
When Online Dating Meets Nash Social Welfare:
Achieving Efficiency and Fairness

Yongzheng Jia

Tsinghua University

jiayz13@mails.tsinghua.edu.cn

Xue Liu

McGill University

xueliu@cs.mcgill.ca

Wei Xu

Tsinghua University

wei.xu.0@gmail.com

ABSTRACT
Mobile dating applications such as Coffee Meets Bagel, Tantan,

and Tinder, have become significant for young adults to meet new

friends and discover romantic relationships. From a system de-

signer’s perspective, in order to achieve better user experience in

these applications, we should take both the efficiency and fairness
of a dating market into consideration, so as to increase the over-

all satisfaction for all users. Towards this goal, we investigate the

nature of diminishing marginal returns for online dating markets

(i.e., captured by the submodularity), and trade-off between the

efficiency and fairness of the market with Nash social welfare. We

further design effective online algorithms to the apps. We verify

our models and algorithms through sound theoretical analysis and

empirical studies by using real data and show that our algorithms

can significantly improve the ecosystems of the online dating ap-

plications.
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1 INTRODUCTION
Online dating applications are more and more ubiquitous and be-

coming an integral part of young adults’ everyday lives. These

applications
1
, such as Coffee Meets Bagel [1], Tantan [2], and Tin-

der [3], provide platforms for people to make new friends with

various purposes including meeting new friends and developing

personal or romantic relationships. The report in [4] shows that

the percentage of online dating users in the USA triples (i.e., from

5% to 15%) from 2013 to 2016. Tinder consistently ranks as one of

the top 10 grossing apps in Apple’s online store, with more than

50 million active users [5]. It is also reported that Coffee Meets

Bagel has created 997 million matches and more than 50, 000 happy

couples in long-standing relationships [6]. Tantan claims 60 million

registered users, of which 6 million are active on a daily basis [7].

Behind the great success of the online dating apps is the double
opt-in design, which provides the users with appealing online dat-

ing experiences: For instance, all of the above three apps present

1
As these dating applications are all mobile-phone based, we will use “apps” as the

abbreviation of “applications” throughout the rest of the paper
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potential matches with profile cards that a user can swipe through

within the app. Each profile card includes a deck of photos and an

optional text-based biography. Each user has two main activities:

pass (i.e., a “swipe-left”) and like (i.e., a “swipe-right”) on the profile

cards. These dating apps only notify the users when both sides like

each other (i.e., referred to as a match). Only matched users can

start conversations. The double opt-in design turns the complex,

anxious, and a sometimes awkward act of introducing oneself to

another person into a simple yet playful experience [8]. This design

motivates users to discover more profiles and get more matches.

To achieve better user experience in these emerging dating apps,

a system designer should consider both efficiency and fairness of the
datingmarkets. Efficiencymeans that the apps shouldmake asmany

matches as possible in the market. This is similar to maximizing

the social welfare.

In the meantime, we should also consider fairness of the dating

market, which is often ignored by the designers of the apps. Most

dating apps follow the freemium strategy, in which the basic fea-

tures are free to all, while the paying users get premium services.

Examples of premium services include Tinder Boost, Tinder Plus
and CoffeeMeets BagelWoo. The dating apps give more preferences

to the paying users. However, these preferences may introduce un-

fairness, causing the non-paying users more difficult to get matches.

For example, those who use Boost will have much more opportuni-

ties to be shown to others and hence get more matches than those

who do not. A more “fair” situation is that the app should help both

active paying users and non-paying users get a number of matches.

Keeping the non-paying users a number of matches is important

to the system designer as it leads to higher retention: We analyze

the correlation between the users’ retention rates and number of

matches based on the data from online dating apps. We find that

users with few matches (usually, these are “less attractive users”)

are often frustrated, hence they tend to become inactive with low

retention rates (We show the detailed analysis in Section 3.2).

Each online dating application is a sophisticated ecosystem re-

sulting from the interactions of many factors. To better understand

the fairness problems discussed above, we classify the factors into

two categories: the uncontrollable factors (i.e., mainly determined by

the user’s attractiveness), and the controllable factors (i.e., caused by
the policies and algorithms used in the app). For the uncontrollable

factors, there exists a natural and intrinsic unfairness as a conse-

quence of the attractiveness for people’s appearance. Moreover, it is

reported in [9] that users tend to pursue attractive users regardless

of their own appearance in online dating. This tendency causes that

a small group of attractive users can get matches much more easily

than others. For the controllable factors, Tinder and some other

online dating apps can control each recommendation by showing a

user’s profile card to another or not. Furthermore, the dating apps
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can also control the privileges to the paying users, so as to trade-off

the revenue and the fairness of the dating market. In this work, we

only focus on the discussion of the controllable factors: to improve

both efficiency and fairness for the online dating ecosystems based

on economic models and online algorithm design. We show that

our algorithms can significantly improve the efficiency and fairness

of the online dating market, and the online dating apps can use

them to relieve the effect of the uncontrollable factors to provide

better user experiences.

Existing studies such as [10] [11] and [12] observe the imbal-

anced distributions of matches on Tinder, implying the importance

of fairness. However, they do not propose sound solutions to the

problem.

It is challenging to design and implement an online dating mar-

ket to be both efficient and fair. There are three key challenges

to overcome. First, the objectives of efficiency and fairness do not

often align with each other. It is difficult to present appropriate per-

formance metric to trade off these objectives within one systematic

framework. Second, the algorithms deployed for the apps should

run fast enough and scale to enormous user activities. For example,

Tinder processes billions of events per day, generating terabytes

of data [8], hence a slow algorithm degrades the user’s experience

significantly. Last but not least, the algorithms should be online to
deal with unpredictable user activities. The online requirement is

important because it is hard to predict when the users begin/stop

swiping; how many profile cards they will swipe on. Furthermore,

their preferences for matches may also vary over time.

