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Clinically applicable histopathological diagnosis
system for gastric cancer detection using deep
learning
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The early detection and accurate histopathological diagnosis of gastric cancer increase the

chances of successful treatment. The worldwide shortage of pathologists offers a unique

opportunity for the use of artificial intelligence assistance systems to alleviate the workload

and increase diagnostic accuracy. Here, we report a clinically applicable system developed at

the Chinese PLA General Hospital, China, using a deep convolutional neural network trained

with 2,123 pixel-level annotated H&E-stained whole slide images. The model achieves a

sensitivity near 100% and an average specificity of 80.6% on a real-world test dataset with

3,212 whole slide images digitalized by three scanners. We show that the system could aid

pathologists in improving diagnostic accuracy and preventing misdiagnoses. Moreover, we

demonstrate that our system performs robustly with 1,582 whole slide images from two other

medical centres. Our study suggests the feasibility and benefits of using histopathological

artificial intelligence assistance systems in routine practice scenarios.
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Gastric cancer is the fifth most common cancer worldwide
and the third leading cause of cancer death1. There is a
wide geographic difference in its incidence, with the

highest incidence rate in East Asian populations2. In China,
~498,000 new cases of gastric cancer were diagnosed in 2015, and
it was the second leading cause of cancer-associated mortality3.
As early detection, accurate diagnosis, and surgical intervention
are crucial factors for reducing gastric cancer mortality, robust
and consistently effective pathology services are indispensable.
However, there is a critical shortage of anatomical pathologists
both nationally and globally, which has created overloaded
workforces, thus effecting diagnostic accuracy4. An increasing
number of pathology laboratories have adopted digital slides in
standard practice in the form of whole slide images (WSIs) in
daily routine diagnostics5–7. The transformation of practice from
microscope to WSI has paved the way for using artificial intelli-
gence (AI) assistance systems in pathology to overcome human
limitations and reduce diagnostic errors. This has allowed the
development of innovative approaches, such as AI via deep
learning8–18. Studies have focused on developing algorithms that
can flag the suspicious areas, prompting pathologists to examine
the tissue thoroughly under high magnification or employ
immunohistochemical (IHC) studies when necessary and make
an accurate diagnosis19.

While recent studies have validated the effectiveness of
pathology AI for tumor detection in various organ systems,
such as lung20, stomach21, lymph node metastases in breast
cancer22–24, prostate core needle biopsies24–26, and mesothe-
lioma27, we identify many nontrivial challenges that should be
addressed before considering application in the clinical setting.
First, a deep learning model should be able to sustain a thorough
test with a substantial number (i.e., thousands) of slides over a
continuous time period and with WSIs procured by various
brands of digital scanners. The sensitivity should be near 100%
without compromising specificity too heavily. Second, with the
assistance of the AI system, pathologists should be able to
improve their diagnostic accuracy while not drawing out the
routine reporting process. To further boost the trust of patholo-
gists in AI assistance systems, the model predictions should be
investigated to determine their strengths and weaknesses. Finally,
it is necessary to conduct a multicentre test before system
deployment to guarantee the stability of the model performance
across different hospitals. Previous studies have addressed some
of these challenges, but none have met all these criteria.

Here, we report the latest operation of the AI assistance system
at the Chinese PLA General Hospital (PLAGH), China, with
careful consideration of the solutions to the challenges that we
discussed above. The deep learning model is trained with 2123
pixel-level annotated haematoxylin and eosin (H&E)-stained
digital slides from 1500 patients, which include 958 surgical spe-
cimens (908 malignancies) and 542 biopsies (102 malignancies)
with diverse tumor subtypes; details are illustrated in Fig. 1a
(abbreviations are given in Supplementary Table 1). The training
slides are produced at ×40 magnification (0.238 μm/pixel) by the
National Medical Products Administration-cleared KFBio KF-
PRO-005 digital scanner. We develop an iPad-based annotation
system and provide a standard operating procedure (SOP) for
data collection and annotation to 12 senior pathologists (see
Supplementary Table 2). We adopt the 4th edition of the WHO
Classification of Tumors of the Digestive System as the reference
standard28. The pathologists circle the precise areas using the
Apple Pencil with preset labels including malignant, benign, poor
quality, and ignore (see Supplementary Fig. 1 for several labeled
samples). We assign the malignant label to both high-grade
intraepithelial neoplasia and carcinoma because both lesions
require surgical intervention. Labels of poor quality and ignore

are assigned to areas with low preparation or scanning quality
and slides difficult to diagnose, respectively.

