
A Multi-Agent Learning Approach to Online Distributed Resource Allocation

Chongjie Zhang
Computer Science Department
University of Massachusetts
Amherst, MA 01003 USA
chongjie@cs.umass.edu

Victor Lesser
Computer Science Department
University of Massachusetts
Amherst, MA 01003 USA

lesser@cs.umass.edu

Prashant Shenoy
Computer Science Department
University of Massachusetts
Amherst, MA 01003 USA

shenoy@cs.umass.edu

Abstract

Resource allocation in computing clusters is tradi-
tionally centralized, which limits the cluster scale.
Effective resource allocation in a network of com-
puting clusters may enable building larger comput-
ing infrastructures. We consider this problem as a
novel application for multiagent learning (MAL).
We propose a MAL algorithm and apply it for op-
timizing online resource allocation in cluster net-
works. The learning is distributed to each clus-
ter, using local information only and without access
to the global system reward. Experimental results
are encouraging: our multiagent learning approach
performs reasonably well, compared to an optimal
solution, and better than a centralized myopic allo-
cation approach in some cases.

1 Introduction
As “Software as a service” becomes a popular business
model, it is becoming increasingly difficult to build large
computing infrastructures that can host effectively the wide
spread use of such services.Shared clustersbuilt using com-
modity PCs or workstations offer a cost-effective solutionfor
constructing such infrastructures. Unlike a dedicated clus-
ter, where each computing node is dedicated to a single ap-
plication, a shared cluster can run the number of applica-
tions significantly larger than the number of nodes, necessi-
tating resource sharing among applications. Resource man-
agement approaches developed for shared clusters[Arpaci-
dusseau and Culler, 1997; Aronet al., 2000; Urgaonkar and
Shenoy, 2003] are centralized, which limits the cluster scale.

To build larger shared computing infrastructures, one com-
mon model is to organize a set of shared clusters into a net-
work and enable resource sharing across shared clusters. The
resource allocation decision is now distributed to each shared
cluster. Each cluster still uses a cluster-wide technique for
managing its local resources. However, as task (also referred
to applications services) allocation requests vary acrossclus-
ters, a cluster may need to dynamically decide what tasks
to allocated locally and where to forward unallocated tasks
to cooperatively optimize the global utility of the whole sys-
tem. To achieve scalability, each cluster has limited number
of neighboring clusters that it interacts with.

We describe this decision problem as a distributed se-
quential resource allocation problem (DSRAP). We consider
DSRAP as a novel and practical application for multiagent
learning. In DSRAP, each agent (referred to a cluster) has
only a partial view of the whole system and does not have ac-
cess to the system-level utility (because it is not directlymea-
surable in real-time). All agents make decisions concurrently
and autonomously. Each agent’s decision depends not only
on its local state but also on other agents’ states and policies.

This paper is intended to demonstrate applicability and ef-
fectiveness of multiagent learning for DSRAP or similar dis-
tributed problems. We propose a multi-agent learning algo-
rithm, called Fair Action Learning (FAL) which is a variant
of the Generalized Infinitesimal Gradient Ascent (GIGA) al-
gorithm[Zinkevich, 2003], for each agent to learn local deci-
sion policies. To simplify the learning, we decomposes each
agent’s decisions into two connected learning problems:local
allocation problem(deciding what tasks to be allocated lo-
cally) andtask routing problem(deciding where to forwarded
a task). To avoid poor initial policies during learning, heuris-
tic strategies are developed to speed up the learning. The
learning approach is tested in a network of simulated clusters
and compared with a centralized greedy allocation approach,
which is optimal in some cases. Experimental results show
that our multi-agent learning works effectively and even out-
performs the centralized approach in some cases. Although
we discuss our approach for this particular problem, it is also
useful in other online resource allocation problems, for exam-
ple, when shared resources are storage devices in distributed
file systems, documents in peer-to-peer information retrieval,
or energy in sensor networks.

The rest of this paper is structured as follows. Section 2
defines DSRAP. Section 3 introduces the Fair Action Learner
algorithm. Section 4 presents decision-making processes of
each agent and learning models for both decisions. Sec-
tion 5 describe experiment design and analyzes experimen-
tal results. Related work is presented in Section 6. Finally,
Section 7 concludes our work.

