并于2016年秋季在伯克利Simons计算理论研究院担任长期访问科学家。曾当选清华大学优秀博士论文指导教师(2022, 2023),清华大学优秀硕士论文指导教师(2023),与北京市本科毕业设计优秀指导教师(2024),于2013年获选清华先进工作者,于2014年获选清华大学“良师益友”(两年一评,每次仅评40余名教师),并获谷歌科研奖与微软亚洲研究院联合科研奖,于2015年入选微软亚洲研究院“铸星计划”,并于2018年获国际计算机协会在性能分析评估领域的专业权威机构ACM SIGMETRICS 评选的青年科学家奖(全球每年仅评选1人)。

黄教授的科研集中于人工智能与决策,包括深度强化学习、在线学习与强化学习、学习增强网络优化与机器学习等。在ACM/AI/IEEE期刊与会议共发表论文130余篇,其成果9次获得国际会议最佳论文奖提名与优选论文,包括2023年ICLR会议Spotlight文章(2篇),2023年UAI会议Spotlight文章,2022年NeurIPS会议Spotlight文章,2021年NeurIPS会议Oral文章,2020年AAMAS文章获邀投往期刊JAAMAS的快速审稿通道,2018年IEEE INFOCOM 文章获邀投稿至IEEE TNSE期刊,及2016年ACM e-Energy最佳论文亚军奖与2014年ACM MobiHoc最佳论文提名奖。担任超过10次ACM/IEEE会议的组委,包括ACM Sigmetrics 2021大会唯一主席,IEEE WiOpt 2024、 ITC 2022、IEEE WiOpt 2020与GameNets 2019的程序委员会主席等。于2016年担任IEEE期刊IEEE Journal on Selected Areas in Communications (JSAC)特刊Human-In-The-Loop Mobile Networks的首席客座编委, 于2017-2020担任IEEE通信领域期刊IEEE Transactions on Communications (TCOM)的编委。目前担任计算系统建模分析领域期刊ACM Transactions on Modeling and Performance Evaluation of Computing Systems (ToMPECS),信息系统建模分析领域期刊Elsevier Performance Evaluation (PEVA),网络领域期刊IEEE/ACM Transactions on Networking (TON)以及人工智能领域期刊IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)的编委。