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Abstract

Generalization has been one of the major challenges for learning dynamics mod-
els in model-based reinforcement learning. However, previous work on action-
conditioned dynamics prediction focuses on learning the pixel-level motion and
thus does not generalize well to novel environments with different object layouts.
In this paper, we present a novel object-oriented framework, called object-oriented
dynamics predictor (OODP), which decomposes the environment into objects and
predicts the dynamics of objects conditioned on both actions and object-to-object
relations. It is an end-to-end neural network and can be trained in an unsupervised
manner. To enable the generalization ability of dynamics learning, we design a
novel CNN-based relation mechanism that is class-specific (rather than object-
specific) and exploits the locality principle. Empirical results show that OODP
significantly outperforms previous methods in terms of generalization over novel
environments with various object layouts. OODP is able to learn from very few
environments and accurately predict dynamics in a large number of unseen environ-
ments. In addition, OODP learns semantically and visually interpretable dynamics
models.

1 Introduction

Recently, model-free deep reinforcement learning (DRL) has been extensively studied for automat-
ically learning representations and decisions from visual observations to actions. Although such
approach is able to achieve human-level control in games [1, 2, 3, 4, 5], it is not efficient enough and
cannot generalize across different tasks. To improve sample-efficiency and enable generalization for
tasks with different goals, model-based DRL approaches (e.g., [6, 7, 8, 9]) are extensively studied.

One of the core problems of model-based DRL is to learn a dynamics model through interacting
with environments. Existing work on learning action-conditioned dynamics models [10, 11, 12] has
achieved significant progress, which learns dynamics models and achieves remarkable performance
in training environments [10, 11], and further makes a step towards generalization over object
appearances [12]. However, these models focus on learning pixel-level motions and thus their
learned dynamics models does not generalize well to novel environments with different object layouts.
Cognitive studies show that objects are the basic units of decomposing and understanding the world
through natural human senses [13, 14, 15, 16], which indicates object-based models are useful for
generalization [17, 18, 19].

In this paper, we develop a novel object-oriented framework, called object-oriented dynamics pre-
dictor (OODP). It is an end-to-end neural network and can be trained in an unsupervised manner.
It follows an object-oriented paradigm, which decomposes the environment into objects and learns
the object-level dynamic effects of actions conditioned on object-to-object relations. To enable
the generalization ability of OODP’s dynamics learning, we design a novel CNN-based relation
mechanism that is class-specific (rather than object-specific) and exploits the locality principle. This
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mechanism induces neural networks to distinguish objects based on their appearances, as well as
their effects on an agent’s dynamics.

Empirical results show that OODP significantly outperforms previous methods in terms of gener-
alization over novel environments with different object layouts. OODP is able to learn from very
few environments and accurately predict the dynamics of objects in a large number of unseen envi-
ronments. In addition, OODP learns semantically and visually interpretable dynamics models, and
demonstrates robustness to some changes of object appearance.

2 Related Work

Action-conditioned dynamics learning approaches have been proposed for learning the dynamic
effects of an agent’s actions from raw visual observations and achieves remarkable performance in
training environments [10, 11]. CDNA [12] further makes a step towards generalization over object
appearances, and demonstrates its usage for model-based DRL [9]. However, these approaches focus
on learning pixel-level motions and do not explicitly take object-to-object relations into consideration.
As a result, they cannot generalize well across novel environments with different object layouts.
An effective relation mechanism can encourage neural networks to focus attentions on the moving
objects whose dynamics needs to be predicted, as well as the static objects (e.g., walls and ladders)
that have an effect on the moving objects. The lack of such a mechanism also accounts for the fact
that the composing masks in CDNA [12] are insensitive to static objects.

Relation-based nets have shown remarkable effectiveness to learn relations for physical reasoning
[19, 20, 21, 22, 23]. However, they are not designed for action-conditioned dynamics learning. In
addition, they have either manually encoded object representations [19, 20] or not demonstrated
generalization across unseen environments with novel object layouts [20, 21, 22, 23]. In this paper, we
design a novel CNN-based relation mechanism. First, this mechanism formulates a spatial distribution
of a class of objects as a class-specific object mask, instead of representing an individual object by a
vector, which allows relation nets to handle a vast number of object samples and distinguish objects
by their specific dynamic properties. Second, we use neighborhood cropping and CNNs to exploit
the locality principle of object interactions that commonly exists in the real world.

