
SGXPy: Protecting integrity of Python applications
with Intel SGX

Denghui Zhang, Guosai Wang, Wei Xu, Kevin Gao
Institute of Interdisciplinary Information Sciences

Tsinghua University
Beijing, P.R.China

{denghuizhang, wgs14, weixu}@tsinghua.edu.cn, kevingao96@gmail.com

Abstract—Python is the programming language of choice
for many data scientists, and thus widely used in cloud com-
puting platforms. Untrusted cloud environments have imposed
challenges to the security of Python applications. Intel SGX
(Intel Software Guard eXtensions) provides an encrypted enclave
for securing applications, and a library OS technology can
be adopted to run legacy applications inside these enclaves.
However, this technology has some limitations: (i) It is difficult
to ensure the integrity of Python applications as a result of the
complex dependencies among modules. (ii) Python applications
often spawn new processes, and file access permissions need to
be handled separately in the parent-child process. To address
these limitations, we present SGXPy (SGX Python), an integrity
preserving tool for Python applications. The design of SGXPy
makes it possible to obtain dependencies of applications and
assign file access permissions among processes automatically: (i)
During the build stage, SGXPy constructs dependency manifests
of Python applications based on the ptrace mechanism. (ii) To
enhance access control among processes, SGXPy utilizes process
introspection to cascading manifests for each process. With the
proposed framework, sophisticated Python applications such as
NumPy and a web server can now run unmodified with the
library OS. We present a series of experiments to evaluate
performance overheads of Python applications in SGX. Our
evaluation of NumPy submodules shows SGXPy can pass 97.60%
of unit testing, even with the isolated environment and limited
memory of SGX.

Keywords—SGX, Python, trusted computing, integrity

I. INTRODUCTION

As the most popular language in 20181, Python is widely

used in data science. Data scientists have developed robust

ecosystems of libraries to help them perform analytical work

[1], [2]. These libraries shorten the amount of time it takes for

scientists to go from project inception to meaningful work.

Large scale data processing relies on cloud computing for

high scalability and low cost. One of the main challenges in

cloud computing is protecting the integrity of the outsourced

data and code. When running Python applications in the

remote and potentially adversarial environment, Intel SGX can

ensure that the sensitive data and code processed in an enclave

are not disclosed or modified by the host OS, hypervisor, and

any other higher priority software.

The SGX enclave is designed to run in user-space, and

therefore relies on the operating system to access I/O re-

1https://spectrum.ieee.org/static/interactive-the-top-programming-
languages-2018

sources. If an unmodified application requests disallowed

system calls inside of an enclave, shielding code in a library

OS [3], [4] can sanitize system call results before returning it

to inside of the enclave.
The library OS requires a manifest of an application to spec-

ify which resources are allowed to use in runtime. The integrity

of a runtime environment can be validated by verifying hash

values for all of dependency files in the manifest.
Current library OS technologies focus on applications

developed in the C/C++ programming languages [5], [6].

Third-party modules support for dynamic languages, including

Python is still restricted in the library OS. The following

reasons explain why:

1) Dynamic languages often rely on a large number of third-

party modules for rapid development. It is impractical

to specify all of the dependency files manually for a

single Python application. While most of the APIs used

by applications developed with C/C++ is concentrated in

several .so files and can be assigned easily.

2) Python often obtains results through invoking existing

shell tools rather than direct function calls. The read/write

permissions of files are different among the Python main

process and forked subprocesses. The authentication infor-

mation of files in the parent process should not be shared

directly to the isolated child processes.

To overcome these barriers, we propose SGXPy, an integrity

preserving tool for Python applications. During the build

stage of an application, SGXPy automatically extracts its

dependency information into a manifest based on the ptrace
[7] mechanism. During runtime, the library OS loads and

verifies the execution environment of the application according

to the manifest.
The ptrace allows us to intercept all system calls and sig-

nals. By leveraging the rich parameter contexts collected from

the ptrace introspection, SGXPy can build dependencies for

a variety of Python applications (both open source or closed

source ones), making it not only more compatible, but also

more accurate, than other static or dynamic analysis methods.
The contributions of this paper are:

1) SGXPy, a framework utilizing Intel SGX to protect the

integrity of Python applications.