2 Problem Description
The runtime model of DSRAP is described as follows. Each
agent receives tasks from either the external environment or
a neighbor. At each time step, an agent makes decisions on
what tasks are allocated locally and to which neighbors the



tasks not allocated locally should be forwarded. Due to the
task transfer time cost, there is communication delay between
two agents. To reduce the communication overhead, the num-
ber of tasks an agent can transfer at each time step is limited.
To allocated a task, an agent should have available resources
to satisfy its resource requirements. When a task is allocated
locally, the agent gains utility at each time step, which is spec-
ified by the task utility rate. If a task can not be allocated
within its maximum waiting time, it will be removed from
the system. If an allocated task completes, all resources itoc-
cupies will be freed and available for future tasks. The main
goal of DSRAP is to derive decision policies for each agent
that maximize the average utility rate (AUR) of the whole
system.

We denote a DSRAP with a tuple〈C ,A, T ,B,R〉, where
• C = {C1, . . . , Cm} is a set of shared clusters.

• A = {aij} ∈ ℜm×m is the adjacent matrix of clusters
and each elementaij is the task transfer time between
clusterCi and clusterCj .

• T = {t1, . . . , tl} is a set of task types.

• B = {Dij} is the task arrival pattern andDij is the
arrival distribution of tasks of typetj at clusterCi.

• R = {R1, . . . , Rq}is a set of resource types (e.g., CPU
and network) that each cluster provides.

Each clusterCi = {ni1, ni2, . . . , nik} contains a set of
computing nodes. Each computing nodenij has a set of re-
sources, represented as{〈R1, vij1〉, . . . , 〈Rq, vijq〉}, where
Rh (h = 1, . . . q) is the resource type andvijh ∈ ℜ is the
capacity of resourceRh on nodenij . We assume there exist
standards that quantify each type of resource. For example,
we can quantify a fast CPU as150 and a slow one with a half
speed as75.

A task type characterizes a set of tasks. A task typeti is
also denoted as a tuple〈Ds

i , D
u
i , Dw

i , Dd1

i , . . . , D
dq

i 〉, where
• Ds

i is the task service time distribution

• Du
i is the task utility rate (utility per time step) distribu-

tion

• Dw
i is the distribution of the task maximum waiting time

before being allocated

• D
dj

i is the demand distribution of resourcej of a task.
A task is denoted as a tuple〈t, u, w, d1, . . . , dq〉, where
• t is the task type.

• u is the utility rate of the task.

• w is the maximum waiting time before being allocated.

• di is the demand of resourcei = 1, . . . , q.
Based on the model of DSRAP developed above, the aver-

age utility rate of the whole system to be maximized can be
defined as following:

AUR = lim
n→∞

∑n

i=1

∑m

j=1

∑
x∈Ti(Cj)

u(x)

n
(1)

whereTi(Cj) is the set of tasks that allocated to clusterCj

at timei andu(x) is the utility of taskx. Note that, due to
its partial view of the system, each individual cluster can not
observe the system’s AUR.

3 Fair Action Learning Algorithm
In the single-agent setting, reinforcement learning algo-
rithms, such as Q-learning, learn optimal value functions and
optimal policies in MDP environments when lookup tables
are used to represent the state-action value function. How-
ever, in the multiagent setting, due to the non-stationary en-
vironment (all agents are simultaneously learning their own
policies), the usual conditions for single-agent RL algo-
rithms’ convergence to an optimal policy do not necessarily
hold [Claus and Boutilier, 1998]. As a result, the learning of
agents may diverge due to lack of synchronization. Several
multiagent reinforcement learning (MARL) algorithms have
been developed to address this issue[Zinkevich, 2003; Bowl-
ing, 2005], with convergence guarantee in specific classes of
games with two agents.

Algorithm 1: Fair Action Learning (FAL) Algorithm

begin
r ← the reward for actiona at states;
update Q-value function with< s, a, r >;
r̄ ← average reward=

∑
a∈A π(s, a)Q(s, a);

foreach actiona ∈ A do
π(s, a)← π(s, a) + ζ(Q(s, a) − r̄) ;

end
π(s)← limit(π(s));

end

To address DSRAP, we propose a multiagent reinforcement
learning algorithm, called Fair Action Learning (FAL). The
FAL algorithm is a direct policy search technique and a vari-
ant of the GIGA algorithm[Zinkevich, 2003]. For many prac-
tical problems, the value function on policies is usually not
known, so the policy gradient for GIGA can not be directly
calculated. To deal with this issue, the FAL algorithm ap-
proximates the policy gradient of each state-action pair with
the difference of the expected Q-value on that state and its
Q-value. Algorithm 1 describes its policy update rule, where
π(s, a) is the probability of taking actiona in states under
policyπ, π(s) is the distribution over all actions in states, and
ζ is the policy learning rate. Thelimit function from GIGA is
applied to normalizeπ(s) such that it sums to 1.