Object-oriented reinforcement learning has been extensively studied, whose paradigm is that the
learning is based on object representations and the effects of actions are conditioned on object-to-
object relations. For example, relational MDPs [17] and Object-Oriented MDPs [18] are proposed
for efficient model-based planning or learning, which supports strong generalization. Cobo et al. [24]
develop a model-free object-oriented learning algorithm to speed up classic Q-learning with compact
state representations. However, these models require explicit encoding of the object representations
[17, 18, 24] and relations [17, 18]. In contrast, our work aims at automatically learning object
representations and object-to-object relations to support model-based RL. While approaches from
object localization [25] or disentangled representations learning [26, 27] have been proposed for
identifying objects, unlike our model, they cannot perform action-conditioned relational reasoning to
enable generalized dynamics learning.

3 Object-Oriented Dynamics Predictor

To enable the generalization ability over object layouts for dynamics learning, we develop a novel
unsupervised end-to-end neural network framework, called Object-Oriented Dynamics Predictor
(OODP). This framework takes the video frames and agents’ actions as input and learns the dynamics
of objects conditioned on actions and object-to-object relations. Figure 1 illustrates the framework of
OODP that consists of three main components: Object Detector, Dynamics Net, and Background
Extractor. In this framework, the input image is fed into two data streams: dynamics inference
and background extraction. In the dynamics inference stream, Object Detector decomposes the
input image into dynamic objects (e.g., the agent) and static objects (e.g., walls and ladders). Then,
Dynamic Net learns the motions of dynamic objects based on both their relations with other objects
and the actions of an agent (e.g., the agent’s moving upward by actions up when touching a ladder).
Once the motions are learned, we can apply these transformations to the dynamic objects via Spatial
Transformer Network (STN) [28]. In the background extraction stream, Background Extractor
extracts the background of the input image, which is not changing over time. Finally, the extracted
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background will be combined with the transformed dynamic objects to generate the prediction of the
next frame. OODP assumes the environment is Markovian and deterministic, so it predicts the next
frame based on the current frame and action.
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Figure 1: Overall framework of OODP.

OODP follows an object-oriented dynamics learning paradigm. It uses object masks to bridge object
perception (Object Detector) with dynamics learning (Dynamics Net) and to form a tensor bottleneck,
which only allows the object-level information to flow through. Each object mask has its own
dynamics learner, which forces Object Detector to act as a detector for the object of interest and also
as a classifier for distinguishing which kind of object has a specific effect on dynamics. In addition,
we add an entropy loss to reduce the uncertainty of object masks, thus encouraging attention on key
parts and learning invariance to irrelevances.

In the rest of this section, we will describe in detail the design of each main component of OODP and
their connections.

3.1 Object Detector

Object Detector decomposes the input image into a set of objects. To simplify our model, we group
the objects (denoted as O) into static and dynamic objects (denoted as S and D) so that we only need
to focus on predicting the motions of the dynamic objects. An object Oi is represented by a mask
MOi

∈ [0, 1]H×W , where H and W denote the height and width of the input image I ∈ RH×W×3,
and the entry MOi(u, v) indicates the probability that the pixel I(u, v) belongs to the i-th object.
The same class of static objects has the same effects on the motions of dynamic objects, so we use
one mask MSi (1 ≤ i ≤ nS , where nS denotes the class number of static objects) to represent each
class of static objects. As different dynamic objects may have different motions, we use one mask
MDj

(1 ≤ j ≤ nD, where nD denotes the individual number of dynamic objects) to represent each
individual dynamic object. Note that OODP does not require the actual number of objects in an
environment, but needs to set a maximum number. When they do not match, some learned object
masks may be redundant, which does not affect the accuracy of prediction (more details can be found
in Supplementary Material).