2) An automatic manifest construction mechanism that en-

ables programs that can run in SGX to evolve from plain



applications to sophisticate applications such as NumPy

and the web server.

3) An accurate access control method for Python multipro-

cessing applications. By hooking process involved system

calls using the ptrace, the method eliminates mismatch

of file access permissions among parent and child pro-

cesses.

The rest of the paper is divided as follows: in Section II, we

provide more background on the paper. In Section III, we

review related works. In Section IV, We introduce SGXPy.

In Section V, we present a series of evaluation based on our

proposed solution. Finally, in Section VI, we conclude the

paper and discuss some possible work to improve our tool.

II. BACKGROUND

Python languages are often used in cloud environments to

process large chunks of data faster. These untrusted cloud

environments have imposed new challenges to the protection

of sensitive data and code [8]. In such environments, multiple

applications from different owners may reside in the same

physical server, making it possible for malicious users to

exploit potential vulnerabilities to steal data or compromise ap-

plications. Securing data and code to guarantee its privacy and

integrity is highly desired by end users. However, software-

based security is often insufficient due to vulnerabilities in

applications [9].

A. Intel SGX

Intel SGX is a set of off-the-shelf processor extension

instructions. It allows user-level code to be executed inside

of a protected enclave. SGX can guarantee the confidentiality

and integrity of applications within Intel hardware even in the

presence of privileged malware.

Different from conventional sandboxes, such as internet

browsers or virtual machines, SGX adopts an inverse sandbox

model to protect software. When loading code into an enclave,

SGX measures the memory areas of code and data blocks to

obtain the measurement result (MR) value. This calculated

MR is compared to the MRENCLAVE value contained in the

signed application. Only if they match, SGX begins to execute

the code. This gives a remote party the confidence that the

intended software is running securely within an enclave on an

SGX enabled platform.

SGX employs a threat model where it only trusts Intel

CPU and the code running in an enclave. The small TCB

(Trusted Computing Base) of SGX requires an application

to be refactored into two parts: untrusted code and a trusted

enclave that the untrusted code can securely call into. It is

the user’s responsibility to ensure the security of the untrusted

code. This mechanism can resist sophisticated attackers who

exploit vulnerabilities in privileged software. However, SGX

is not bulletproof and is vulnerable to side-channel [10], [11]

attacks, which is beyond the scope of this paper.

The trust-separated development model brings challenges

to the porting of existing software. For instance, it takes

a lot of time to partition code into trusted and untrusted

parts. Additionally, there is no guarantee that the reconstructed

system is fully compatible with the original interface, which

introduces the risk of breaking existing system [12]. One way

to run unmodified applications in SGX is to introduce a port

of operating system in the enclave. A library OS approach

is the implementation of the APIs of OS. It makes legacy

applications work out-of-the-box in SGX by emulating arcane

system call semantics.

Another challenge for running applications in SGX is the

limited memory space. Enclave pages and SGX structures are

backed by a range of regular DRAM, which is called EPC

(Enclave Page Cache). The size of an EPC is limited to 128MB

on version 1 of SGX, only 91 MB of which is usable for an

application running in SGX. If the required memory is larger

than that available, the data must be encrypted before changing

from EPC to DRAM, then decrypted before swapping back

into EPC from DRAM [13].

B. Library OS

A library OS corresponds to the minimum set of OS libraries

required to run an application. We can execute unmodified

applications in SGX by introducing a port of an operating

system, or library OS, in the enclave.

Instead of just verifying the application with the conven-

tional SGX programming model, the library OS can protect the

integrity of the entire Python runtime environment by checking

its dependent resources files.