To the best of our knowledge, this is the first work to present a

generalized model to achieve both efficient and fair online dating

markets based on the data-driven studies, with the goal of designing

fast online algorithms:

First, we present a systematic and generalized model for the

dating markets to trade off the objectives between efficiency and

fairness. We find the match goal based on the correlation between

users’ retention rates and number of matches from data of online

dating apps, and discover the property of diminishing marginal
returns for the online dating markets. We further set up match

goals for different user groups, and define the utility function to

measure the satisfaction for each user in the dating app. Then we

present the objective function to maximize the overall satisfaction

(i.e., welfare) in the market, which indicates both efficiency and

fairness.

Second, by discovering the diminishing marginal returns when a

user gets more and more matches, we reduce our problem to the

online submodular welfare maximization problem. Then we present

a
1

2
-competitive online greedy algorithm to solve the problem. We

further show that the online greedy algorithm is effective both in

theory and practice.

Third, we adapt the Nash social welfare to the online dating mar-

kets, which provides a natural balance between efficiency and fair-

ness. We further reduce the problem of maximizing the Nash social

welfare to a special case of the submodular welfare optimization,

and adjust our online algorithm to solve the problem.

Last but not least, we present data-driven empirical studies to

evaluate the performance of our model by using the data from

an online dating app. To this goal, we define generalized perfor-

mance metrics, as well as discuss the selection of appropriate utility

functions and parameters. More interestingly, we discover an equi-
librium when we are evaluating the performance of Nash social

welfare. The equilibrium indicates a market configuration where

both non-paying users and paying users are satisfied. Finally, we

evaluate the improvement of applying the Nash social welfare by

comparing the performance with the distributions of our dataset.

The results show significant improvement for both efficiency and

fairness by using Nash social welfare.

The rest of the paper is organized as follows: First, we discuss

relatedwork in Section 2 and present the problemmodel in Section 3.

Next, we reduce the problem to the online submodular welfare

maximization problem and present an efficient online algorithm

to solve it in Section 4. Then we discuss how to leverage the Nash

social welfare to the context of online dating markets in Section 5.

Finally, we present the effectiveness of our approaches based on

data-driven studies in Section 6. We conclude the paper and present

the open questions for future work in Section 7.

2 RELATEDWORK
The online dating market has attracted broad and interdisciplinary

research interest in social networking, communications, economics

and even psychology, sociology and anthropology.

Online dating applications. In recent years, the studies for online
dating apps emerge both in academia and social media [6][10]. Re-

searchers study the usermotivations [13][14], social impacts [15][16],

and privacy issues [17] for online dating. They also investigate the

gender differences between males and females, including different

selection strategies [18][12], as well as conversation behaviors [19].

Some research uses economic models to analyze user behavior

for the dating markets, [20] investigates an economic matching

model to explain the matching patterns and evaluate the efficiency

of the matches. The authors in [9] analyze and predict the user

preferences in online dating based on data-driven studies.

Some articles demonstrate the imbalanced distributions of the
matches in online dating, and shows that it is hard for some less

attractive males to get a match [10] [11]. The authors of [12] further

present a hypothesis of the “feedback loop” in the online dating

market: The males are forced to be less selective in the hope of

getting a match, while females are becoming more selective, as

they know that any males they like will result in a match with

high probabilities. All these findings imply that fairness is a crucial

factor to consider for the online dating apps.

Two-sidedMarkets: models and algorithms. The online dating
market is typical two-sided (matching) market [21]. To better un-

derstand the models and challenges of the online dating market,

we compare it to other two-sided markets. One is the well-studied

online ride-sharing market (e.g., Uber and Lyft) [22][23][24]. Much

simpler than the online dating market, the online ride-sharing mar-

ket is based on a centralized matching design, in which the market

maker (i.e., the platform) decides all matches. However, in the online

dating market, the platform only recommends potential matches

by showing profile cards, and all the (swiping) activities from the

users are uncontrollable by the platform.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

430



Another similar two-sided market is the online advertising mar-

ket, such as Google’s Adwords [25]. The authors in [26] summarizes

various models and fundamental online algorithms for the online

advertising market. [27] presents theoretical studies to design on-

line ad allocation algorithms to achieve both efficiency and fairness.

Methodologies. Submodular welfare maximization is a frame-

work for resource allocation with decreasing marginal utilities.

Existing studies investigate the complexity [28] [29], offline algo-

rithms [30] [31], and online algorithms [26] [32] [33] [34].

Nash social welfare is a sound criterion to trade off between

efficiency and fairness, which is first proposed by John Nash [35].

Recently, researchers figure out the its properties in [36] [37] [38].

They also design offline algorithms to maximize the Nash social

welfare with different settings in [39] [40] [41] [42]. We will discuss

more details of the methodologies in Section 4 and 5.

3 MARKET, OBSERVATIONS, AND MODELS
In this section, we present the model of each user’s utility (i.e.,

degree of satisfaction) in online dating apps based on our results

from data-driven studies. We first introduce the preliminaries for

the market configurations of online dating. Then we analyze the

correlations between users’ retention rate and number of matches

by using the data from a popular online dating app, and discover the

match goal (i.e., expected number of matches within a period) from

our results. We further define each user’s utility by his match goal

and actual matches. Finally, we formulate our objective function,

which maximizes the total degrees of satisfaction for all users.

3.1 Market Configurations for Online Dating
The online dating market consists of two groups, and we call them

male and female. Both groups behave the same way in the market.

In this paper, we only consider the matches happening between the

two groups. We consider a dating market withM male and F female

users. We adopt the convention [X ] = {1, 2, . . . ,X } to denote the

set of X elements throughout the paper, e.g., [M] = {1, 2, · · · ,M } is
the set of all males and [F ] = {1, 2, · · · , F } is that of all females.

To simplify the discussion, we divide time into fixed-length time

slots that we call rounds. We consider a user active in round t if
he/she swipes at least once in round t .

Note that as both groups are in symmetry in most of our discus-

sions, without loss of generality, we focus on the algorithms for

recommending males to females in this paper, and the other side

works the same way.