We utilize a convolutional neural network (CNN) of DeepLab
v3 architecture for our binary image segmentation approach,
which enables pixel-level cancer detection. The WSIs and their
corresponding annotations are split into 320 × 320-pixel patches
at ×20 magnification (0.476 μm/pixel) and then feed into the
network for training. We perform carefully designed data aug-
mentation during training. Since histopathological slides have no
specific orientation, we apply random rotations by 90, 180, and
270 degrees and random flips (horizontal and vertical) to the
training patches. To boost the model stability for WSIs collected
from different hospitals and digitalized from various scanners, we
also apply Gaussian and motion blurs and color jittering in
brightness (0.0–0.2), saturation (0.0–0.25), contrast (0.0–0.2), and
hue (0.0–0.04). During training, we consider ‘poor quality’ as
‘ignore,’ and neglect losses coming from the ‘ignore’ class. In the
inference phase, each pixel is assigned a probability of being
malignant by the trained model. Slide-level prediction is obtained
by sorting the probabilities of all pixel-level predictions. We adopt
the top 1000 probabilities and use the mean to represent the slide-
level prediction (a detailed comparison of slide-level predictors is
provided in Supplementary Table 3). Compared with the com-
monly adopted approaches that utilize patch classification and
sliding windows29,30, the semantic segmentation approach31–33

gives a more detail-rich prediction at the pixel level (see Sup-
plementary Table 4 and Supplementary Fig. 2).

The AI assistance system achieves a sensitivity of 0.996 and an
average specificity of 0.806 on the daily gastric dataset from
PLAGH with 3212 WSIs digitalized with 3 scanner models. We
show that with the assistance of the system, pathologists improve
diagnostic accuracy, and reduce misdiagnoses. Furthermore, the
multicentre test with 1582 WSIs from 2 other medical centers
confirms the robustness of the system.

Results
Trial run. The AI assistance system was deployed in PLAGH and
underwent a 3-month (June 2017 to August 2017) trial run with the
daily gastric dataset. Overall, 3212 daily gastric slides from 1814
patients (1101/713 males/females with average ages of 54.12/54.66
years, see Supplementary Fig. 3 for detailed distribution) included
154 surgical specimens (118 malignancies) and 1660 biopsies
(61 malignancies). The slides were grouped biweekly and divided
into six consecutive time periods. To test the model performance on
data produced by different scanners (see Supplementary Fig. 4), the
slides were digitalized by three scanner models, including KFBio
KF-PRO-005 (403 WSIs, ×40, 0.238 μm/pixel), Ventana DP200
(977 WSIs, ×40, 0.233 μm/pixel), and Hamamatsu NanoZoomer
S360 (1832 WSIs, ×40, 0.220 μm/pixel). With this dataset, the
model revealed a stable performance with an average area under
the curve (AUC) of 0.986 (accuracy: 0.873, sensitivity: 0.996,
specificity: 0.843) and a standard deviation of 0.018 (0.099, 0.011,
0.109) across the timeline, as shown in Fig. 1b. The detailed
receiver operating characteristic (ROC) curves are provided in
Supplementary Fig. 5, see Supplementary Fig. 6 for four examples
of predicted heatmaps. The sensitivities of tubular adenocarci-
noma and poorly cohesive carcinoma were 0.998 and 1.0,
respectively, excluding mixed adenocarcinoma. We compared
how the model performed on the WSIs produced by the three
scanners, as shown in Fig. 1c. Compared with KFBio KF-PRO-
005, we observed slight model performance drops, with AUC
(accuracy, sensitivity, specificity) of 0.004 (0.032, 0.005, 0.040)
and 0.013 (0.170, 0.0, 0.210) on Ventana DP200 and Hamamatsu
NanoZoomer S360, respectively (detailed results listed in Sup-
plementary Table 5).
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Fig. 1 The framework of our research and model performance on the daily gastric dataset. a Deep learning model training and inference. We trained the
model using WSIs digitalized and annotated at PLAGH. We illustrated the training data distribution at the slide level. The abbreviations are detailed in
Supplementary Table 1. The trained model was tested by slides collected from PLAGH and two other hospitals. b The plot of the model performance
histogram of the slides from the daily gastric dataset. c Model performance histogram of the daily gastric slides digitalized by three different scanners.
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Assistance for pathologists. To prevent overlooking malignancy,
the AI assistance system should be able to highlight abnormal
areas, prompting pathologists to perform a scrutinized reassess-
ment. During the daily gastric slide examination, we found two
missed cases that were overlooked in the initial reports and
caught by the AI assistance system. The first case had received
disparate diagnoses from the biopsy report and the surgical
report, respectively. Cancer was found in the surgical specimen
and reported in the surgical report, but because the cancer cells
were limited in number, they were missed in the initial biopsy
report. In the slide, the tumor cells were scattered under the
normal foveolar epithelium and only better visible under high
magnification, as shown in Fig. 2a(i). The other case shown in
Fig. 2a(ii) contained deceptively bland-looking cancer cells,
reflecting another example that can easily be missed. Never-
theless, in the AI-predicted heatmap, several red dots clearly
marked the positions of the malignant tumor cells. These kinds of
misdiagnoses are uncommon but possible, especially when a case
is read in haste, such as the last case of the day or slides read while
multitasking. The AI assistance system successfully flagged these
subtle regions, which indicated that it may alert pathologists to
re-examine the slides and/or perform ancillary tests in a real-
world scenario.