Dynamic languages often fork child processes to pick up

system information. To support multiprocessing in SGX, we

can treat each process as an enclave. When a new process is

established, a corresponding Enclave B is launched. Then, ac-

cording to passed arguments, Enclave B launches the intended

new process in another library OS.

When forking child processes, the library OS not only starts

a new process, but also copies resources such as virtual address

space, the file descriptors table, and the signal handlers table

from the parent process. We have to authenticate another

enclave before sharing these resources, as the new child

processes is established by the untrustworthy operating system.

We can use the SGX-provided local attestation mechanism

[14] for multiple enclaves running on the same host to validate

each other. After the attestation is passed, the parent enclave

shares resources to the new process using the symmetric key

generated during authentication. The library OS Graphene-

SGX adopts this approach [6].

C. Dependency Analysis

To keep the integrity of an application, we must ensure the

integrity of all dependency files, loadable modules, etc. before

opening these files. We can collect evidence of dependency

files during build time. Then, during runtime, the library OS

can validate the measurement information of the application

and dependency files.

A Python application often imports a large number of

modules for reuse and rapid development. These modules

recursively rely on other modules. When dependency levels



TABLE I
DEPENDENCY COUNT FROM DIFFERENT TOOLS

script SGXPy sfood modulefinder PyInstaller
helloworld.py 63 0 0 212
numpytest.py 91 421 717 1225

become deeper, it is impractical to assign all dependency files

manually.

We can find the dependency of the program automatically by

statically analyzing its AST (Abstract Syntax Trees). However,

there are two fundamental limitations to this method, which

can be explained by the following two concrete examples. (i)

As shown in Listing 1, when no import statement is used

in the helloworld.py script, static analysis method cannot

find modules loaded at runtime or built-in modules such as os
and sys. As shown in Table I, the number of dependent files

analyzed by AST is 0, while the exact number of dependency

files is 63. (ii) An AST analysis may introduce a large num-

ber of redundant modules. As shown in Table I, the number of

dependent files needed by the numpytest.py script is 93,

whereas the analysis results of sfood2, modulefinder and

PyInstaller3 are 421, 717, and 1225 respective modules.

Although the PyInstaller tool can find dependent files

in the two cases, it finds more than ten times as many files

as SGXPy. The redundant modules found will be explosive

growth for complex applications.

Listing 1. helloworld.py
1 #!/usr/bin/env python
2
3 print "Hello, World."

Listing 2. numpytest.py
1 #!/usr/bin/env python
2
3 import numpy as np
4 print np.arange(15)

Redundant files are mainly a result of Python’s cross-

platform feature. To run code on different platforms, the

modules needed by other platforms would be imported into

the modules file, and then selectively executed.

Redundant dependent files will take up the already limited

memory in the enclave. When the library OS is checking

the integrity of files, it often uses a Merkel tree [6], [15] to

cache check information and improve reverification. The more

files there are, the more verification information is needed to

be cached so that less physical memory can be used by the

application. This will cause costly page faults that significantly

degrade performance.

Dependencies of Python applications can be constructed

accurately by capturing system calls. Linux provides an ele-

gant mechanism for intercepting system calls: ptrace, which

is named for process tracing. It provides the ability for a

parent process to observe and control the execution of child

2http://furius.ca/snakefood
3https://www.pyinstaller.org

processes so that the monitor process can extract dependency

from parameters and return values of system calls in child

processes.

III. RELATED WORK

As important research progress in the field of trusted

computing, SGX plays an important role in system security,

especially in cloud computing.

Besides library OS development [4]–[6], SGX has been used

in a number of specific applications. VC3 [16] runs MapRe-

duce jobs in SGX enclaves. SGX-FS [17] leverages SGX

data sealing capabilities for securing in-memory and persistent

storage. It combines the FUSE (Filesystem in Userspace)

framework with SGX to protect user data. As indicated by

OBLIVIATE [15], all existing SGX filesystems are vulnerable

to either system call snooping, page fault, or cache-based

side-channel attacks. To address these security limitations,

OBLIVIATE redesigns the conceptual components of ORAM

(Oblivious RAM) for SGX environments. Similar to a library

OS, it seamlessly supports an SGX program without requiring

any changes in the application layer. All of the applications

were developed with C/C++.