Figure 2 depicts the architecture of Object Detector. As shown in the figure, the pixels of the input
image go through different CNNs to obtain different object masks. There are totally nO CNNs
owning the same architecture but not sharing weights. The architecture details of these CNNs can
be found in Supplementary Material. Then, the output layers of these CNNs are concatenated with
each other across channels and a pixel-wise softmax is applied on the concatenated feature map
F ∈ RH×W×nO . Let f(u, v, c) denote the value at position (u, v) in the c-th channel of F . The
entry MOc

(u, v) of the c-th object mask which represents the probability that the pixel I(u, v) of the
input image belongs to the c-th object Oc, can be calculated as,

MOc(u, v) = p (Oc|I(u, v)) =
ef(u,v,c)∑nO

i ef(u,v,i)
.

To reduce the uncertainty of the affiliation of each pixel I(u, v) and encourage the object masks
to obtain more discrete attention distributions, we introduce a pixel-wise entropy loss to limit the
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entropy of the object masks, which is defined as,

Lentropy =
∑
u,v

nO∑
c

−p (Oc|I(u, v)) log p (Oc|I(u, v)) .

3.2 Dynamics Net

Dynamics Net aims at learning the motion of each dynamic object conditioned on actions and object-
to-object relations. Its architecture is illustrated in Figure 3. In order to improve the computational
efficiency and generalization ability, the Dynamics Net architecture incorporates a tailor module to
exploit the locality principle and employs CNNs to learn the effects of object-to-object relations
on the motions of dynamic objects. As the locality principle commonly exists in object-to-object
relations in the real world, the tailor module enables the inference on the dynamics of objects focusing
on the relations with neighbour objects. Specifically, it crops a “horizon” window of size w from the
object masks centered on the position of the dynamic object whose motion is being predicted, where
w indicates the maximum effective range of object-to-object relations. The tailored local objects are
then fed into the successive network layers to reason their effects. Unlike most previous work which
uses fully connected networks for identifying relations [19, 20, 21, 22, 23], our dynamics inference
employs CNNs. This is because CNNs provide a mechanism of strongly responding to spatially
local patterns, and the multiple receptive fields in CNNs are capable of dealing with complex spatial
relations expressed in distribution masks.
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Figure 2: Architectures of
Object Detector.
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Figure 3: Architecture of Dynamics Net. We illustrate predicting the
motion of MDj

as an example. O\{Dj} denotes O excluding Dj .

To demonstrate the detailed pipeline in Dynamics Net (Figure 3), we take as an example the computa-
tion of the predicted motion of the j-th dynamic object Dj . First, we describe the cropping process
of the tailor module, which crops the object masks near to the dynamic object Dj .

For each dynamic object Dj , its position (ūDj
, v̄Dj

) is defined as the expected location of its
object mask MDj

, where ūDj
=
(∑H

u

∑W
v MDj

(u, v)
)−1∑H

u

∑W
v u · MDj

(u, v), v̄Dj
=(∑H

u

∑W
v MDj

(u, v)
)−1∑H

u

∑W
v v ·MDj

(u, v). The “horizon" window of size w centered on
(ūDj

, v̄Dj
) is written asBw = {(u, v) : ūDj

−w/2 ≤ u ≤ ūDj
+w/2, v̄Dj

−w/2 ≤ v ≤ v̄Dj
+w/2}.

The tailor module receives Bw and performs cropping on other object masks excluding MDj
, that

is, MO\{Dj}. This cropping process can be realized by bilinear sampling [28], which is a sub-
differentiable sampling approach. Taking cropping MO1 as an example, the pairwise transformation
of sampling grid is (u2, v2) = (u1 + ūDj − w/2, v1 + v̄Dj − w/2), where (u1, v1) are coordinates
of the cropped object mask CO1

and (u2, v2) ∈ Bw are coordinates of the original object mask MO1
.

Then applying bilinear sampling kernel on this grid can compute the cropped object mask CO1
,

CO1
(u1, v1) =

H∑
u

W∑
v

(
MO1

(u, v) ·max(0, 1− |u2 − u|) max(0, 1− |v2 − v|)
)
, (1)

Note that the gradients wrt (ūDj
, v̄Dj

) are frozen to force the cropping module focus on what to crop
rather than where to crop, which is different to the vanilla bilinear sampling [28].