We also define the number of swipes (or the number of profiles

reviewed) in round t as the (swiping) capacity of the user in that

round. We denote the capacity of a malem or a female f in round

t as c
(t )

m and c̄
(t )

f , respectively.

Estimate achieved matches. To estimate the number of achieved

matches for each user, we take a closer look at the match making

process under the double opt-in model.The app has a mechanism

to estimate the probability of whether female f will swipe right

(i.e., like) on a malem in round t . We denote the estimation as p̄
(t )

f ,m

(and the other way around as p
(t )

m,f ), ∀m ∈ [M] and ∀f ∈ [F ]. In

practice, collaborative filtering is a good algorithm to predict the

probabilities. The detail of the prediction algorithms is beyond the

Figure 1: (Normalized) retention vs. number of matches

scope of the paper, and we only take the predicted probabilities as

our input.

We further define the match score at round t as the product of
the predicted (like) probabilities in both directions, i.e. w

(t )

m,f =

p
(t )

m,f · p̄
(t )

f ,m . Intuitively, the match score captures the degree of the

mutual-likes between a pair of users. When we recommend malem
to female f at round t , the probability of a match achieved between

m and f isw
(t )

m,f . The decision variable is whether the online dating
app should recommend m to f at round t , denoted as a binary

variable x
(t )

m,f ∈ {0, 1},∀m ∈ [M],∀f ∈ [F ]. To sum up, we estimate

the expectation of achieved match of malem at round t as follows:

a
(t )

m =

∑
f ∈[F ]

w
(t )

m,f · x
(t )

m,f ∀m ∈ [M]. (1)

3.2 Finding the Match Goal
Retentions vs. matches. To discover the insights of the online

dating market, and explore how the number of matches influences

users’ satisfaction in online dating. We analyze the correlations

between the retention rate and the number of matches per week.

In practice, the retention rate is a sound and widely-used indicator,

providing us with quantitative measurements of users’ satisfaction,

as a user tends to continue using the app if he is satisfied.

We collect two weeks’ activity data for the users from a popular

online dating app. For each user, we count his matches during the

first week, and count his retention as a binary of whether he opens

the app during the second week, that is, with 1 indicating a “yes”,

and 0 for “no”. Then the question is: What is the probability of a

user to use the app (i.e., retention rate) in the second week with a

given number of matches during the first week?

Figure 1 shows the correlation between the (normalized) reten-

tion rate and the (normalized) number of matches for both male and

female users
2
. The x-axis is the (normalized) number of matches

received by a user in the first week, and the y-axis is the (normal-

ized) average retention rate
3
(i.e., whether they opens the app in

2
In this paper, some of the observations are based on data from online dating apps.

However, all the data presented is normalized in order not to reveal any of the business-

related details.

3
We will use “matches” as the abbreviation of “(normalized) matches” and “retention

rate” as the abbreviation of “(normalized) retention rate” in the rest of Section 3.2.
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the second week) of the users with the corresponding number of

matches. Due to the confidentiality of the data, we normalize the

retention rate by dividing each average retention rate by males’ av-

erage retention rate with no match. The two solid curves in Figure 1

illustrate the correlation between retention rates and number of

matches. We limit the range of x-axis (i.e., the number of matches)

to {0, 1, 2, · · · , 20}, as the curves for both males and the females stay

flat when the number of weekly matches exceeds 20. Moreover,

the two vertical dotted lines show the median number of weekly

matches for both males and females.

From the data, we have the following key observations based

on the relationships between the retention rate and the number of

weekly matches for both males and females:

• A male’s retention rate increases fast when he gets a new

match with less than 7 matches during the week. When a

male user gets more than 7 matches. The retention rate stays

stable.

• The average number of matches for a male user is about 5,

and the median is 1 (i.e., half of the males have less than

1 match in the first week). If we improve a male’s number

of matches from 0 to 7, the retention rate will triple. If we

improve it from 1 to 7, the retention rate will also improve

as high as 65%, which indicates that helping each male user

get one match per day, will increase the retention rate by

65% for half of the males. Meanwhile, improving the a male’s

number of matches from the median level to the average

level will also increase his retention rate by 49%.

• However, the effect of improving the number of matches for

females is not significant. The average number of matches

for a female user is about 15, and the median is 7. The slope

of the curve for females after the median (i.e., 7) is much

more moderate. Moreover, even if we improve a female’s

number of matches from 7 to 20, the retention rate will only

increase 27%.

Based on the above observations, we have the following conclu-

sions: 1) For both males and females, more matches lead to a higher

retention rate. 2) We find that the males’ retention rate is much

more sensitive than that of females in terms of number of matches,

as the number of matches for females is much more optimistic. 3)

Improving the weekly number of matches for each male to about 7

(i.e., we call this themagic number for males’ matches) will promote

the males’ retention rate significantly. In the meantime, if a male

gets more matches than the magic number, then the improvement

of his retention rate is rather modest. 4) The retention curves for

both males and females are concave, indicating the diminishing
marginal returns when a user gradually gets more matches, and

we will discuss the details in Section 4. 5) Our observations also

illustrate why we care much more on males’ numbers of matches,

as the improvement of retention rate is moderate even though we

promote females’ number of matches a lot from the current level.

To give a formal definition of the observed magic number for

following theoretical studies, we introduce the concept of thematch
goal for the males as follows:

Match goal. For a malem ∈ [M] using the dating app, we define

his match goal as д
(t )

m in round t , which is his expectation for the

number of matches in that round. In practice, we can set the length

for each round as one day, or set the length for each round as a

week if we consider the seasonality factor for a user to get a match.

This is because the distribution of matches for the online dating

apps varies over the days of the week, as there are both more male

and female users online on weekends than weekdays. It is easier

for a user to get a match on Saturday night than Monday morning.

For a common non-paying user on the app, the system can set his

match goal as one match per day (or 7 to 8 matches per week), that

is, a non-paying user will be happy to get one match per day. For

a paying user (e.g., a Tinder Boost user) or a new user, the system

can set a higher match goal for him (e.g., 2 to 4 matches per day),

since a paying user deserves more matches and a new user is more

motivated when getting more matches when he starts to use the

app. In practice, we can also dynamically adjust the match goals in

different regions, as the market configurations may vary.