Another solution to trusted computing is the TrustZone

[18] proposed by the ARM. TrustZone multiplexes a physi-

cal processor into two logical processors in time-sharing to

protect data security by isolating them. TrustZone’s security

subsystem contains all modules from the underlying hardware

to the upper operating system. TrustZone has an independent

operating system and development environment. The large

TCB of TrustZone makes it vulnerable to attackers. Compared

with TrustZone, the security boundary of SGX is controllable,

and the development environment is friendlier. Even if an

attacker gains the privileged operating systems, he cannot steal

or tamper with the contents of an enclave.

The program analysis is widely used in the analysis and

defense of operating system security, such as auditing by

leveraging the rich VM context provided by virtual machine

introspection (VMI) [19], building a ptrace-based frame-

work to enable rapid prototyping of file systems [7], and

securing applications written in C with running it in SGX

through a source-level partitioning framework [20].

The dependency analysis method in this paper is inspired by

the Glamdring [20] framework. In this framework, Glamdring

uses the static analysis function provided by the LLVM

compiler to separate the code, but users must first annotate

sensitive operation procedures before using the framework to

partition the code.

IV. SGXPYTHON

In order to protect the runtime integrity of unmodified

Python applications in SGX, we first dynamically collect

dependent files using SGXPy, then utilize a modified library

OS to verify and execute the application according to the

manifest. We assume the runtime environment is secure and

complete during the collecting phase.



A. Dynamic Construction of Dependency
We utilize ptrace interposition to trace system calls in-

voked by the user program, and then extract dependencies into

a manifest. SGXPy executes and traces the Python application

in the native operating system. Algorithm 1 shows the process

of extracting dependent files:

1) Launch and Wait. The Python application (tracee) is first

forked. It then calls PTRACE_TRACEME to indicate that it

permits the SGXPy process (tracer) to track itself. In the

tracer process, the wait system call is invoked to wait for

state change of the tracee process. When being notified,

SGXPy uses the PRACE_GETREGS request to inspect and

extract the information of files accessed from the tracee’s

registers. The tracer then uses the PTRACE_SYSCALL to

restart the stopped tracee.

2) Extract. File system calls in the Linux operating system in-

clude read, write, close and seek. They all start with

an open system request. The prototype of the open func-

tion is int open(const char *pathname, int
flags). Dependency files can be extracted from the

pathname parameter. The return value of open is a file

descriptor, which is used in subsequent system calls.

3) Filter. We note that not all pathnames correspond to

dependency files. Python sequentially searches the corre-

sponding file according to the path specified in the PATH
environment variable. The open call often ends with

ENOENT error. We consider the call valid only when it

returns a nonnegative value.

4) Write permission processing. SGXPy can distinguish read

and write operations from the access mode requested in the

flags parameter when opening a file. If the file has been

modified and the O_CREAT flag is set, it will be grouped

into the AllowedFiles entry, whose files are mapped,

but not verified. If a file has not been modified, it will

be grouped into the TrustedFiles entry, and the hash

value of these files will be verified in runtime. In order

to minimize file access permissions, we only map the file

path when a file is read and written at the same time.

After collecting dependency files into the manifest, SGXPy

will calculate the common root directories of dependency files

and set mount points for the library OS. Finally, SGXPy uses

the AESM (SGX platform service) to sign the hash values of

all these dependency files with Intel SGX hardware. Thus, the

library OS can validate the integrity of Python applications and

runtime environment by comparing the hash of dependencies

files between the manifest and the runtime.
Our framework does not provide completeness warranties,

since new files may be loaded by an unexecuted branch of

code. We mitigate this by providing options for users to

manually specify dependency files. The user can also configure

in the manifest to allow the program to continue running, and

the library OS will prompt missed file information.