The current AI assistance system could function not only as a
preanalytic tool to prioritize early attention to suspicious cases for
review but also as an analog to a second opinion from fellow
pathologists. For difficult cases, especially for slides advised to
have additional IHC stains, the model prediction had a noticeable
influence on the final diagnosis. We created an IHC dataset with
all the H&E-stained slides in the daily gastric dataset that were
subjected to IHC examination. The IHC dataset contained
27 surgical specimens (20 malignancy) and 72 biopsies (22 malig-
nancies). Our model achieved an AUC of 0.923 (accuracy: 0.808,
sensitivity: 0.976, specificity: 0.684). In Fig. 2b, we observed a
clear segregation of confidence in the model between malignant
and benign cases. The model performance was reasonably
accurate with the malignant cases, while it showed less confidence
with the benign cases as the distribution spread out with
significantly larger variance. While this model made predictions
only based on H&E-stained WSIs, we demonstrated that our
model could provide a useful visual cue using a heatmap along
with providing a cancer risk probability. On the left side of
Fig. 2b, we also showed benign cases sorted by probability for
comparison with malignant cases. We observed that the benign
cases given low cancer probabilities by the model were those with
clearer visual cues and could be diagnosed without resorting to
IHC, whereas those with higher cancer probabilities were the
more challenging cases, which required scrutinized examination
under low and high magnifications and sometimes ancillary tests.

Internal examination. To test whether our AI assistance system
was able to make an accurate diagnosis in real-world scenarios, we
conducted an examination using 100 slides to assess the perfor-
mance of 12 junior pathologists who were under training. As shown
in Fig. 3a, 100 slides were categorized into four groups depending
on the degree of diagnostic difficulty: (I) easy to diagnose under low
magnification (34 WSIs); (II) easy to diagnose but needed exam-
ination under high magnification (39 WSIs); (III) difficult to
diagnose, ancillary IHC not required (23 WSIs); and (IV) challen-
ging to diagnose, required ancillary IHC (4 WSIs). We randomly
divided the pathologists into three groups: a microscopy group, a
WSI group, and an AI-assisted group. As the names suggested, the
microscopy group worked with microscopes, the WSI group with
WSIs, and the AI-assisted group with digital slides plus the AI
assistance system. The examination was carried out in duplicate

with a 1-h time constraint and without time constraints. In Fig. 3b,
we compared the performance of the pathologists with the model
prediction performance using the ROC curve. We observed that the
model performance was on par with the performance of the human
pathologists, even exceeding the average performance of the 12
pathologists. We discovered that the AI assistance system helped
the pathologists achieve better accuracy, as shown in Fig. 3c.
With the help of the system, the average accuracy increased by
0.008/0.060 and 0.013/0.018 compared with the microscopy and
WSI groups with/without time constraints, respectively. In addition
to the improvement in diagnostic accuracy, the AI assistance system
was able to assist the pathologists in performing more consistently,
even under a time constraint. When comparing the diagnostic
accuracy between the same group with/without time constraints,
the digital group had a significant performance drop, with the
sensitivity dropped by 0.161 and specificity by 0.052 when the time
constraint was imposed, whereas the AI-assisted group showed less
fluctuation, as shown in Fig. 3c. The detailed experimental results
are shown in Supplementary Tables 6 and 7.