A user’s match goal is an estimation for his expectation of

matches set by the system. To capture the differences between

the match goal and the actual matches of a (male) userm, we also

define the achieved matches, a(t )

m , for the actual number of matches

form during round t . We further define the (match) achievement
rate r (t )

m as the ratio of the achieved match (i.e., a
(t )

m ) to match goal

(i.e., д
(t )

m ) for each malem, such that r
(t )

m =
a(t )

m

д(t )

m
,∀m ∈ [M].

3.3 Problem Formulation
Satisfaction and utility function. We define each user’s degree

of satisfaction (i.e., s
(t )

m ) in (2) with a utility function u
(t )

m times a

weight factor α
(t )

m . The utility function is defined on [0,+∞) with

input r
(t )

m . The weight factor α
(t )

m is used to distinguish the priorities

for different users.

s
(t )

m = α
(t )

m · u
(t )

m (r
(t )

m ) = α
(t )

m · u
(t )

m
(∑f ∈[F ]

w
(t )

m,f x
(t )

m,f

д
(t )

m

)
. (2)

Note that the value of eachw
(t )

m,f and д
(t )

m is maintained by the

system and is fixed, and therefore s
(t )

m is only determined by the

decision variables x
(t )

m,f . To simplify the model, we can further

assume that the utility functions are symmetric over different males

in all rounds, such that u
(t )

m (·) ≜ u(·),∀m ∈ [M], t ∈ N+
.

Objective.Our objective function is tomaximize the overall weighted

degrees of satisfaction for males (i.e., (3)), subjected to the (swiping)

capacity constraint for each female (i.e., (4a)), and the (swiping)

capacity constraint for each male (i.e., (4b)):

max :

∑
m∈[M ]

s (t )

m
(3)

s.t., ∑
m∈[M ]

x (t )

m, f ≤ c̄
(t )

f , ∀f ∈ [F ]; (4a)∑
f ∈[F ]

x (t )

m, f ≤ c
(t )

m , ∀m ∈ [M]; (4b)

x (t )

m, f ∈ {0, 1}, ∀m ∈ [M], ∀f ∈ [F ]. (4c)

In practice, when we design the algorithm of recommending

males to females, we can neglect the constraint for each male’s

capacity (i.e., (4b)). This is because it is difficult to estimate each
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male’s capacity c
(t )

m by only looking at the females’ swiping activities

in an online setting, and a male tends to spontaneously increase his

(swiping) capacity if he has not get enough matches. However, even

though we add constraint (4b), our online algorithm in Section 4

still works by applying the methodologies in [32].

As we discussed before, we want to mention that the mirroring

model and algorithm of recommending females tomales throughout

this paper is theoretically correct, though practically it impacts

the retention much less significantly. In the following section, for

concise and practical considerations, we only discuss the algorithms

for the recommendations from males to females.

4 ONLINE SUBMODULARWELFARE
MAXIMIZATION

In the previous section, we define the problem model to maximize

the overall degrees of satisfaction of the market (i.e., the welfare).

Based on the results in Section 3.2, the marginal returns (i.e., degree

of satisfaction) for each user decrease when he gradually achieves

more matches during a certain round. Moreover, when the number

of his matches reaches a threshold (e.g., he can hardly keep up with

all the conversations with his matches), his utility stops increasing.

4.1 Define the Submodularity
We have discovered the property of diminishing marginal returns

for online dating markets, to capture this property, we introduce

the submodularity in this section. We first define the impression
set I (t )

m for eachm ∈ [M], denoting the set of females that the app

recommendsm to:

I (t )

m = {f |x (t )

m, f = 1} ∀m ∈ [M]. (5)

It is easy to find that∀I
(t )

m , I
(t )

m ⊆ [F ] and I
(t )

m ∈ 2
[F ]

. Furthermore,

we present each user’s weighted utility function on impression set
(i.e., equivalent to (2)), which is a function defined on 2

[F ]
:

s (t )

m = µ (t )

m (I (t )

m ) = α · u (t )

m
(∑f ∈I (t )

m
w (t )

m, f

д(t )

m

)
∀m ∈ [M]. (6)

We then present the property of submodularity and monotonicity
for µm as follows:

Definition 1. (monotone submodular) µ is submodular iff for
each malem ∈ [M] with any impression sets Ĩ (t )

m ⊆ I
(t )

m , and a female
f /∈ I

(t )

m , such that:

µm (I
(t )

m ∪ { f }) − µm (I
(t )

m ) ≤ µm (Ĩ
(t )

m ∪ { f }) − µm (Ĩ
(t )

m ). (7)

Furthermore, we say that µ is monotone submodular if addi-
tionally, µm (I

(t )

m ) ≥ µm (Ĩ
(t )

m ).

To recap, µm (I
(t )

m ∪ { f }) − µm (I
(t )

m ) is the marginal utility ofm
when the app recommends him to one more female f after showing

his profile to the females in his impression set I
(t )

m , and (7) presents

the diminishing marginal returns form. Additionally,m’s utility is

non-decreasing when his impression set grows, so µm is monotone
submodular.

As our utility function is monotone submodular, our problem

of maximizing the objective function (3) becomes a submodular
welfare maximization problem. We summarize existing studies in

both offline and online settings. We further present Algorithm 1

Algorithm 1: Gready Algorithm for Online Submodular Wel-

fare Mazimization - GA

1 Initialization: Set each I
(t )

m = ∅, ∀m ∈ [M].

2 When a female f ∈ [F ] logs into the application at round t ,

while f keeps swiping do
3 (a) Select the malem∗ ∈ [M], such that

m∗ = arдmaxm∈[M]

(
µm (I

(t )

m ∪ { f }) − µm (I
(t )

m )

)
.