B. File access control in multiprocessing applications
By default, the operating system automatically closes file

descriptors with the cloexec flag before creating a child

Algorithm 1: Extract dependency flow

Data: Python Scriptfile

Result: A manifest file for integrity check in SGX

syscalls ← Collect system call information using

ptrace;

callinfo ← Filter invalid system calls from syscalls;

foreach syscall in callinfo do
f ← file arg in open call ;

if syscall = open then
if O_CREAT ∈ open flag then

AllowedFiles ← f ;

else
TrustedFiles ← f ;

end
else if syscall = clone then

ProcInfo[pid].children.append(subproc);
subproc.pid ∈ clone call ;

else if syscall = execve then
ProcInfo[pid] = procname;

pid, procname ∈ execve call ;

end
end
TrustedFiles ← TrustedFiles\AllowedFiles;

Function signtoken(pid)
foreach child in ProcInfo[pid].children do

signtoken(child.pid)
end
Sign associated manifest files;

Get token from the AESM service;

end
foreach proc in ProcInfo do

signtoken(proc.pid)
end

process. When creating a child process through the library

OS, we cannot merely share the file descriptors table of

the parent process to the child process. To enhance access

control, SGXPy uses the manifest to set up a separate list of

accessible files for each process, so that the file access behavior

across parent-child processes in enclaves is consistent with the

default.

The Linux operating system provides execve and clone
system calls to create processes in user-space. The differences

among them are passed parameters and shared resources.

We note that file access permissions may change during

successful system calls. For example, if the FD_CLOEXEC
flag in fcntl or O_CLOEXEC in open call is set, the file

will automatically be closed after the exec functions are

called. Thus, file descriptors in the parent process should not

be shared to the newly created process in this situation.

In order to address this mismatch, SGXPy constructs a

process tree by hooking system calls involving process life

cycle. To reflect the relationship among the parent and child

processes, the parent process refers manifests of each child

process in its manifest. Thus, when a library OS loads and



/usr/bin/python

/bin/sh

/bin/uname

signature file

signature file

exec/fork

exec/fork

Fig. 1. Sign by the process tree

execute the fork operation, it can validate the newly created

child process.

Another case of file permission change is the iterative

process creation. SGXPy will preserve the parent-child rela-

tionship regardless of whether child processes are created by

a clone or an execve call. Even if, in the case of a clone
call, the file descriptors and offset are shared across processes.

When iteratively creating processes, child processes may

call exec to establish a grandchild process, ridding the parent

process of any control. Thus, the process tree can be used

to isolate file descriptors of the parent process from the

grandchild. SGXPy will eliminate dependency files from the

parent process for the execved grandchild.

As shown in Fig. 1, after the process tree is generated, the

evidence can be collected in the opposite direction. SGXPy

will first generate evidence of the process corresponding to

the leaf node (uname), and then iterate to the bash node.

The attestation of the Python main application is generated

last, after information of all of the descendant nodes has been

collected.

File access permissions in threads are treated similarly

to processes. Python calls clone to create a thread. File

access permissions among the parent and child threads are the

same. For multithreading applications such as the web server,

thousands of threads may be created to respond to concurrent

requests. In order to avoid duplicate checks of dependency

files, SGXPy aggregates manifests for threads created by the

clone system call.

V. EVALUATION

A. Implementation Details

We selected the Graphene-SGX [6], [21] as the library OS

since developing a library OS from scratch is a nontrivial

job. Although the Graphene-SGX supports running Python,

all dependent files must be specified manually, so it can only

run plain programs. SGXPy adds 1814 lines of Python code,

C++ code and other utility scripts to Graphene-SGX. The

implementation consists of two main components:

1) A dependency dynamic analysis system developed based

on ptrace interposition.

