Modeling Heterogeneous Statistical Patterns in Highdimensional Data by Adversarial Distributions: An Unsupervised Generative Framework (FIRD)

Han Zhang¹ Wenhao Zheng³ Charley Chen¹ Kevin Gao¹
Yao Hu³ Ling Huang² Wei Xu¹

¹Tsinghua University ²AHI Fintech ³Youku Cognitive and Intelligent Lab, Alibaba Group

Fraud Hurts E-commerce Platform in Many Ways

Fraud Patterns V.S. Normal Patterns [1, 2]

• Fraudsters display synchronized behaviors.

- In contrast, normal users are usually randomly distributed.
- [1] Girish Keshav Palshikar. 2002. The hidden truth-frauds and their control: A critical application for business intelligence. Intelligent Enterprise 5, 9 (2002), 46–51.
- [2] S Benson Edwin Raj and A Annie Portia. 2011. Analysis on credit card fraud detection methods. In 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET). IEEE, 152–156.

Challenge 1: Fraud pattern changes after exposure.

Use **Unsupervised**Methods!

Challenge 2: Different Local Clustering Patterns

Challenge 3: Noisy Random Normal Users

Problem Definition – Clustering + Feature Selection

- Discrete feature space.
 - Given dataset $\mathcal{D} = \{x_n\}_{n=1}^N$, where each feature x_{nm} takes **discrete** values from $\{X_{mi}\}_{i=1}^{D_m}$.
- Local clustering patterns.
 - Data points are grouped into **clusters** $\left\{\mathcal{G}_g\right\}_{g=1}^G$.
 - Within each cluster \mathcal{G}_g , there exists a feature subset \mathcal{F}_g , such that $\forall x, x' \in \mathcal{G}_g$, $\forall m \in \mathcal{F}_g$, $x_m = x'_m$ with high probability.
- Goal: find all \mathcal{G}_a and \mathcal{F}_a , while tolerating the noise.

Key Results

- Applicable to a variety of applications.
 - Fraud detection + anomaly detection.
- Superior fraud detection performance.
 - 18% AUC improvement.
 - Interpretable results.
- Superior anomaly detection performance.
 - Over **5**% AUC improvement in average.
- Robust to noise and hyperparameters.

Feature Selection in Clustering

- Idea: delete some feature, then cluster the data.
 - No feature should be deleted globally.

• 3 types of methods [3]:

Challenge 2: LOCAL clustering patterns!

- Filter model: filter the low-quality features before clustering.
- Wrapper model: enumerate feature combinations and evaluate clustering performance.
- Hybrid model: select features during clustering.
 - *Suffer from identifiability issue in discrete space.

^{*} We provide a proof in our paper.

^[3] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature Selection for Clustering: A Review. In Data Clustering: Algorithms and Applications 2013. 29–60.

Dense Block Detection

• Idea: high-density blocks in data are potential anomalies [4, 5].

• Steps:

- 1. Greedy search for the block with highest density.
- 2. Delete the block.
- 3. Repeat the process on the remaining data.

Challenge 3: Noise!

- Normal users with random synchronization significantly affect the detection performance.
- [4] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees. ECML PKDD 2016. 264–280.
- [5] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. D-Cube: Dense-Block Detection in Terabyte-Scale Tensors. WSDM 2017, 681–689.

FIRD: A Generative Probabilistic Model

Feature Independence and adveRersarial Distributions.

Enumerating Possible Feature Combinations?

Exponential feature combinations.

Exponential feature value combinations.

A Decomposed Way of Feature Selection

- ✓ Conditional feature independence.
 - Features are independent within a cluster.
 - Linear complexity.
- ✓ Recognize clustering pattern on each feature, then combine.
 - Using the adversarial distributions to fit the data.

Fitting Patterns Using Adversarial Distributions in Each Feature

• For **synchronized** features in a cluster

Solved Challenge 2:
Detecting Local
Clustering Patterns!