4 (b) Recommend malem∗ to f , I
(t )

m∗ = I
(t )

m∗ ∪ { f }

5 end

and show that it is effective and practical for our app, especially in

an online setting.

4.2 Solutions: Offline and Online
We first depict the offline and online settings for the online dating

apps when we recommend males to females. In an offline setting,

we know all the values of inputs such as w
(t )

m,f , c̄
(t )

f , and µ in ad-

vance. Whereas in an online setting, the app presents real-time

recommendations to each female f when she arrives with a subset

of input values. Some values (e.g., c̄
(t )

f ,w
(t )

m,f ) are not revealed until

female f logs into the app and starts swiping, without knowing

when a female becomes active/inactive, or her preference over time.

To solve the submodular welfare maximization problem, there is

a greedy algorithm that is intuitive but efficient, in which each time

we recommend a male m to f with maximum marginal returns,

and then update his impression set. The algorithm can solve both

offline and online cases. We present the online greedy algorithm in

Algorithm 1.

We show that Algorithm 1 is promising both in theory and in

practice, by comparing it with existing results for both offline and

online settings.

Offline setting. In the offline setting, the submodular welfare

maximization problem is NP-hard to approximate better than 1 −
1

e [28], and [30] provides an algorithm in the value oracle model

to achieve this bound. [29] proves that beating the 1 − 1

e bound

needs exponential communication. [31] proposes a randomized

local search algorithm, which is simpler than [30], also achieving

the bound. However, these algorithms have high complexity, and

thus are impractical in real-life apps.

Online setting. In the online setting, [32] shows that Algorithm 1

achieves a ratio of
1

2
for the online submodular welfare maximiza-

tion problem even under adversarial input orders. Furthermore,

in [33], the authors proved that there is no (randomized) algorithm

achieving a competitive ratio of better than
1

2
for the online sub-

modular welfare maximization problem, unless NP = RP .
In comparison, Algorithm 1 is a solid online algorithm in theory,

which guarantees a tight
1

2
-competitive bound for any submodular

function µm .

Time complexity. We then analyze the time complexity for Al-

gorithm 1. For each recommendation of female f , the algorithm
goes throughM iterations to select the best candidate, so it takes

M · c̄
(t )

f iterations for all the recommendations of female f . If we
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take all the females f ∈ [F ] into consideration, then the overall

time complexity for Algorithm 1 is O(M ¯C
(t )

F ), where
¯C

(t )

F is the

total capacities for all females in [F ], such that
¯C

(t )

F =

∑
f ∈[F ]

c̄
(t )

f .

Therefore it is fast enough and practical to apply Algorithm 1 in

the app.

5 NASH SOCIAL WELFARE
To further trade-off the efficiency and fairness, we adapt the Nash

social welfare to the online datingmarkets, which provides a natural

balance between the efficiency and fairness.

5.1 Definition and Properties
Eq. (8) presents the formulation of Nash social welfare for online

dating markets: allocate the recommendations to maximize the

geometric mean of the users’ utilities (i.e., s
(t )

m ).

NSW([M]) =

(
Πm∈[M]

s
(t )

m
) 1

M . (8)

The idea dates back to John Nash’s famous solution to the bar-

gaining problem in [35]. Recently, the Nash social welfare is cap-

tured by a family of the generalized (power) mean function [38] with
an exponent τ :

Aτ ([M]) =

(
1

M
·
∑

m∈[M]

(s
(t )

m )
τ
) 1

τ . (9)

In particular, NSW([M]) corresponds toA0([M]), which is the limit

of Aτ ([M]) as τ goes to zero.

In order to study the trade-offs between efficiency and fairness

for Nash social welfare, we extend the treatment for its properties.

Two other well-studied functions captured by Aτ ([M]) include: (i)

the egalitarian (i.e., max-min) objective when τ → −∞ and (ii) util-
itarian (i.e., average) objective when τ = 1 [43]. They correspond

to extreme fairness and extreme efficiency, respectively. However,

τ → −∞ may cause large inefficiency, such that the total matches

in the dating market may be poor. While τ = 1 neglects how un-

happy some males might be, causing unfairness such that they can

hardly get a match. The Nash social welfare lies between the two

extremities and strikes a natural balance. This is because maximiz-

ing the geometric mean leads to more balanced recommendations

(i.e., fairness), and also takes efficiency into consideration.

Futhermore, [36] presents game-theoretic properties for Nash

social welfare, and proves that each allocation with the maximum

Nash social welfare is both Pareto optimal (indicating efficiency)

and EF1 (i.e., Envy-Freeness up to One Good, indicating fairness).

5.2 Maximizing the Nash Social Welfare

Reduce maximizing NSW([M]) to (3). Revisit the definition of s
(t )

m
in (2), to simplify, we first set a uniform weight parameter for all

users, such that α
(t )

m = 1 and s
(t )

m = u
(t )

m (r
(t )

m ) = r
(t )

m ,∀m ∈ [M]. We

then introduce a logarithm utility function s̃
(t )

m = ũ
(t )

m = loд(r
(t )

m ).

Therefore maximizing the Nash social welfare (i.e., (Πm∈[M]
s

(t )

m )

1

M )

is equivalent to the objective function (3) by using s̃
(t )

m (i.e., maximiz-

ing

∑
m∈[M]

s̃
(t )

m ). Since s̃
(t )

m = loд(s
(t )

m ), r
(t )

m ≥ 0 andM is a constant,

the reduction holds.

To consider different weight parameters, we set s
(t )

m = u
(t )

m (r
(t )

m ) =

(r
(t )

m )
α (t )

m , and introduce s̃
(t )

m = α
(t )

m · loд(r
(t )

m ) and ũ
(t )

m (r
(t )

m ) = loд(r
(t )

m ).

Then we can also reduce the problem to maximize the Nash social

welfare into (3) using s̃
(t )

m (i.e.,

∑
m∈[M]

s̃
(t )

m ) as s̃
(t )

m = loд(s
(t )

m ). Since

each s̃
(t )

m is a monotone submodular utility function, we can reduce

the problem of maximizing Nash social welfare as a special case of

online submodular welfare maximization problem if we set s
(t )

m =

(r
(t )

m )
α (t )

m in (8) for each user.