Then, each cropped object mask COi
is concatenated with the constant x-coordinate and y-coordinate

meshgrid map, which makes networks more sensitive to the spatial information. The concatenated
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map is fed into its own CNNs to learn the effect of i-th object on j-th dynamic object E(Oi, Dj) ∈
R2×na , where na represents the number of actions. There are totally (nO − 1) × nD CNNs
for (nO − 1) × nD pairs of objects. Different CNNs working for different objects forces the
object mask to act as a classifier for distinguishing each object with the specific dynamics. To
predict the motion vector V (t)

Dj
∈ R2 for dynamic object Dj , all the object effects and a self effect

Eself(Dj) ∈ R2×na representing the natural bias are summed and multiplied by the one-hot coding
of action a(t) ∈ {0, 1}na , that is,

V
(t)
Dj

=
(( ∑

Oi∈O\{Dj}

E(Oi, Dj)
)

+ Eself(Dj)
)
· a(t).

In addition to the conventional prediction error Lprediction (described in Section 3.4), here we introduce
a regression loss to guide the optimization of M (t)

O and V (t)
D , which serves as a highway to provide

early feedback before reconstructing images. This regression loss is defined as follows,

Lhighway =

nD∑
j

www(ūDj
, v̄Dj

)(t) + V
(t)
Dj
− (ūDj

, v̄Dj
)(t+1)

www2

2
.

3.3 Background Extractor

To extract time-invariant background, we construct a Background Extractor with neural networks.
The Background Extractor takes the form of a traditional encoder-decoder structure. The encoder
alternates convolutions [29] and Rectified Linear Units (ReLUs) [30] followed by two fully-connected
layers, while the decoder alternates deconvolutions [31] and ReLUs. To avoid losing information in
pooling layers, we replace all the pooling layers by convolutional layers with increased stride [32, 33].
Further details of the architecture of Background Extractor can be found in Supplementary Material.

Background Extractor takes the current frame I(t) ∈ RH×W×3 as input and produces the background
image I(t)bg ∈ RH×W×3, whose pixels remain unchanged over times. We use Lbackground here to force

the network to satisfy such a property of time invariance, given by Lbackground =
wwI(t+1)

bg − I(t)bg

ww2

2
.

3.4 Merging Streams

Finally, two streams of pixels are merged to produce the prediction of the next frame. One stream
carries the pixels of dynamic objects which can be obtained by transforming the masked pixels of
dynamic objects from the current frame. The other stream provides the rest pixels generated by
Background Extractor.

Spatial Transformer Network (STN) [28] provides neural networks capability of spatial transformation.
In the first stream, a STN accepts the learned motion vectors V and performs spatial transforms
(denoted by STN(∗, V )) on dynamic pixels. The bilinear sampling (similar as Equation 1) is also
used in STN to compute the transformed pixels in a sub-differentiable manner. The difference is
that, we allow the gradients of loss backpropagate to the object masks as well as the motion vectors.
Then, we obtain the pixel frame Î(t+1)

1 of dynamic objects in the next frame Î(t+1), that is, Î(t+1)
1 =∑nD

j STN(M
(t)
Dj
· I(t), V (t)

Dj
), where · denotes element-wise multiplication. The other stream aims

at computing the rest pixels Î(t+1)
2 of Î(t+1), that is, Î(t+1)

2 =
(
1−

∑nD

j STN(M
(t)
Dj
, V

(t)
Dj

)
)
· I(t)bg .

Thus, the output end of OODP, Î(t+1), is calculated by,

Î(t+1) = Î
(t+1)
1 + Î

(t+1)
2 =

nD∑
j

STN(M
(t)
Dj
· I(t), V (t)

Dj
) +

(
1−

nD∑
j

STN(M
(t)
Dj
, V

(t)
Dj

)
)
· I(t)bg .