FAL learns stochastic policies. As argued in[Singhet al.,
2000], stochastic policies can work better than deterministic
policies in partially observable environments (e.g., DSRAP),
if both are limited to act based on the current percept. To im-
prove the expected value for each state, FAL will increase the
probability of actions that receive an expected reward above
the current average. Therefore FAL will converge to a policy
where, for each state, all actions receive the same expectedre-
ward and are fairly treated. (It is possible that FAL converges
to a deterministic policy when an action is always more favor-
able than other actions). In a multiagent setting, this property
will help agents to converge to an equilibrium.

4 Learning Distributed Resource Allocation
Algorithm 2 shows the general decision-making process of
each agent, which repeats at each time step. This algorithm



Algorithm 2: General Decision-Making Algorithm

begin
TASKS← set of tasks received in current time cycle;
ALLOCATED← selectAndAllocate(TASKS);
TASKS← TASKS\ ALLOCATED ;
foreach taskt ∈ TASKSdo

chooseANeighborAndForward(t) ;
end

end

uses two functions:selectAndAllocateandchooseANeighbo-
rAndForward. The first function selects and allocates a sub-
set of received tasks to its local cluster to maximize its local
utility. As the global utility is the sum of all local utilities,
optimizing this function can potentially improve the system
performance. The second function chooses a neighbor and
forwards an unallocated task to maximize the allocation prob-
ability of the task. This function aims to route tasks to unsat-
urated agents and balance the task load in the system.

4.1 Local Allocation Decision

Algorithm 3: selectAndAllocate(TASKS)

begin
ALLOCABLE ← getAllocable(TASKS);
ALLOCATED← ∅ ;
while ALLOCABLE6= ∅ do

ALLOCABLE ← ALLOCABLE ∪ {VOID} ;
update current states;
t← task selected based on policyπ1(s, ·);
if t = VOID then

ALLOCABLE ← ∅;
else

allocate(t);
ALLOCATED← ALLOCATED ∪{t} ;
TASKS← TASKS\{t} ;
ALLOCABLE ← getAllocable(TASKS);
learn(s, t);

end
end
return ALLOCATED;

end

Algorithm 3 shows the local allocation decision-making
process. This algorithm incrementally selects and allocate
tasks locally. It uses three functions:getAllocable, allocate,
and learn. FunctiongetAllocablefilters tasksbased on cur-
rent local resource availability and returns allocable tasks.
Functionallocate is responsible for allocating resources to
the task and update local resource availability information.
Functionlearn updates its allocation decision policy for se-
lecting a task. Here we useπ1 to denote the local allocation
policy. VOID is a unique, fake task with no resource require-
ments and zero utility rate. Selecting this task indicates that
the process of selecting a subset of tasks to be allocated lo-
cally is finished.

Now we define the state space, the action space, and the
reward function for learning this decision policy. A decision
states = 〈st, sc〉 consists of two feature vectorsst andsc,
describing the task set to be allocated and availability of var-
ious resources in a cluster respectively. As the type of a task
approximately represents information about the task, we use
task types to characterize the task set to be allocated. The
feature vectorst = 〈y1, y2, . . . , ym〉, where each featureyi

corresponds to task typei andm is the number of task types.
If the task set contains a task with typei, thenyi = 1. To rep-
resentsc, we first categorize availability of each resource into
multiple levels and then use combinations of levels of differ-
ent resources as features. The value of a feature is the num-
ber of computing nodes in the cluster that have corresponding
availability level for each resource.

An action of this decision is to select a task to allocate. So
each taskt corresponds to an action. In a real environment,
it is not frequent to see two tasks that are exactly the same.
To reduce the action space, the type of the task is used to
approximately represent the task itself. Therefore, the action
set is mapped to the set of task types. Then the binary feature
vectorst of an abstract states determines available actions
for states. It is possible that one task set to be allocated may
have several tasks with the same type. When such a task type
is selected, the task of this type with the greatest utility rate
will selected and allocated. The reward for allocating taskt
is the utility rate associated witht.