Note that this setup is reasonable for real-life dating apps. For

instance, we set α
(t )

m > 1 for the paying users and α
(t )

m = 1 for the

non-paying users, indicating that the app takes on a higher priority

for each paying user. Therefore when we maximize the Nash social

welfare in (8), we are prone to first make r
(t )

m as large as possible for

the paying users, since the value of s
(t )

m grows faster when α
(t )

m > 1.

We can further adjust α
(t )

m to set different priorities for paying users.

Utility caps. However, if there exist a malem with r
(t )

m > 1 and

α
(t )

m > 1, it will reduce fairness of the market to further increase

r
(t )

m to maximize Nash social welfare. To tackle this problem and

further improve the fairness, it is practical to introduce utility caps

by setting r
(t )

m = 1 when
a(t )

m

д(t )

m
> 1, which makes s

(t )

m = (r
(t )

m )
α (t )

m ≤ 1.

Thus for a male reaching his match goal, making more match for

him will not improve the Nash social welfare any more.

Offline solution. Recent years, designing approximation algo-

rithms to maximize the Nash social welfare attracts lots of research

interest. [37] shows that maximizing Nash social welfare for indivis-

ible items with additive utilities is both NP-hard and APX-hard. [39]

presents offline approximation algorithms to maximize the Nash

social welfare with additive utilities, and [40] further handle the

cases with utility caps. However, note that these algorithms apply

the Eisenberg-Gale program [44] to achieve a fractional optimal

solution, followed by a carefully designed rounding algorithm. Thus

they all need the values of all inputs (e.g., w
(t )

m,f , c̄
(t )

f ) in advance

and can not be directly applied in the online settings for dating

apps.

Discussions on the online solution. It is worth noting that exist-
ing work mostly studies the offline solutions to maximize the Nash

social welfare, which is not applicable to the dating markets as we

discussed in Section 1 for the requirement of online algorithms.

In this work, our contribution is to reduce the Nash social wel-

fare maximization to (3) based on the reductions above, and use

Algorithm 1 to get an online solution. In practice, we set ũ
(t )

m (r
(t )

m ) =

loд(ϵ + r
(t )

m ), where ϵ = 10
−4

or other small values. This is because

loд(0) = −∞ and if there exists a malem with a
(t )

m = 0, the output is

always −∞, hence Algorithm 1 makes no improvements in initial

steps. Adding a small ϵ will tackle this dilemma, letting Algorithm 1

make improvements in each iteration.

6 DATA-DRIVEN EMPIRICAL STUDIES
In this section, we conduct evaluations based on the combined

models and techniques discussed above.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

434



6.1 Evaluation Setups
We first describe the dataset configuration for our evaluations. We

use the distribution based on the user’s swiping data from an online

dating app during one week in a small region. We also normalize

the number of matches in our evaluation like what we do in Section

3.2. There are about 3, 800 (i.e., M = 3, 800) male active users
4

and 1, 700 (i.e., F = 1, 700) female active users using the app. We

partition the male users in [M] into two user groups, with [Mnpu]

denoting theMnpu non-paying users, and [Mpay] denoting theMpay

paying users. We define the paying rate γ =
Mpay

M , and we calculate

γ ≈ 0.26 based on the dataset we use. We setup uniform match goal

for the male users in each group, using дpay to denote the match

goal for each paying user all the time (i.e., д
(t )

m = дpay,∀m ∈ [Mpay])

and дnpu for the match goal of each non-paying user. We set дnpu = 7,

and use η =
дpay
дnpu to capture the goal gap between the paying and

non-paying users. We can change η to adjust the added value for

premium services, and increasing η will decrease the fairness of the

market.

The preference prediction scores (i.e., p
(t )

m,f , p̄
(t )

f ,m ) come from

the backend recommendation system of the app. Then we calculate

each match score (i.e., w
(t )

m,f ) and estimate the mean of a match

score (i.e., Ew ). Deriving from the system, we get Ew = 0.05. To

measure the ratio between the supply (i.e., expected matches from

females’ swipes) and demand (i.e., sum of match goals for all males),

we define Ψ
(t )

[M]
as the expected overall happiness for the males in

the market at round t . We calculate the value of Ψ
(t )

[M]
by dividing

the total expected matches achieved by the total match goals for

all males:

Ψ
(t )

[M ]
=

Ew ·
∑
f ∈[F ]

c̄ (t )

f

M ·
(
γ · дpay + (1 − γ ) · дnpu

) . (10)

We have Ψ
(t )

[M]
∈ (0, 1), as the limited capacities for females make

it difficult to reach each male’s match goal. The value of Ψ
(t )

[M]

also varies over time. In our traces, the value of Ψ
(t )

[M]
is mostly

in [0.3, 0.7] for various market configurations, and 0.5 is a good

estimation for common cases.

6.2 Performance Metrics
To design better online algorithm using Algorithm 1, we may try

different monotone submodular utility functions and parameters.

Therefore we need a set of performance metrics (i.e., indicators),

each of which is independent of the utility functions and parameters,

to evaluate both the efficiency and fairness of the market.

Efficiency indicators. We use the uniform happiness indicators to
measure the efficiency of the market. For each malem ∈ [M], his

uniform happiness (i.e., denoted ash
(t )

m ) is r
(t )

m if r
(t )

m ≤ 1, andh
(t )

m = 1

if r
(t )

m > 1. The happiness indicator for all users is H
(t )

[M]
=

1

M ·∑
m∈[M]

h
(t )

m , which implies the ratio of satisfied users in the dating

market. In the same way, we also define the happiness indicator for

paying users (i.e., H
(t )

[Mpay]
) and for non-paying users (i.e., H

(t )

[Mnpu]
).