• For non-synchronized features in a cluster

Observation Generation Process

- Choose a cluster $d_n \sim \text{Multinomial}(\pi)$
 - For each feature *m*:
 - Choose indicator variable $f_{nm} \sim Bernoulli(\mu_{d_n})$
 - If $f_{nm}=1$, generate observation x_{nm} from sparse multinomial distribution.
 - If $f_{nm} = 0$, generate observation x_{nm} from nearly random multinomial distribution.

Noise Reduction

Noise: outliers that are unsimilar to all clusters.

An information-theoretic rule to recognize and

$$I(x_n|d_n = g) = -\log p(x_n|d_n = g) < (1 + \epsilon)H[p(x_n|d_n = g)]$$

Solve Challenge 3:

Noise from normal

users.

Probabilistic Inference Based on FIRD

• Inferring label ℓ for each observation given the label of each cluster.

$$\ell_n \triangleq \mathbb{E}_{d_n}[\ell|x_n] = \sum_{g=1}^G p(\ell|d_n = g)p(d_n = g|x_n)$$

- Label of clusters $p(\ell|d_n=g)$ are easier to obtain:
 - #Clusters << #Observations
 - Cluster patterns are easier to

From Clustering to Fraud Label Assignment

Experimental Evaluations

Our Cython code of FIRD is available at https://github.com/fingertap/fird.cython.

Identify Fraud Groups

- Dataset
 - We collect the registration records from an E-commerce platform.
 - An account is labeled as Fraud if any malicious behavior is observed.
 - Labels are used only for evaluation.
- Objective
 - Good performance.
 - High interpretability.

Identify Fraud Groups - Performance

• Compare with dense block detection methods [2, 3]:

- N:F is the fraction between normal user and fraudsters.
- Higher N:F means larger noise.

18% AUC 个 Robust to noise!

Interpretability: Visualize Detected Clusters

Interpretability: Visualize One Fraud Cluster

Interpretability: Visualize One Fraud Feature

Anomaly Detection

• Assumption: anomalies are distant from the data manifolds [9].

- Feature selection idea: subsampling and ensemble.
- Still enumerating the exponentially many feature combinations.

[9] Yue Zhao, Zain Nasrullah, Maciej K. Hryniewicki, and Zheng Li. LSCP: Locally Selective Combination in Parallel Outlier Ensembles. SDM 2019. 585–593.

Comparison with SOTA Methods

Dataset	FIRD	HBOS	IForest	OCSVM	LSCP
cardio	0.949	0.843.	0.924	0.938	0.901
musk	1.000	1.000	0.999	1.000	0.998
optdigits	1.000	0.865	0.714	0.500	-
satimage-2	0.998	0.977	0.993	0.997	0.9935
shuttle	0.990	0.986	0.997	0.992	0.5514
satellite	0.900	0.754	0.701	0.660	0.6015
ionosphere	0.946	0.5569	0.8529	0.8597	-
pendigits	0.972	0.9247	0.9435	0.931	0.8744
wbc	0.944	0.954	0.9325	0.9376	0.945

Local Clustering
Pattern **matters** in various cases!

• More benchmark results are available at PyOD benchmark.

Model Analysis – #Clusters: G

^{*}Dimension Capacity Ratio: the ratio of the parameter G to the ground-truth number of clusters.

Model Analysis – Regularizer Weight: λ

Just choose a relatively larger λ

^{*} $\lambda^{(1)}$ controls selecting effective clusters. $\lambda^{(2)}$ controls adversarial distributions.

 $^{*0 &}lt; \lambda^{(1)}, \lambda^{(2)} < 1$, poorer regularization effect near the border (0 and 1).

Model Analysis – Running Time

^{*}We compare with the K-Means implemented in the Python package Scikit-Learn.

^{*}Fix the #samples and the #values in each feature.

Conclusion

- Fraud groups display synchronized behaviors on a subset of features.
- Use adversarial distributions to select useful features by competing.
- Identifying local clustering patterns benefits various applications.
 - Up to 18% increase on fraud detection and 5% on anomaly detection.

Thank you!

Q&A