An agent receives tasks from both the external environ-
ment and its neighbors. Thus, other agents’ decision policies
affect task arrivals at the agent. As all agents concurrently
learn their policies, the learning environment of each agent
becomes non-stationary. We use FAL algorithm to learn local
allocation decision policiesπ1(s, a). As π1(s, a) is stochas-
tic, the following rule is used to update Q-value function:

Q(sn, an) ← (1− α)Q(sn, an) +
α[rn + γ

∑
a π(sn+1, a)Q(sn+1, a)]

This new update rule is just like that of Q-learning except that
instead of the maximum over next state-action pair it uses the
expected value under the current policy.

Accelerating the Learning Process
Even when using the approximated state space and action
space developed above, the state-action space of each agent
is still extremely large. Assume that a cluster hasn com-
puting nodes,m types of resources, and receivesk types of
tasks and availability of each resource is discretized intod
levels, the size of the state-action space isk2kndm

. In addi-
tion, any pure knowledge-free reinforcement learning explo-
ration strategies could entail running arbitrarily poor initial
policies, which should be avoided in the practical system. To
address those issues, we proposed several heuristics to speed
up learning. Policies are initialized with a greedy allocation
algorithm, which allocates all tasks in an decreasing orderof
their utilities if resources permit. The learning is onlineand
the ǫ-greedy strategy is used to ensure that each action will
be explored with a minimum rate. To avoid unwanted system
performance, we set a utilization threshold for each cluster. If
the utilization of every resource is below this threshold, then



the manager stopsǫ-greedy exploration and uses the greedy
algorithm for exploration, which will not reject tasks if re-
sources permit. In addition, rejecting too many tasks will
degrade the system performance and thus we also limit the
exploration rate of selectingVOID task.

4.2 Task Routing Decision
Task routing addresses the question: to which neighbor
should an agent forward an unallocated task to get it to a un-
saturated cluster before it expires? As each agent interacts
with a limited number of neighbors, it may not know where
are unsaturated clusters that can be multiple hops away from
it. An agent can learn to route tasks via interacting with its
neighbors. The learning objective for task routing is to maxi-
mize the probability of each task to be allocated in the system.

The statesx is defined by the characteristics of the task
x that an agent is forwarding. More specifically,sx can be
represented by a feature vector〈tx, wx〉, wheretx is the type
of the taskx and wx is the remaining waiting time of the
taskx. An actionj corresponds to choosing neighborj for
forwarding a task. The value functionQi(sx, j) returns the
expected probability that the taskx will be allocated if an
agenti forwards it to its neighborj.

Upon sending a task to agentj, agent i immediately
gets the reward signalr(sx, j) from agentj. The reward
r(〈tx, wx〉, j) is the estimated probability that the taskx will
be allocated based on agentj’s policies for both local alloca-
tion and task routing:

r(sx, j) = pj(x)+(1−pj(x))
∑

k∈neighbors ofj

π2j(s
′
x, k)∗Qj(s

′
x, k)

wherepj(x) is the probability that agentj will allocate task
x locally, π2j is the task routing policy of agentj, ands′x is
the state where agentj makes a decision for forwarding task
x. If the statesx = 〈tx, wx〉, thens′x = 〈tx, wx−aij〉, where
aij is the time for transferring a task between agenti andj.

The probabilitypj(x) depends on agentj’s policy π1j :

pj(x) =
∑

st

q(〈sc, st〉|t)π1j(〈sc, st〉, t)

wheret is the type of taskx, sc is the current feature vector of
resource availability,q(〈sc, st〉|t) is the probability that agent
j is on state〈sc, st〉 when it allocates tasks with typet, and
π1j is the local allocation policy of agentj. The probability
q(〈sc, st〉|t) can be directly estimated during the learning.

The simple version of Q-learning algorithm is used to up-
date agenti’s Q-value function:

Qi(sx, j) = (1− α) ∗Qi(sx, j) + α ∗ r(xs, j)

whereα is a learning rate (0.5 in our experiments). With mod-
ified Q-value function, the FAL algorithm updates the task
routing policyπ2i.