4
If a user logs in and swipes at least once, then we count him/her as an active user.

Fairness Indicators. To evaluate the overall fairness for the male

users, we define the match fairness (i.e., J
(t )

[M]
) and impression fair-

ness (i.e., J̃
(t )

[M]
) based on Jain’s fairness index [45]. The metric in-

dicates the fairness for the number of matches for each male and

the cardinality of each male’s impression set. Jain’s index provides

a promising system-level overview of the fairness, which is both

easy to compute (i.e., has an explicit form) and normalized (i.e.,

ranges in [0, 1]). Therefore it is more appropriate to our model than

other fairness indicators such as Gini coefficient [46], max-min

fairness [45], or α-fairness [45]. Based on the definition of Jain’s

index, we calculate J
(t )

[M]
and J̃

(t )

[M]
:

J (t )

[M ]
=

( ∑
m∈[M ]

a(t )

m
)

2

M ·
( ∑

m∈[M ]
(a(t )

m )
2

) (11)

J̃ (t )

[M ]
=

( ∑
m∈[M ]

|I (t )

m |
)

2

M ·
( ∑

m∈[M ]
|I (t )

m |
2

) (12)

6.3 Choosing the Utility Function
Different utility functions imply various trade-offs between effi-

ciency and fairness. However, since the match goal in each group

varies, if we recommend malem ∈ [Mnpu] andm
′ ∈ [Mpay] to female

f with w
(t )

m,f = w
(t )

m′,f , the increment in r
(t )

m and r
(t )

m′ varies, and

therefore the marginal utility may be biased. To eliminate the bias,

we introduce the indifferent coefficient (i.e., denoted as β), which
depends on the utility function u and the goal gap λ, but is inde-

pendent of achieved matches a
(t )

m .

Definition 2. (Indifferent Coefficient) For a differentiable
and monotone submodular utility function u and goal gap η, if there
exists a constant β , such that:

u′
( a
дnpu

)
= β · u′

( a
η · дnpu

)
, ∀a ≥ 0, (13)

and we define β as the indifferent coefficient of u and η.

While β indicates the same accelerated speed for marginal utility

gained for different user groups, note that not every monotone

submodular function has an indifferent coefficient. For instance,

the tanh function (i.e., u(r ) = tanh(r )) does not have an indiffer-

ent coefficient. It is easy to verify that of power functions (i.e.,

u(r ) = rτ ,∀r ∈ [0,+∞)) with exponent τ ∈ (0, 1] are all monotone

submodular with β = ητ . Additionally, the logarithmic utility func-

tion (i.e., u(r ) = loд(r ), reduced from the Nash social welfare) has a

consistent indifferent coefficient β = 1.

Priority parameter. Let us revisit the definition for the weight

parameters α
(t )

m in (2). If we set α
(t )

m = 1,∀m ∈ [Mnpu], and α
(t )

m =

β,∀m ∈ [Mpay], then the non-paying users and paying users will

have the same accelerated speed to get a match. In practice, to make

the premium services more valuable, the app needs to help the pay-

ing users get a match more quickly, otherwise, it is hard for a paying

user to reach his match goal with the same speed. Therefore we

introduce the priority parameter for the paying users (i.e., λ), indi-
cating the level of accelerated speed for paying users, comparing to

the non-paying users. Then we set α
(t )

m = β · λ,∀m ∈ [Mpay]. In this

way, we decompose the value for each weight coefficient α
(t )

m into

two independent components: one component is the indifferent co-

efficient β that only depends on the utility function (i.e., a constant
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(a) All users (b) Paying users (c) Non-paying users

Figure 2: Happiness indicators for different user groups.

(a) Match fairness (b) Impression fairness

Figure 3: Impression fairness for all users.

part), and the other component is the priority, measuring the level

of privileges to the paying users (i.e., the tunable parameter). In

practice, we can dynamically adjust the value of λ to strike a good

balance between the happiness for non-paying and paying users,

(i.e., like tuning a hyperparameter in machine learning algorithms).

We will show the details about how to tune it in Section 6.4.

Evaluate the functions. Then we evaluate a set of monotone

submodular utility functions, where each of them has an indifferent

coefficient β . We choose Linear (i.e., u(r ) = r ), Sqrt (i.e., u(r ) =

r
1

2 ), Cbrt (i.e., u(r ) = r
1

3 ), and NSW (i.e., u(r ) = loд(r )), as well as

these functions incorporating with utility caps, (i.e., denoted as

Linear-cap, Sqrt-cap, Cbrt-cap, and NSW-cap).

To show the performance of different utility functions, we fix

η = 3, λ = 3, and vary the value of Ψ
(t )

[M]
∈ (0, 1), to evaluate the

results with various supply-demand conditions.

Figure 2(a) to Figure 2(c) show the efficiency indicators for the

functions. For overall happiness and non-paying users’ happiness,

both NSW and NSW-cap perform well and NSW beats all the other func-

tions without utility caps. As NSW and NSW-cap care more about the

overall happiness, especially the non-paying users, sometimes they

do not perform well on the happiness for paying users. This is also

because λ = 3 is not an appropriate parameter, and we show how

to choose the best λ under different η and Ψ
(t )

[M]
in Section 6.4.

Figure 3(a) and Figure 3(b) demonstrate the performance for

fairness. We see that NSW beats all the other functions on impression

fairness J̃
(t )

[M]
. For match fairness J

(t )

[M]
, NSW-cap beats all the other

functions, and NSW beats the other functions without utility caps.

6.4 Parameters and Equilibriums
From the results above, we select NSW and NSW-cap to further evaluate

how to select appropriate parameters.