We use l2 pixel loss to restrain image prediction error, which is given by, Lprediction =
wwÎ(t+1) −

I(t+1)
ww2

2
. We also add a similar l2 pixel loss for reconstructing the current image, that is,

Lreconstruction =
www nD∑

j

M
(t)
Dj
· I(t) +

(
1−

nD∑
j

M
(t)
Dj

)
· I(t)bg − I

(t)
www2

2
.
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In addition, we add a loss Lconsistency to link the visual perception and dynamics prediction of the
objects, which enables learning object by integrating vision and interaction,

Lconsistency =

nD∑
j

wwwM (t+1)
Dj

− STN
(
M

(t)
Dj
, V

(t)
Dj

)www2

2
.

3.5 Training Procedure

OODP is trained by the following loss given by combining the previous losses with different weights,

Ltotal = Lhighway + λpLprediction + λeLentropy + λrLreconstruction + λcLconsistency + λbgLbackground

Considering that signals derived from foreground detection can benefit Object Detector to produce
more accurate object masks, we use the simplest unsupervised foreground detection approach [34] to
calculate a rough proposal dynamic region and then add a l2 loss to encourage the dynamic object
masks to concentrate more attentions on this region, that is,

Lproposal =
ww( nD∑

j

M
(t)
Dj

)
−M (t)

proposal

ww2

2
, (2)

where M (t)
proposal represents the proposal dynamic region. This additional loss can facilitate the training

and make the learning process more stable and robust.

4 Experiments

4.1 Experiment Setting

We evaluate our model on Monster Kong from the Pygame Learning Environment [35], which offers
various scenes for testing generalization abilities across object layouts (e.g., different number and
spatial arrangement of objects). Across different scenes, the same underlying physics engine that
simulates the real-world dynamics mechanism is shared. For example, in each scene, an agent can
move upward using a ladder, it will be stuck when hitting the walls, and it will fall in free space.
The agent explores various environments with a random policy over actions including up, down, left,
right, and noop and its gained experiences are used for learning dynamics.

To evaluate the generalization ability, we compare our model with state-of-the-art action-conditioned
dynamics learning approaches, AC Model [10], and CDNA [12]. We evaluate all models in k-to-m
generalization problems (Figure 4), where they learn dynamics with k different training environments
and are then evaluated in m different unseen testing environments with different object layouts. In
this paper, we use m = 10 and k = 1, 2, 3, 4, and 5, respectively. The smaller the value k, the more
difficult the generalization problem. In this setting, truly achieving generalization to new scenes
requires learners’ full understanding of the object-level abstraction, object relationships and dynamics
mechanism behind the images, which is quite different from the conventional video prediction task
and crucially challenging for the existing learning models. In addition, we will investigate whether
OODP can learn semantically and visually interpretable knowledge and is robustness to some changes
of object appearance.

4.2 Generalization of Learned Models

To demonstrate the generalization ability, we evaluate the prediction accuracy of the learned dynamics
model in unseen environments with novel object layouts without re-training. Table 1 shows the
performance of all models on predicting the dynamics of the agent, where n-error accuracy is defined
as the proportion that the difference between the predicted and ground-true agent locations is less
than n pixel (n = 0, 1, 2).

From Table 1, we can see our model significantly outperforms the previous methods under all
circumstances. This demonstrates our object-oriented approach is beneficial for the generalization
over object layouts. As expected, as the number of training environments increases, the learned object
dynamics can generalize more easily over new environments and thus the accuracy of dynamics
prediction tends to grow. OODP achieves reasonable performance with 0.86 0-error accuracy only
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Training environments

Unseen environments

Figure 4: An example of 2-to-10 generalization problem.

Models Training environments Unseen environments

1-10 2-10 3-10 4-10 5-10 1-10 2-10 3-10 4-10 5-10

OODP+p 0.90 0.94 0.92 0.93 0.93 0.32 0.78 0.73 0.79 0.82
0-error OODP-p 0.96 0.98 0.98 0.98 0.97 0.22 0.78 0.86 0.90 0.95

accuracy AC Model 0.99 0.99 0.99 0.99 0.99 0.01 0.17 0.22 0.44 0.70
CDNA 0.20 0.13 0.14 0.19 0.17 0.33 0.18 0.20 0.25 0.19