2) Patches for Graphene-SGX to improve its compatibility

with Python, which consists of an archive file system and

memory mapping implementation.

All of our evaluations were performed on an Intel(R) Core

i7-7700 CPU @3.60GHz with 16 GB RAM (128 MB for

EPC), running Ubuntu 16.04.05 LTS.

During the evaluation phase, SGXPy first constructs a

manifest file for each test cases. This manifest file can then be

verified by the patched Graphene-SGX library OS to validate

the integrity of applications in runtime.

It should be noted that the Graphene-SGX is just one of

examples to demonstrate the usage of SGXPy. Depending

on applications, developers can choose more TCB-friendly

solutions such as SCONE [5] or Intel SGX SDK.

B. Micro-Benchmarks

We first evaluate a few system operations that heavily

impact the performance of Python applications when running

in SGX. Two primary sources of overhead are the costs of

importing modules and allocating memory for arrays.

Module import overhead. Fig. 2 (a) shows the overhead for

importing modules. Depending on the number of modules, the

latencies of import statement of Python in SGX range from

2.75 ms (import 10 modules) to 1.28 seconds (import 2000

modules), whereas on native Linux, the latencies of Python

applications are all within 1 ms.

The degeneration of import statement in SGX is at-

tributable to the fact that Graphene-SGX has to authenticate

the file content before importing a module.

Memory allocation overhead. Fig. 2 (b) shows the over-

head for creating a NumPy array with different sizes. It should

be noted that Fig. 2 uses a standard logarithmic scale. The

latency on the native Linux is constant at 0.1 ms.

When the allocated size of an array is larger than 128MB,

the overhead of SGX significantly increases, from 0.06 sec-

onds to 0.9 seconds. This is because SGX has limited memory.

When applications request larger memory than 128MB, it will

lead to frequent swapping and encryption operations.

The Graphene-SGX library OS currently only supports

SGX1, while SGX2 adds new instructions that extend support

for dynamic memory management inside of an enclave [22].

These features allow user programs more efficiently to adapt

to varying programming workloads.

Subprocess creation overhead. To evaluate multiprocess-

ing Python applications running in SGX, we execute experi-

ments in kinds of process creation functions of Python.

As shown in Fig. 3, the SGX implementation exhibits

considerable overheads when compared to the unprotected

native applications. The overhead of forking processes in SGX

results from two aspects: (i) The time spent on library OS

startup and dependencies files verification. The library OS

does not share check information to forked child processes, so

child processes have to repeat the integrity check; (ii) The

time spent launching a library OS every time a new process is

created. Regarding the execution time of single-process Python

and multiple attestation in multiprocessing applications, we

can conclude that single-process Python applications are more

suitable to run in SGX.



Fig. 2. Micro-benchmarks: Import statement and array memory overhead between native Python and SGX

Fig. 3. Micro-benchmarks: Multiprocessing overhead between native Python and SGX

C. Real world applications

This subsection evaluates real-world Python applications

run in SGX and the native Linux operating system.

NumPy. We use NumPy’s build-in unit tests as the bound-

ary for running sophisticate Python applications in SGX.

NumPy includes the core, f2py, fft, lib, linalg,

ma, matrixlib, polynomial and random submodules.

Other submodules, such as test, doc and distutils,

are support modules of NumPy. They are not used by end-

user programs and thus ignored in the evaluation. The f2py
submodule is for running a Fortran application in the Python

environment. The submodule dynamically compiles Fortran

functions into a module file that Python can import and call

directly. It is used less in practice and thus also ignored.

Table II shows the pass rate of the NumPy testing suite

in the SGX environment. SGX passed 6299 cases, for a pass

rate of 97.60%. This leads us to conclude that SGX has the

capability to run almost all of the NumPy functions, even with

the isolated environment and limited memory of SGX.

There are four reasons for testing failure displayed by

Table III:

1) Encoding failure results from the lack of internationaliza-

tion support in the library OS.