Analysis of false results. We have performed a thorough analysis
of the deep learning model to further improve the pathologists’
confidence in the AI system. As shown in Fig. 2c, we listed eight
common failure patterns in the daily gastric dataset. The false
negative (missed) cases included a well-differentiated adeno-
carcinoma case (Fig. 2c(i)) and an early atypical signet ring cell
carcinoma case involving only the mucosa (Fig. 2c(ii)). Intramu-
cosal well-differentiated adenocarcinoma is morphologically
similar to dysplasia and has not yet caused structural disturbances
and stromal desmoplasia. For the signet ring cell carcinoma case,
the cancer cells were very limited. Apparently, malignancies with
minimal structural disturbances in the stroma risk being over-
looked. In addition, there were two situations where overdiagnosis
might occur (more false positive cases are illustrated in Supple-
mentary Fig. 7). One of them was due to poor image quality,
which was related to poor slide preparation, such as section folds
(Fig. 2c(viii)), knife marks, and overstaining (Fig. 2c(v)). Poor
images also occurred during the digitization stage, for example,
poor focus caused by the scanner. These issues may be alleviated
with a better data augmentation technique or slide normalization.
The second issue was that some lesions were cancer mimickers.
For example, mucus extravasation resembled mucinous adeno-
carcinoma (Fig. 2c(iii)). A correct diagnosis was easier for human
pathologists when the slides could be reviewed repeatedly by
switching from low to high magnifications. The other case with
aggregates of foamy histiocytes in the lamina propria resembled
signet ring cell carcinoma (Fig. 2c(iv)), which was again better
reviewed by human pathologists under ×40 magnification.
Inflammatory necrotic exudates and florid granulation tissue,
when there are bizarre endothelial cells and proliferated fibro-
blasts, could be mistaken as poorly differentiated adenocarcinoma
(Fig. 2c(vi) and (vii)). For these cases, human pathologists often
needed IHC to help them make a correct diagnosis.

Multicentre test. A mature clinically applicable AI assistance
system should have robust performance on slides collected from
different hospitals. To prove the clinical utility with reproducible
sensitivity and specificity of our deep learning model, we tested
the performance of our model with slides collected from two
other hospitals. We built a multicentre dataset, which included
355 cases (595 slides) from Peking Union Medical College Hos-
pital (PUMCH) and 541 cases (987 slides) from Cancer Hospital,
Chinese Academy of Medical Sciences (CHCAMS), to examine
whether our model can cope with the variances created by dif-
ferent laboratories, such as different sectioning and staining
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configurations (see Supplementary Fig. 8). The WSIs in the
multicentre dataset were produced by the same KF-PRO-005
digital scanner with ×40 magnification. In the comparison of
the model performance on the multicentre dataset and
the daily gastric dataset, we included 403 WSIs produced by the
KF-PRO-005 digital scanner from the daily gastric dataset to

control for the confounding factors. As shown in Fig. 4, the AUC
(accuracy, sensitivity, specificity) for the data collected from
PUMCH and CHCAMS were 0.990 (0.943, 0.986, 0.937) and
0.996 (0.976, 1.0, 0.968), confirming consistent performance.

In conclusion, we showed that there is a clinical utility for
using a deep learning model to improve the diagnostic accuracy
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and consistency of WSIs of gastric cancers. For developing
countries with the severe shortage of pathologists, the AI
assistance system locates suspicious areas quickly, thus improves
diagnostic quality within a limited time frame. On the other hand,
for developed countries, the system could help prevent mis-
diagnosis. In our practice, to successfully build a clinically
applicable histopathological AI assistance system, two factors are
essential. The first and foremost goal is to recruit a large number

of WSIs in the training phase covering diverse tumor subtypes
with accurate pixel-level annotations under a carefully designed
SOP. The annotation process should be monitored constantly by
repeated reviews of model predictions to reduce the rates of false
negatives and false positives. The second factor is the ability of the
AI model to perform pixel-level predictions based on a deep CNN
trained with augmented data generated from domain-specific
features of histopathology. Our model-building approach can be
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applied in the development of histopathological AI assistance
systems for a variety of cancers of different organ systems.