Tuning the priority parameter λ. We first fix Ψ
(t )

[M]
= 0.5 and

η = 3. To capture how λ impacts the priority for the paying users

in reality, comparing to the expected goal gap η, we introduce the

deviation factor δ , denoting the real gap (i.e., for a
(t )

m ) between

paying and non-paying users divided by η.
For NSW (i.e., Figure 5(a)), easy to find that the fairness indicators

both go down when λ increases. A good value for λ is around 5,

where δ ≈ 1, and the values of H
(t )

[M]
, H

(t )

[Mnpu]
, H

(t )

[Mpay]
are almost

equal (i.e., around 0.64). This interesting phenomenon shows an

equilibrium (i.e., when λ = λ∗) between non-paying users and

paying users, where the three happiness indicators reach around an

equilibrium happiness (i.e., denoted asH∗). The equilibrium provides

a promising selection of λ (i.e., λ∗), as when λ < λ∗, the paying
users are not satisfied. Additionally, when λ > λ∗, the happiness of
non-paying users drops faster than the happiness of paying users

can increase.

For NSW-cap (i.e., Figure 5(b)), we also find the equilibrium when

λ ≈ 6 with δ ≈ 1 and H∗ ≈ 0.66, indicating that 66% of both the

non-paying and paying users are happy, which is better than the

equilibrium happiness of NSW.

Finding equilibriums. Then we find the equilibriums under dif-

ferent configurations (i.e., Ψ
(t )

[M]
and η). We show the results in

Table 1 (NSW) and Table 2 (NSW-cap).

Table 1: Finding equilibriums for NSW.
Ψ

(t )

[M ]

η λ∗ H ∗ J (t )

[M ]

J̃ (t )

[M ]

0.3 2.0 2.5 0.56 0.62 0.83

0.3 3.0 4.0 0.47 0.51 0.67

0.3 4.0 5.5 0.40 0.45 0.60

0.5 2.0 3.0 0.72 0.62 0.80

0.5 3.0 5.0 0.64 0.50 0.65

0.5 4.0 7.0 0.56 0.44 0.57

0.7 2.0 3.5 0.80 0.61 0.77

0.7 3.0 5.5 0.73 0.51 0.62

0.7 4.0 8.5 0.71 0.44 0.55

When we fix the value of η, increasing Ψ
(t )

[M]
will result in higher

equilibriums for both λ∗ and H∗. This is because improving the

supply (i.e., total capacities of females) will make it easy to get

a match for each user, so as to improve the happiness indicators.
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(a) Dataset (b) NSW (c) NSW-cap

Figure 4: Match distribution for the males.

(a) NSW (b) NSW-cap

Figure 5: Indicators for NSW and NSW-cap with different λ.

Table 2: Finding equilibriums for NSW-cap.

‘

Ψ
(t )

[M ]

η λ∗ H ∗ J (t )

[M ]

J̃ (t )

[M ]

0.3 2.0 3.0 0.57 0.66 0.79

0.3 3.0 4.5 0.48 0.52 0.66

0.3 4.0 5.5 0.40 0.45 0.60

0.5 2.0 4.5 0.75 0.75 0.69

0.5 3.0 6.0 0.66 0.59 0.62

0.5 4.0 7.5 0.57 0.48 0.55

0.7 2.0 10.0 0.82 0.80 0.58

0.7 3.0 12.0 0.74 0.63 0.54

0.7 4.0 14.0 0.71 0.51 0.50

Furthermore, since non-paying user can get a match more easily,

we need to raise λ∗ to make δ ≈ 1.

Additionally, when we fix the value of Ψ
(t )

[M]
, we see that a larger

η will increase λ∗. While increasing η leads to a more imbalanced

market, the fairness indicators andH∗ both go down, as non-paying
users will get less match and therefore unsatisfied.

6.5 Evaluation of the Performance Gains
In this section, we evaluate the performance gains of using Nash

social welfare maximization (i.e., NSW and NSW-cap). From the dataset

and the differences between paying and non-paying in the region,

we calculate that Ψ
(t )

[M]
= 0.5, η = 3, and дpay = η · дnpu = 21. By the

definitions in (11) and (12), we calculate that the match fairness

for the males in the dataset is 0.297, and the impression fairness is

0.342 by using Jain’s fairness indicators.

We then plot the match distribution for our dataset (Figure 4(a)),

as well as for the result of NSW (Figure 4(b)) and NSW-cap (Figure 4(c)).

The x-axis is the number of matches, and the y-axis is the population

ratio given a fixed number of matches. We also zoom in the x-axis

to {0, 1, 2, · · · , 24}, as дnpu = 7 and дpay = 21, and the population ratio

is very small when the matches exceed дpay.

For NSW-cap, the match fairness can improve by 98.7% to 0.59

comparing to thematches of the dataset, and the impression fairness

increases 81.3%. Furthermore, we estimate that the average number

of matches of the males will increase 32.0% for NSW-cap by using

H∗ divided by Ψ
(t )

[M]
. From Figure 4(c), we can observe two peaks

of population ratios for 7 (i.e., дnpu) and 21 matches (i.e., дpay), and

also find that the population ratio becomes 0 when the number of

matches exceeds 21. These are all caused by the utility caps.
For NSW (i.e., without introducing the utility caps), it increases

68.4% of the match fairness and 28.0% of the average number of

matches, which underperforms the NSW-cap. Whereas it increases

the impression fairness by 90.1%, which outperforms the NSW-cap.

Furthermore, as NSW does not introduce the utility caps, we do not

see clear peaks at дnpu and дpay from Figure 4(b).

7 CONCLUSION AND FUTUREWORK
Modern mobile dating applications provide appealing double opt-in

design tomake thematchmaking simple and enjoyable.We strongly

believe that a better trade-off between the efficiency and fairness

of the dating markets can further improve the users’ satisfactions,

removing the frustration when a user can not obtain a match or his

desired number of matches. This paper focuses on the discussion on

designing and implementing efficient and fair online datingmarkets.

We discuss the submodularity and leverage the Nash social welfare

to trade off between the two objectives through both theoretical

analysis and empirical studies.

This work leads to many open questions to future directions to

build a more efficient and fair online dating market: 1) We have not

discussed the uncontrollable factors affecting the fairness in this

work, and we can classify the users based on their attractiveness

levels, and design better recommendation algorithms for each level

of users. 2) We mentioned that the females’ retention rate is not

much sensitive to the number of matches, and we want to design

better algorithms or policies to improve the females’ retention rate.
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