To speed up the learning, we use an idea, calledbackward
exploration[Kumar and Miikkulainen, 1999], of using infor-
mation about the traversed path for exploration in the reverse
direction. When agenti transfer taskx to its neighborj, the
message that contains passx can take along reward informa-
tion r(sx, i) of agenti for allocatingx. This reward informa-
tion can be used by agentj to update its own estimate per-
taining toi. Later when agentj has to make a decision, it has

Greedy FDL SDL BDL
Local Best-first Learning1 Best-first Learning1

Routing Random Random Learning2 Learning2

Table 1: Distributed resource allocation approaches

1 2 3 4 5 6 7 8

52 56 88 64 44 80 60 76

16 15 14 13 12 11 10 9

32 72 52 84 64 76 60 64

<40, 4, 20, 8> <28, 4, 16, 4>

<28, 24, 8, 6> <32, 16, 4, 8>

Figure 1: The network with 16 clusters and 1024 nodes

the updated Q-value fori. As a result, backward exploration
speeds up the learning.

5 Experiments
5.1 Experiment Design
To evaluate the performance of learning models developed
above, we compared five resource allocation approaches:
greedy allocation, first-decision (local allocation) learning
(FDL), second-decision (task routing) learning(SDL), both-
decision learning(BDL), and centralized allocation. The
first four approaches are distributed techniques. As shown
in Table 1, they use different algorithms for each decision-
making. Thebest-firstalgorithm, at each time step, first
sorts all received tasks in a descending order of utility rate
and then uses the best-fit algorithm in Sharc[Urgaonkar and
Shenoy, 2003] to allocate tasks one by one.Learning1 and
Learning2 respectively refer to the learning algorithms we de-
veloped for local allocation and task routing. Therandomal-
gorithm for task routing picks a random neighbor to forward
an unallocated task. Thecentralized allocationapproach has
only one manager that fully controls all computing nodes and
usesbest-firstalgorithm to directly allocate tasks to resources
without any routing.

We have tested approaches on several network topologies
with 2, 4, 8, and 16 clusters, all of which show similar results.
Here we present detailed results for a network topology with
16 clusters and total 1024 nodes, as pictured in Figure 1. Each
cluster uses Sharc to manage its local resources. The number
outside a circle represents the number of computing nodes of
that cluster. The CPU capacity and network capacity vary on
different computing nodes, whose range is in[50, 150].

We use four task types:ordinary, compute-intensive,
IO-intensive, and demanding. Their feature vectors
are respectively〈20, 1, 9, 8〉, 〈30, 5, 45, 8〉, 〈35, 6, 15, 48〉and
〈50, 25, 47, 43〉, each of which shows the mean of service
time, utility rate, CPU demand, and network demand. All
tasks have waiting timew = 10. The service time is under
exponential distribution and the rest is under Poisson distribu-
tion. Note that the more demanding tasks usually have much
higher utility rates.



Time

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

U
til

ity
 R

at
e

20000

21000

22000

23000

24000

25000

26000

27000
Greedy

FDL

SDL

BDL

Centralized

Figure 2: Utility rate under light task load

Only four clusters, shaded in Figure 1, receive tasks from
external environment. We tested two different task loads:
heavyandlight. The vector besides each shaded node shows,
under heavy load, the average number of tasks of four types
arriving on that node. Under light task loads, these average
numbers are half of those of heavy task loads. Task arrivals
of each type on each cluster are under a Poisson distribution.
Cluster communication limit is300 tasks per time step.

In our experiments, availability of each resource is cate-
gorized into three levels. All performance measures shown
below are computed every 2000 time steps. Results are then
averaged over 10 simulation runs and the deviation is com-
puted across the runs.

5.2 Results & Discussions

Figure 2 shows utility rate trends of the whole cluster network
as it runs with different approaches in a lightly loaded envi-
ronment. The curved lines of FDL, SDL, and BDL demon-
strate that local allocation learning, task routing learning and
their combination gradually improve system performance.
Under light load where the demand for resources is less than
the supply, the best solution is to allocate all received tasks
within the system. In such a setting, the centralized allocation
approach generates the optimal solution. For distributed allo-
cation approaches, how to route tasks and balance the loads
across clusters becomes very important. From Figure 2, it can
be seen that the performance of SDL and BDL is close to the
optimal approach and much better than FDL and the greedy
approach. So the learning for task routing policy works effec-
tively.