Methods
Ethical approval. The study was approved by the institutional review board of each
participating hospital (Medical Ethics Committee, Chinese PLAGH; Ethics Com-
mittee of PUMCH; Ethics Committee of National Cancer Center/CHCAMS). The
informed consents were waived by the institutional review boards since the reports
were anonymized. The data used in this research are part of standard-of-care
hospital routine.

Datasets. The PLAGH dataset was partitioned into six parts: (1) training dataset:
contains 2123 WSIs (1391 malignant tumors); (2) training dataset (random forest):
contains 737 WSIs (353 malignant tumors); (3) validation dataset: contains 300
WSIs for use for model hyperparameter tuning; (4) internal examination dataset:
contains 100 WSIs that were used in the collaboration test; (5) daily gastric dataset:
contains 3212 WSIs used in the trial run; (6) IHC dataset: a subset of the daily
gastric dataset (99 WSIs) which contains difficult cases that required an
immunohistochemistry.

The multicentre dataset contains 595 WSIs from the PUMCH and 987 WSIs
from the CHCAMS and Peking Union Medical College.

See Supplementary Tables 8 and 9 for a detailed description and data
distribution. We gave an illustration of the test datasets in Supplementary Fig. 9.

Annotation procedure. Pixel-level annotations were performed by pathologists
from PLAGH on 1391 WSIs. The denotation of malignant tumors for model
training was conducted using an iPad-based annotation system. The system
interface was shown in Supplementary Fig. 10. We used ThoSlide 2.1.0, a pro-
prietary library, to access the WSIs.

The annotation procedure of a WSI comprised three steps, the initial labeling
stage, the verification stage, and the final check stage. A slide was first randomly
assigned to a pathologist. Once the labeling was finished, the slide and annotations
were then passed on to another pathologist for review. In the final step, a senior
pathologist would spot-check 30% of the slides that had passed the first two steps.
The algorithm was developed gradually along with the progress of the annotation.
To aid the annotation process, we also incorporated a review routine where difficult
cases found during the training phase would be sent back for a second-round
review.

Preprocessing. The annotations we obtained were curves with no specific stroke
orders. In the data preprocessing stage, we selected the closed curves and filled in
the enclosed areas to obtain pixel-level labels. Outer curves were filled first in the
case of nested curves. Otsu’s method was applied to the thumbnail of each WSI to
obtain the tissue coordinates in the foreground. In practice, the grid search of the
thresholding parameter t was performed on the grayscale slide thumbnail to
minimize the following function:

σ2ωðtÞ ¼ ω1ðtÞσ21ðtÞ þ ω2ðtÞσ22ðtÞ; ð1Þ

where σ2i ðtÞði ¼ 1; 2Þ represented intraclass variance, we fixed the weights ω1=
ω2= 0.5. With the target threshold t*, we could turn the grayscale image into a
binary image, marking the tissue area coordinates. The coordinates were then
rescaled to the original zoom level to obtain the WSI-level coordinates. We only
extracted training patches from coordinates that cover a tissue. During training, the
WSIs were split into tiles of 320 × 320 pixels in size. We obtained 11,013,286
(malignant: 6,887,275, benign: 4,126,011) training patches with pixel-level
annotations.

Algorithm development. We built our deep learning model based on DeepLab v3
with the ResNet-50 architecture as its backbone33. We also studied the perfor-
mance of classification (ResNet-50, Inception v3, and DenseNet) and segmentation
(U-Net, DeepLab v2, DeepLab v3) models. All models were implemented in
TensorFlow34 using Adam optimizer, the detailed configuration of the training
process was listed in Supplementary Table 10.

For the best model (DeepLab v3), the training process took 42.6 h. In the
inference stage, we instead used larger tiles of 2000 × 2000 pixels and a 10% overlap
ratio, by feeding 2200 × 2200-pixel tiles into the network while only using the
2000 × 2000-pixel central area for the final prediction, to further retain the
environment information.