OODP+p 0.98 0.98 0.99 0.98 0.98 0.71 0.90 0.90 0.94 0.95
1-error OODP-p 0.98 0.98 0.99 0.99 0.99 0.61 0.91 0.94 0.96 0.97

accuracy AC Model 0.99 0.99 0.99 0.99 0.99 0.01 0.31 0.31 0.57 0.77
CDNA 0.30 0.29 0.30 0.33 0.30 0.53 0.49 0.47 0.52 0.55

OODP+p 0.99 0.99 0.99 0.99 0.99 0.87 0.96 0.96 0.98 0.99
2-error OODP-p 0.99 0.99 0.99 0.99 0.99 0.82 0.94 0.97 0.98 0.98

accuracy AC Model 0.99 0.99 0.99 0.99 0.99 0.02 0.37 0.34 0.64 0.80
CDNA 0.36 0.44 0.47 0.45 0.45 0.56 0.55 0.56 0.62 0.62

Table 1: Accuracy of the dynamics prediction. k-m means the k-to-m generalization problem. Here,
we use OODP+p and OODP-p to distinguish OODP with or without the proposal loss (Equation 2).

trained in 3 environments, while the other methods fail to get satisfactory scores (about 0.2). We
observe that the AC Model achieves extremely high accuracy in training environments but cannot
make accurate predictions in novel environments, which implies it overfits the training environments
severely. This is partly because the AC Model only performs video prediction at the pixel level
and learns few object-level knowledge. Though CDNA includes object concepts in their model, it
still performs pixel-level motion prediction and does not consider object-to-object relations. As a
result, CDNA also fails to achieve accurate predictions in unseen environments with novel object
layouts (As the tuning of hyper parameters does not improve the prediction performance, we use the
default settings here). In addition, we observe that the performance of OODP-p is slightly higher
than OODP+p because the region proposals used for the initial guidance of optimization sometimes
may introduce some noise. Nevertheless, using proposals can make the learning process more stable.

4.3 Interpretability of Learned Knowledge

Interpretable deep learning has always been a significant but vitally hard topic [36, 37, 38]. Unlike
previous video prediction frameworks [10, 12, 39, 40, 41, 42, 23], most of which use neural networks
with uninterpretable hidden layers, our model has informative and meaningful intermediate layers
containing the object-level representations and dynamics.

To interpret the intermediate representations learned by OODP, we illustrate its object masks in unseen
environments, as shown in Figure 5. Intriguingly, the learned dynamic object masks accurately capture
the moving agents, and the static masks successfully detect the ladders, walls and free space that lead
to different action conditioned dynamics of the agent. Each object mask includes one class of objects,
which implies that the common characteristics of this class are learned and the knowledge that links
visual features and dynamics properties is gained. While the learned masks are not as fine as those
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Dynamic objectsStatic objectsInput frame
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Figure 5: Visualization of the masked images in unseen environments with single dynamic object
(top) and multiple dynamic objects (down). To demonstrate the learned attentions of object masks,
the raw input images are multiplied by binarized object masks.

derived from the supervised image segmentation, they clearly demonstrate visually interpretable
representations in the domain of unsupervised dynamics learning.

To interpret the learned object dynamics behind frame prediction, we evaluate the root-mean-square
errors (RMSEs) between the predicted and ground-truth motions. Table 2 shows the RMSEs averaged
over 10000 samples. From Table 2, we can observe that motions predicted by OODP are very accurate,
with the RMSE close or below one pixel, in both training and unseen environments. Such a small
error is visually indistinguishable since it is less than the resolution of the input video frame (1 pixel).
As expected, as the number of training environments increases, this prediction error rapidly descends.
Further, we also provide some intuitive prediction examples (see Supplementary Material) and a video
(https://goo.gl/BTL2wH) for better perceptual understanding of the prediction performance.

Models Number of training envs

1 2 3 4 5

Training OODP+p 0.28 0.24 0.23 0.23 0.23
envs OODP-p 0.18 0.17 0.19 0.14 0.15

Unseen OODP+p 1.04 0.52 0.51 0.43 0.40
envs OODP-p 1.09 0.53 0.38 0.35 0.29

Table 2: RMSEs between predicted and ground-
truth motions. The unit of measure is pixel.