When task loads are well-balanced across clusters, re-
sources of each cluster usually can meet tasks’ demand and
the best-first algorithm is almost optimal for local allocation
decisions. In some sense, the similar performance between
SDL and BDL verifies the effectiveness of learning local al-
location policies. However, when task loads are not well dis-
tributed across the clusters, some clusters received more tasks
than their capacity. In such a situation, the best-first algorithm
will not be optimal, because it does not take into account fu-
ture task arrival patterns in its current decisions. In contrast,
the learning approach implicitly estimates future task arrival
patterns and give up some tasks with low utilities and reserve
resources for future tasks with high utilities. Therefore,FDL
will outperforms the greedy algorithm.

Figure 3 show utility rate trends of the cluster network
under the heavy load. Most analysis results for the lightly

Time

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

U
til

ity
 R

at
e

27000

29000

31000

33000

35000

37000

39000 Greedy

FDL

SDL

BDL

Centralized

Figure 3: Utility rate under heavy task load

Approaches Utility CPU Network Hops
Greedy 21996 ± 173 0.66 ± 0.00 0.64 ± 0.00 1.57 ± 0.01
FDL 22840 ± 152 0.61 ± 0.00 0.59 ± 0.00 4.24 ± 0.02
SDL 25661 ± 171 0.80 ± 0.00 0.77 ± 0.00 1.66 ± 0.02
BDL 25415 ± 139 0.74 ± 0.00 0.71 ± 0.00 5.87 ± 0.04

Centralized 26302 ± 216 0.84 ± 0.00 0.81 ± 0.00 0.00 ± 0.00

Table 2: Performance with light load

Approaches Utility CPU Network Hops
Greedy 28656 ± 125 0.83 ± 0.00 0.81 ± 0.00 2.41 ± 0.03
FDL 34734 ± 107 0.77 ± 0.00 0.74 ± 0.00 5.07 ± 0.02
SDL 32785 ± 143 0.95 ± 0.00 0.92 ± 0.00 2.05 ± 0.01
BDL 39000 ± 136 0.88 ± 0.00 0.84 ± 0.00 5.19 ± 0.03

Centralized 35460 ± 171 0.97 ± 0.00 0.96 ± 0.00 0.00 ± 0.00

Table 3: Performance with heavy load

loaded case also holds in the heavily loaded case. In this
more complicated case, one significant observation is that
BDL outperforms the centralized allocation approach. Un-
der the heavy load, the overall demand for resources exceeds
their supply by the whole cluster network. Without consid-
ering future task arrivals, the best-first centralized allocation
approach is not optimal in such a situation. On the other
hand, the learning approach implicitly takes account of future
tasks for making current decisions and can work better than
the best-first algorithm, which is verified by the performance
of FDL and the greedy approach. Combined with effective
learned routing policies, the advantage of learning local al-
location offsets disadvantages due to partial informationand
distributed resource control in distributed approaches, which
allows BDL to performs better than the centralized allocation
approach.

Table 2 and 3 respectively summarize the performance
measures (including utility rates, CPU utilization, network
utilization, and task routing hops) of different approaches un-
der light and heavy load during the last 2000 time period of
simulations. Under light load, although BDL performs very
well in a distributed way, the difference between its utility rate
and the optimal one (generated by the centralized approach)
is still noticeable, which is around3%. Several factors con-
tribute to this gap. First, due to partial observation, distributed
learned routing policies can not be perfect. In addition, the
communication of each agent is limited. As a result, some
tasks are not allocated before their deadline. Second, to re-
duce the policy search space, both learning models use both
approximate state space and action space, which introduces
further uncertainty that has the effect of decreased perfor-
mance. We tested more accurate models, such as discretizing



availability of each resource into more levels and using more
task features in addition to the type task to represent actions.
Although experiment results are slightly better, the learning
converges much slower and has poor policies for a long pe-
riod. Third, the learning never stops its exploration.

Note that BDL has both lower CPU and network utilization
than SDL, although it performs better. This is because, witha
learned local allocation policy, an agent is willing to giveup
tasks with low utility and reserve resources for future high-
utility tasks, which causes resources to be idle for a higher
percentage of the time. This giving-up behavior causes more
tasks to be routed, which explains that the greedy approach
and SDL have less hops per task than both FDL and BDL.
Thehopsdescribes the average number times that a task has
been transfered before being allocated.

Parameters of our heuristics for speeding up learning are
set in the same way: utilization thresholdβ = 0.7 and min-
imum random exploration rateǫ = 0.005. We observe that
when task arrival rate becomes higher, properly improvingβ
and decreasingǫ can improve the system performance.