2) The ldd indicates importing rare .so files to test com-

patibility of NumPy with other applications like Qt and

Fortran. Since Numpy is mainly used in scientific com-

puting, the lack of complete support for system features

can be tolerated.

3) We note that SGX can only allocate up to 512MB of

memory for an array at a time. This limitation causes 2



TABLE II
PASSED TEST COUNT FOR NUMPY SUBMODULES

SubModules Total tests SGXPy NumPy passes Pass rate
core 3403 3402 99.97%
random 138 138 100.00%
ma 440 440 100.00%
lib 1757 1605 91.35%
linalg 187 185 98.93%
fft 28 28 100.00%
polynomial 451 451 100.00%
matrixlib 50 50 100.00%
Total 6454 6299 97.60%

TABLE III
FAILURE CLASS FOR NUMPY TEST CASES

Class encoding ldd large memory mmap Total
Count 2 2 2 149 155

large memory test failures. In general, a Python application

does not use up an entire array of memory at once. As

a result, fragment allocating memory can alleviate this

shortcoming of SGX.

4) The 149 (147 for the test_memmap_roundtrip test

case) failed tests of memory mapping are responsible for

the majority of the failures. These failures result from

that SGX allocates exclusive memory for each enclave. In

order to prevent malware attacks from another enclave, the

library OS restricts calling mmap for writing a file. We

support the opening of a file in read-only mode through

the mmap call in order to pass other memory mapping test

cases, since mmap and read system calls have the same

semantics in this situation.

HTTPServer. We evaluate the latency details of Python

SimpleHTTPServer using the HTTP benchmarking tool

wrk4. As shown in Fig. 4, we run the benchmark for 30

4https://github.com/wg/wrk

Fig. 4. Latency of web server workloads between native Python and SGX

seconds, using 6 threads, and keep the number of active HTTP

connections varying from 100 to 10000.
We can infer that the native operating system is qualified

to handle concurrent requests from wrk, so the latency occa-

sionally drops as the number of requests increases.
The average latency for processing requests in SGX is

about 10× that of native SimpleHTTPServer. The latency

of the web server in SGX does not increase dramatically

with the increase in the number of requests. This is because

the measurement of applications also includes the maximum

number of threads that can be used in applications. The

number of threads has to be assigned in the manifest. The

library OS will allocate threads at startup. The web server

can use these threads directly when dealing with concurrency

requests. Thus, the average latency of handling a single HTTP

request in SGX is constant.
Although only a python module SimpleHTTPServer is

imported in the web server, it requires 135 Python files to run

on SGX. It is not practical to specify these dependency files

one by one.
In these cases, we can conclude that the benefits of using

SGXPy are significant, as it guarantees the integrity of the

code, and makes it possible to run sophisticated Python

applications unmodified.
It is noteworthy that the design of SGXPy is oriented to

an operating system. Although this paper tests only Python

applications, other dynamic languages such as R and Ruby

can also run on SGX through the framework.

VI. CONCLUSION

In this paper, we present SGXPy, a framework for helping

developers make use of SGX for Python applications. SGXPy

protects the integrity of unmodified Python applications run-

ning in SGX. In the build phase of Python applications,

SGXPy utilizes ptrace and underlying system calls to au-

tomatically and accurately find all dependent files. During the

runtime, the Python application is executed through a modified

library OS that validates the integrity of the entire runtime

environment according to the signed hash in a manifest file.
The evaluation results show that the framework achieves

a good balance between accuracy and efficiency for sophis-

ticated Python applications. We have also demonstrated that

single-process Python applications are more suitable than

multiprocessing applications for running in SGX.
Python applications can currently run in SGX without

modification. However, there is no guarantee of offline code

confidentiality when storing files on a disk. Malicious users

can reverse and steal secrets from the offline file. In future

work, we plan to use the Intel Protected File System [15] to

enhance the confidentiality of Python applications.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural

Science fundation of China (NSFC) Grant 61532001, Tsinghua

Initiative Research Program Grant 20151080475, and gift

funds from Huawei, Ant Financial and Nanjing Turing AI

Institute.