Object appearance

S0 S1 S2 S3 S4 S5 S6

Acc 0.94 0.92 0.94 0.94 0.92 0.88 0.93

RMSE 0.29 0.35 0.31 0.28 0.31 0.40 0.30

Table 3: The performance (accuracy and RMSE
in 5-to-10 generalization problem) of OODP in
novel environments with different object layouts
and appearances.

These interpretable intermediates demystify why OODP is able to generalize across novel environ-
ments with various object layouts. While the visual perceptions of novel environments are quite
different, the underlying physical mechanism based on object relations keeps invariant. As shown in
Figure 5, OODP learns to decompose a novel scene into understandable objects and thus can reuse
object-level knowledge (features and relations) acquired from training environments to predict the
effects of actions.

4.4 Robustness to changes of object appearance

To demonstrate the robustness to object appearances, we evaluate the generalization performance of
OODP in testing environments including objects with appearance differences from those in training
environments, as shown in Figure 6. As shown in Table 3, OODP provides still high prediction
performance in all these testing environments, which indicates that it can still generalize to novel
object layouts even when the object appearances have some differences. This robustness is partly
because the Object Detector in OODP employs CNNs that are capable of learning essential patterns
over appearances. Furthermore, we provide the learned masks (see Supplementary Material) and a
video (https://goo.gl/ovupdn) to show our results on S2 environments.
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S1: increased illumination S2: graffiti walls

S3: jagged walls S4: spotted ladders S5: distorted ladders S6: mixtures

S0: original appearance

Figure 6: Illustration of the configurations of
the novel testing environments. Compared to
the training environments, the testing ones have
different object layouts (S0-S6), and their objects
have some appearance differences (S1-S6).

Raw image

Mountains Flat area

Agent

Figure 7: Visualization of the learned masks in
unseen environments in Mars domain.

4.5 Mars Rover Navigation

To test the performance for the natural image input, we also evaluate our model in the Mars rover
navigation domain introduced by Tamar et al. [43]. The Mars landscape images are natural images
token from NASA. An Mars rover random explores in the Martian surface and it will be stuck if
there are mountains whose elevation angles are equal or greater than 5 degrees. We run our model
on 5-to-10 generalization problem and compare it with other approaches. As shown in Figure 7 and
Table 4, in unseen environments, our learned object masks successfully capture the key objects and
our model significantly outperforms other methods in terms of dynamics prediction.

5 Conclusion and Future Work

Models acc0 acc1 acc2 acc3
AC Model 0.10 0.10 0.10 0.12

CDNA 0.46 0.54 0.62 0.75
OODP 0.70 0.70 0.78 0.92

Table 4: Accuracy of the dynamics prediction in
unseen environments in Mars domain. accn de-
notes n-error accuracy.

We present an object-oriented end-to-end neu-
ral network framework. This framework is
able to learn object dynamics conditioned on
both actions and object relations in an unsuper-
vised manner. Its learned dynamics model ex-
hibits strong generalization and interpretability.
Our framework demonstrates that object percep-
tion and dynamics can be mutually learned and
reveals a promising way to learn object-level
knowledge by integrating both vision and inter-
action. We make one of the first steps in investi-
gating how to design a self-supervised, end-to-end object-oriented dynamics learning framework that
enables generalization and interpretability. Our learned dynamics model can be used with existing
policy search or planning methods (e.g., MCTS and MPC). Although we use random exploration in
the experiment, our model can integrate with smarter exploration strategies for better state sampling.

Our future work includes extending our framework for supporting long-term prediction, abrupt
change prediction (e.g., object appearing and disappearing), and dynamic background (e.g., caused
by a moving camera or multiple dynamic objects). As abrupt changes are often predictable from
a long-term view or with memory, our model can incorporate memory networks (e.g., LSTM) to
deal with such changes. In addition, the STN module in our model has the capability of learning
disappearing, which is basically an affine transformation with zero scaling. For prediction with
dynamic background (e.g., in FPS game and driving), we will incorporate a camera motion prediction
network module similar to that introduced by Vijayanarasimhan et al. [44]. This module will learn a
global transformation and apply it to the whole image to incorporate the dynamics caused by camera
motion.
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