6 Related Work
Several distributed scheduling algorithms based on heuristics
are developed for allocating tasks with deadlines and resource
requirements in[Ramamrithamet al., 1989]. Unlike our ap-
proach, both their basis algorithms,focused address algo-
rithm andbidding algorithm, assume each agent can interact
with all other agents and request resource information from
them in a real-time manner. As a result, these algorithms have
potential scalability issues.

A different resource allocation model is formulated
in [Schaerfet al., 1995], which assumes a strict separation
between agents and resources. Jobs arrive at agents who use
reinforcement learning to make decisions about where to ex-
ecute them and the resources are passive (i.e., do not make
decisions) and dedicated. Therefore, there is no direct inter-
action between agents. The work in[Tesauro, 2005] has a
similar model, but there is a resource arbiter who dynami-
cally decides resource allocation based on value functionsof
agents, which are learned independently.

Reinforcement learning has been applied to network rout-
ing [Boyan and Littman, 1994; Kumar and Miikkulainen,
1999]. In their problems, each package has a pre-specified
destination, so the routing is targeted. In contrast, in ourprob-
lem, agents do not know the destination for an task, which is
supposed to be learned. In addition, our task routing learning
is also affected by the local allocation learning.

7 Conclusion
The empirical results presented in this paper provide evi-
dence that multiagent learning is a promising and practical
method for online resource allocation in real computing in-
frastructures with a network of shared clusters. Compared
with a single global learning, multiagent learning scales up to
many applications by partitioning state and action spaces over
agents and through concurrent learning over more computa-
tional hardware. This work also plausibly suggests that mul-
tiagent learning may be an approach to address online opti-

mization problems in distributed systems, such as large-scale
grid computing, sensor networks, and peer-to-peer informa-
tion retrieval.

References
[Aron et al., 2000] Mohit Aron, Peter Druschel, and Willy

Zwaenepoel. Cluster reserves: a mechanism for resource
management in cluster-based network servers. InMea-
surement and Modeling of Computer Systems, pages 90–
101, 2000.

[Arpaci-dusseau and Culler, 1997] Andrea C. Arpaci-
dusseau and David E. Culler. Extending proportional-
share scheduling to a network of workstations. In
Proceedings of Parallel and Distributed Processing
Techniques and Applications, 1997.

[Bowling, 2005] Michael Bowling. Convergence and no-
regret in multiagent learning. InNIPS’05, pages 209–216,
2005.

[Boyan and Littman, 1994] Justin A. Boyan and Michael L.
Littman. Packet routing in dynamically changing net-
works: A reinforcement learning approach. InNIPS’94,
volume 6, pages 671–678, 1994.

[Claus and Boutilier, 1998] Caroline Claus and Craig
Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. InAAAI’98, pages
746–752. AAAI Press, 1998.

[Kumar and Miikkulainen, 1999] Shailesh Kumar and Risto
Miikkulainen. Confidence based dual reinforcement q-
routing: An adaptive online network routing algorithm. In
IJCAI ’99, pages 758–763, 1999.

[Ramamrithamet al., 1989] K. Ramamritham, J. A.
Stankovic, and W. Zhao. Distributed scheduling of tasks
with deadlines and resource requirements.IEEE Trans.
Comput., 38(8):1110–1123, 1989.

[Schaerfet al., 1995] Andrea Schaerf, Yoav Shoham, and
Moshe Tennenholtz. Adaptive load balancing: A study
in multi-agent learning.Journal of Artificial Intelligence
Research, 2:475–500, 1995.

[Singhet al., 2000] Satinder P. Singh, Tommi Jaakkola,
Michael L. Littman, and Csaba Szepesvari. Convergence
results for single-step on-policy reinforcement-learningal-
gorithms.Machine Learning, 38(3):287–308, 2000.

[Tesauro, 2005] Gerald Tesauro. Online resource alloca-
tion using decompositional reinforcement learning. In
Manuela M. Veloso and Subbarao Kambhampati, editors,
AAAI, pages 886–891. AAAI Press / The MIT Press, 2005.

[Urgaonkar and Shenoy, 2003] Bhuvan Urgaonkar and
Prashant Shenoy. Sharc: Managing cpu and network
bandwidth in shared clusters.IEEE Trans. on Parallel and
Distributed Systems (TPDS), 14(11), 2003.

[Zinkevich, 2003] Martin Zinkevich. Online convex pro-
gramming and generalized infinitesimal gradient ascent. In
ICML’03, pages 928–936, 2003.


