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E-commerce Platform

Fraud Hurts E-commerce Platform in Many Ways

Waste over $1,000,000,000 a Year
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Fraud Patterns V.S. Normal Patterns [1, 2]
• Fraudsters display synchronized behaviors.

• In contrast, normal users are usually randomly distributed.
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[1] Girish Keshav Palshikar. 2002. The hidden truth-frauds and their control: A critical application for business intelligence. 
Intelligent Enterprise 5, 9 (2002), 46–51.
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Challenge 1: Fraud pattern changes after exposure.

E-commerce Platform
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Fraud Labels

Obsolete
for training

Use Unsupervised
Methods!
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Challenge 2: Different Local Clustering Patterns
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Challenge 3: Noisy Random Normal Users

6

GPS City

GS
1

GS
2

GS
3

GS
4

GS
5

Synchronization
due to randomness

Ideally

GS
6

Reality

Error! Good Job!

Robust to noise!



Problem Definition – Clustering + Feature Selection

• Discrete feature space.
• Given dataset 𝒟 = 𝒙! !"#

$ , where each feature 𝑥!% takes discrete values
from 𝑋%& &"#

'! .

• Local clustering patterns.
• Data points are grouped into clusters 𝒢( ("#

)
.

• Within each cluster 𝒢(, there exists a feature subset ℱ(, such that ∀𝒙, 𝒙* ∈
𝒢(, ∀𝑚 ∈ ℱ(, 𝑥% = 𝑥%* with high probability.

• Goal: find all 𝒢! and ℱ!, while tolerating the noise.
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Key Results

• Applicable to a variety of applications.
• Fraud detection + anomaly detection.

• Superior fraud detection performance.
• 18% AUC improvement.
• Interpretable results.

• Superior anomaly detection performance.
• Over 5% AUC improvement in average.

• Robust to noise and hyperparameters.
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Feature Selection in Clustering

• Idea: delete some feature, then cluster the data.
• No feature should be deleted globally.

• 3 types of methods [3]:
• Filter model: filter the low-quality features before clustering.

• Wrapper model: enumerate feature combinations and evaluate clustering
performance.

• Hybrid model: select features during clustering.
• *Suffer from identifiability issue in discrete space.
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* We provide a proof in our paper.
[3] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature Selection for Clustering: A Review. In Data Clustering: Algorithms 

and Applications 2013. 29–60.

Challenge 2:
LOCAL clustering patterns!



Dense Block Detection

• Idea: high-density blocks in data are potential anomalies [4, 5].

• Steps:
1. Greedy search for the block with highest density.

2. Delete the block.

3. Repeat the process on the remaining data.

• Normal users with random synchronization significantly affect the
detection performance.
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[4] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees.
ECML PKDD 2016. 264–280.

[5] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. D-Cube: Dense-Block Detection in Terabyte-Scale Tensors. WSDM 
2017, 681–689.

Challenge 3: Noise!



FIRD: A Generative Probabilistic
Model
Feature Independence and adveRersarial Distributions.
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Enumerating Possible Feature Combinations?

ⓧ Exponential feature combinations.

ⓧ Exponential feature value combinations.
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A Decomposed Way of Feature Selection

ü Conditional feature independence.

l Features are independent within a cluster.

l Linear complexity.

ü Recognize clustering pattern on each feature, then combine.

l Using the adversarial distributions to fit the data.
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Fitting Patterns Using Adversarial Distributions
in Each Feature
• For synchronized features in a cluster

• For non-synchronized features in a cluster
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Observation Generation Process

• Choose a cluster 𝑑!~Multinomial(𝝅)

• For each feature 𝑚:

• Choose indicator variable 𝑓!%~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝝁𝒅𝒏)

• If 𝑓!% = 1, generate observation 𝑥!% from

sparsemultinomial distribution.

• If 𝑓!% = 0, generate observation 𝑥!% from

nearly randommultinomial distribution.
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Noise Reduction

• Noise: outliers that are unsimilar to all clusters.

• An information-theoretic rule to recognize an outlier:
𝐼 𝑥" 𝑑" = 𝑔 = − log 𝑝(𝑥"|𝑑" = 𝑔) < 1 + 𝜖 𝐻[𝑝(𝑥"|𝑑" = 𝑔)]

?
𝑝(𝑥!|𝑑! = 𝑔)
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Solve Challenge 3:
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Probabilistic Inference Based on FIRD

• Inferring label ℓ for each observation given the
label of each cluster.

ℓ! ≜ 𝔼"! ℓ 𝑥! = &
#$%

&

𝑝 ℓ 𝑑! = 𝑔 𝑝(𝑑! = 𝑔|𝑥!)

• Label of clusters 𝑝 ℓ 𝑑! = 𝑔 are easier to obtain:
• #Clusters << #Observations
• Cluster patterns are easier to classify.
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Experimental Evaluations
Our Cython code of FIRD is available at https://github.com/fingertap/fird.cython.
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https://github.com/fingertap/fird.cython


Identify Fraud Groups

• Dataset
• We collect the registration records from an E-commerce platform.

• An account is labeled as Fraud if any malicious behavior is observed.
• Labels are used only for evaluation.

• Objective
• Good performance.

• High interpretability.
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Identify Fraud Groups - Performance

• Compare with dense block detection methods [2, 3]:

• N:F is the fraction between normal user and fraudsters.

• Higher N:F means larger noise.
20

18% AUC ↑
Robust to noise!



Interpretability: Visualize Detected Clusters
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Interpretability: Visualize One Fraud Cluster
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Interpretability: Visualize One Fraud Feature
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Anomaly Detection

• Assumption: anomalies are distant from the data manifolds [9].

• Feature selection idea: subsampling and ensemble. 

• Still enumerating the exponentially many feature combinations.
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[9] Yue Zhao, Zain Nasrullah, Maciej K. Hryniewicki, and Zheng Li. LSCP: Locally Selective Combination in Parallel Outlier Ensembles. 
SDM 2019. 585–593.
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Comparison with SOTA Methods

• More benchmark results are available at PyOD benchmark.
25

Local Clustering
Pattern matters in

various cases!

https://pyod.readthedocs.io/en/latest/benchmark.html


Model Analysis – #Clusters: 𝑮

*Dimension Capacity Ratio: the ratio of the parameter G to the ground-truth number of clusters.

Just choose a
larger 𝐺
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Model Analysis – Regularizer Weight: 𝝀

Just choose a
relatively
larger 𝜆

*𝜆(") controls selecting effective clusters. 𝜆($) controls adversarial distributions.
*0 < 𝜆("), 𝜆($) < 1, poorer regularization effect near the border (0 and 1). 27



Model Analysis – Running Time

*We compare with the K-Means implemented in the Python package Scikit-Learn.
*Fix the #samples and the #values in each feature.

Linear
running time

w.r.t𝑀
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https://scikit-learn.org/


Conclusion

• Fraud groups display synchronized behaviors on a subset of features.

• Use adversarial distributions to select useful features by competing.

• Identifying local clustering patterns benefits various applications.

• Up to 18% increase on fraud detection and 5% on anomaly detection.
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