REFERENCES

[1] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
a structure for efficient numerical computation,” Computing in Science
& Engineering, vol. 13, no. 2, p. 22, 2011.

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and others,
“Scikit-learn: Machine learning in Python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[3] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). Broomfield,
CO: USENIX Association, 2014, pp. 267–283.

[4] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the library OS from the top down,” in ACM SIGARCH
Computer Architecture News, vol. 39. ACM, 2011, pp. 291–304.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. OKeeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, 2016, pp. 689–703.

[6] C. C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17). Santa Clara, CA:
USENIX Association, 2017, pp. 645–658.

[7] R. P. Spillane, C. P. Wright, G. Sivathanu, and E. Zadok, “Rapid file
system development using ptrace,” in Proceedings of the 2007 workshop
on Experimental computer science - ExpCS ’07. San Diego, California:
ACM Press, 2007, pp. 22–es.

[8] G. Wang, S. Xiang, Y. Duan, L. Huang, and W. Xu, “Do Not Pull My
Data for Resale: Protecting Data Providers Using Data Retrieval Pattern
Analysis.” in SIGIR, 2018, pp. 1053–1056.

[9] R. Amankwah, P. K. Kudjo, and S. Y. Antwi, “Evaluation of Software
Vulnerability Detection Methods and Tools: A Review,” International
Journal of Computers and Applications, vol. 169, no. 8, pp. 22–27,
2017.

[10] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[11] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3–24.

[12] D. Cai and M. Kim, “An empirical study of long-lived code clones,”
in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2011, pp. 432–446.

[13] R. Silva, P. Barbosa, and A. Brito, “DynSGX: A Privacy Preserving
Toolset for Dynamically Loading Functions into Intel (R) SGX En-
claves,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2017, pp. 314–321.

[14] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based attestation and sealing,” in Proceedings of the 2nd in-
ternational workshop on hardware and architectural support for security
and privacy, vol. 13. ACM New York, NY, USA, 2013.

[15] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A Data
Oblivious Filesystem for Intel SGX,” in Proceedings 2018 Network and
Distributed System Security Symposium. San Diego, CA: Internet
Society, 2018.

[16] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy Data Analytics in the
Cloud Using SGX,” in 2015 IEEE Symposium on Security and Privacy.
San Jose, CA: IEEE, May 2015, pp. 38–54.

[17] D. Burihabwa, P. Felber, H. Mercier, and V. Schiavoni, “SGX-FS:
Hardening a File System in User-Space with Intel SGX,” in 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), Dec. 2018, pp. 67–72.

[18] B. Yang, K. Yang, Y. Qin, Z. Zhang, and D. Feng, “DAA-TZ: An
Efficient DAA Scheme for Mobile Devices using ARM TrustZone,” in
IACR Cryptology ePrint Archive, 2015.

[19] F. Jiang, Q. Cai, L. Guan, and J. Lin, “Enforcing Access Controls for
the Cryptographic Cloud Service Invocation Based on Virtual Machine

Introspection,” in International Conference on Information Security.
Springer, 2018, pp. 213–230.

[20] J. Lind, C. Priebe, D. Muthukumaran, D. OKeeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and
P. Pietzuch, “Glamdring: Automatic Application Partitioning for Intel
SGX,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, 2017, pp. 285–298.

[21] C. C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and
Security Isolation of Library OSes for Multi-process Applications,” in
Proceedings of the Ninth European Conference on Computer Systems,
ser. EuroSys ’14. New York, NY, USA: ACM, 2014, p. 9.

[22] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel software guard extensions (intel sgx) support
for dynamic memory management inside an enclave,” in Proceedings of
the Hardware and Architectural Support for Security and Privacy 2016.
ACM, 2016, p. 10.