We compared the performance of slide-level prediction approaches including
random forest, averaging the top 100, 200, 500, 1000, and 2000 probabilities. To
train the random forest, we extracted 30 features (see Supplementary Table 11)
from the heatmaps for the training dataset (random forest). The trained classifier
was tested on the validation dataset.

The slide-level prediction used in our research was obtained by averaging the
top 1000 probabilities.

AI assistance system design. The system architecture was illustrated in Sup-
plementary Fig. 11, where we split different system components into microservices.
The trained model was served by the containerized TensorFlow Serving35. Each
worker and TensorFlow Serving pair were bound to a GPU, providing the inference
service for the scheduler. Once a client initialized a prediction request, the message
was passed to the preprocessing module by the message queue (MQ). Then the
effective area of the WSI was cut into tiles and fed into the scheduler. The scheduler
managed all the tasks and monitored the workers. When the predictions of all the
slide tiles were complete, the postprocessing module merged the tile predictions
into one single slide prediction and returned it to the client through the MQ.
The client could always send a message to the MQ to query the job progress. Since
the communications between the microservices were decoupled by the MQ, and
the scheduler manages the tasks independently, our system was designed to be
distributable with high scalability. The average inference time of one slide (mean
file size of 536.3 MB) was 53.5 and 24.7 s on a server with 4 GPUs and three servers
with 12 GPUs. A complete cost analysis for the whole system was given in Sup-
plementary Fig. 12.

Internal examination. The settings were there to apply pressure to the trainees to
help us understand how one would perform under tremendous pressure. Before the
experiment, Z.S. and one trainee (who is not a participant) were asked to perform a
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pre-experiment as fast as they could. The slides took Z.S. 40min to diagnose and took
the trainee 52min. Therefore, the time constraint was set to 1 h. The experiments
were carried out in two conditions on the same day. In the morning, each group was
asked to finish the 100 test slides within 1 h. After a 3-h break, the pathologists would
be reassigned to a different group, and hence, not working under the same setting. In
contrast to the morning test, the afternoon test did not have a time constraint. The
pathologists were allowed to work at a self-controlled pace. The average years of
experience of the attended pathologists were 4.5. For the AI-assisted group, heatmap
overlay was displayed over abnormal areas, along with a probability score in the AI
assistance system. The heatmap could be turned on and off with a tap on the key-
board space bar. The experiment was performed on MacbookPro 13 with optical
mouse. As shown in Supplementary Fig. 13, the trainees gave the diagnosis by clicking
the buttons (malignant/benign) on the screen. For the microscope group, the trainees
used Olympus BX50.

Evaluation metrics. We used slide-level AUC (area under the ROC curve),
accuracy, sensitivity, specificity to measure model performance, and accuracy,
sensitivity, specificity when comparing with human pathologists. These metrics
were defined as follows:

Accuracy ¼ NTP þ NTN

NTP þ NTN þ NFP þ NFN
;

Sensitivity ¼ NTP

NTP þ NFN
;

Specificity ¼ NTN

NTN þ NFP
;

ð2Þ

where NTP, NTN, NFP, NFN represented the number of true positive, true negative,
false positive, false negative slides, respectively.

Plots and charts. All the plots were made using the matplotlib package in Python.
The model performance was revealed with both the ROC curve with 1−specificity
as the x-axis and sensitivity as the y-axis. We adopted bar plots showing the
variance of the predictions on time-consecutive data and WSIs from different
digital scanners and hospitals. We used line plots to illustrate the internal exam-
ination result and to compare performance between different groups. The color fill
below the lines serves the purpose of making the visual variation clearer. To study
the IHC dataset, we gave a violin plot. The violin plot combined the traditional
boxplot with a kernel density estimate (KDE). The KDE gave a rough estimation of
the underlying data distribution. The median value was represented by a white dot
in the middle. The center thick black bar was the interquartile range, while the thin
black line showed the maximum and minimum adjacent values. We used the violin
plot to show the prediction distribution from the model, grouped by two classes
(malignant and benign).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on request from the
corresponding authors (H.S. and S.W.). The data are not publicly available due to
hospital regulations.

Code availability
The training code base for the deep learning framework is available at: https://github.
com/ThoroughImages/NetFrame. This framework is general and can be applied to other
organs. The core components of the inference system are available at: https://github.com/
ThoroughImages/PathologyGo.
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