Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks

Author: Yuxi Dong

Director: Wei Xu

1

Background: Atherosclerosis

- Caused by accumulation of substances in arteries
- Cause stroke, the second place in global death ranks from 1990 to 2010

Results

Background: Dangerous of carotid plaques

- What we see: Plaque
- Reduced or blocked blood flow
- When a plaque breaks up
 - Rupture from vessel
 - Flow with blood to other parts of body
 - May block the vessel somewhere
- Composition of the plaque => different risk level

[1] What Is Atherosclerosis?, http://www.nhlbi.nih.gov/health/health-topics/topics/atherosclerosis/

Our goal: Identify composition of plaques

- We focus on carotid vessels (arteries on the neck)
- Traditional method: MRI + Trained radiologist
 - Time consuming
 - Requires expertise
 - Inter-reviewer variability

• We want to identify the composition of carotid plaques in MRI automatically

Dataset

Method

Со

Results

Outline

- Background of MRI and plaques
- Dataset and preprocessing
- Our model
- Evaluation

Conclusion

5

MRI produces multi-contrast images

- 4 *contrast weightings:* T1W, T2W, TOF, MP-RAGE
- Each from a different physical scanning method

Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks

The vessel: when it is normal

• Calcification: calcium builds up in blood vessels

- Calcification: calcium builds up in blood vessels
- Lipid-rich/necrotic core (LR/NC): extracellular mass in the intima

- Calcification: calcium builds up in blood vessels
- Lipid-rich/necrotic core (LR/NC): extracellular mass in the intima
- Hemorrhage: liquid plaque component

- Calcification: calcium builds up in blood vessels
- Lipid-rich/necrotic core (LR/NC): extracellular mass in the intima
- Hemorrhage: liquid plaque component
- Loose matrix: tissues that are loosely woven

Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks

Previous work requires hand-crafted features, yet not achieving usable accuracy

MEPPS

- Morphology-enhanced probability map
- Intensity + morphology information
- Van *et al.*
- Bayes classifier
- Intensity + zero-, first and second derivatives
- Using deep learning, we can improve the performance up to 2x compared to MEPPS
- Do not need ad hoc features

12

Method

Outline

Background

- Dataset and preprocessing
- Our model
- Evaluation

Results

Conclusion

13

Dataset: Chinese Atherosclerosis Risk Evaluation study (CARE II)

- Collected 13 medical centers and hospitals all over China
- Over 1000 patients, we used ~580, age between 18 and 80
- All patients have stroke or transient ischemic attack within two weeks after onsets of symptoms
- Professionally labeled to identify all plaques.

14

Dataset labeling: Alignment of different contrasts

- Each case has 16 slices with 4 *contrast weightings*
- Different slice thickness => requires an alignment

Dataset labeling: Alignment of different contrasts

- Each case has 16 slices with 4 *contrast weightings*
- Different slice thickness => requires an alignment

Dataset labeling: Alignment of different contrasts

- Each case has 16 slices with 4 *contrast weightings*
- Different slice thickness => requires an alignment

Identifying Carotid Plaque Composition in MRI with Convolutional Neural Networks Dataset Labeling: segment all the component => pixel level labeling

Dataset labeling: Image quality filtering

Results

• Reviewers provide a 5-level quality score

Method

Dataset

• We ignore the lowest quality ones

Background

Our training / testing set selection

- We choose 1098 vessels (16 slices each), from ~580 people
- 20% test set
- 80% training + validation

Res<u>ults</u>

Conclusion

20

Outline

- Background
- Dataset and preprocessing
 - Our model
- Evaluation

21

Results

Our Approach

- We use convolutional neural networks (CNN) to learn the input
- Base models: VGG-16^[1], GoogLeNet^[2], ResNet-101^[3]
- Key questions:
 - Still not enough training data.
 - Natural image datasets, e.g. ImageNet, 1.26 million
 - Does ImageNet pre-trained models help?
 - How to adapt the multi-contrast images to a pre-trained model?
 - Plaques is very small in the image, pretrained CNN does not offer not enough resolution

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014.
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[J]. 2015:1-9.
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. 2015:770-778.

Our Key Ideas

- We fine-tune base models pre-trained with ImageNet
- Allow inputting the 4 contrast weightings with reasonable overhead
- Maintaining high resolution by reducing the down-sampling factor from 32x to 8x

Dataset

Key idea 1: Fine-tuning a Pre-trained Model

- Low-level features of pretrained model contains texture information
 - Similar for natural images vs. medical ??
- We can re-use them through fine-tuning

Figure from: Zeiler M D, Fergus R. Visualizing and understanding convolutional networks.

Background Dataset Method Results Conclusion

Key idea 2: Adapting multi-contrast images into the pretrained network (VGG, GoogLeNet, ResNet...)

• Input: RGB Image (3 input channels) -> Multi-contrast MR Images (4 input channels)

Background

25

Key Idea 3: Maintaining high resolution

- Pretrained model has 32x reduction on input images
- Our input size is 320x320
- Plaque composition may be less than 32x32, => less than 1 pixel
- Thus: 8x reduction
- Modify two strides of 2 to 1, and add dilation kernels^[1]

Less than 32x32

 Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs[J]. Computer Science, 2014(4):357-361.

Background Dataset Method Results Conclusion

Implementation Details

- Imbalance Data
- Many slices only have normal tissues
- Features of normal tissues can also be learned from other slices, while learning abnormal classes simultaneously
- Thus we throw normal slices away
- Data augmentation

Dataset

Background

Since there isn't any known impact of the position (left or right) of the carotid on plaques

Results

• We flip the image horizontally with 1/2 probability

Method

 With an input of 320*320, we randomly rescale the image to 1x~1.25x, and randomly crop 320*320 on the rescaled image and put into the net

Outline

- Background
- Dataset and preprocessing
- Our model
 - Evaluation

Results

Con

Results

Information Sciences

Results

Dataset

Method

Results

Conclusion

30

Results: Metrics

- Pixel-wise accuracy
 - Recall, precision and f-score
- Pixel-wise accuracy is strict
 - Recall: 0.967; Precision: 0.789; F-score: 0.869

T1W

T2W

TOF

MP-RAGE

Manual

ResNet-101

Results

• Metric

Precision

Recall

F-measure

	MEPPS	GoogLeNet	VGG-16	ResNet-101					
Calcification	0.698/0.457	0.673/0.446	0.663/0.481	0.704/0.492					
Lipid Core	0.373/0.273	0.533/0.419	0.536/0.372	0.576/0.474					
Hemorrhage	0.526/0.299	0.710/0.499	0.717/0.487	0.729/0.622					
Loose Matrix	0.103/0.253	0.422/0.091	0.522/0.138 0.488/0.246						
F-measure									
	MEPPS GoogLeNet VGG-16								
Calcification	0.552	0.536	0.557	0.580					
Lipid Core	0.315	0.469	0.439	0.520					
Hemorrhage	0.382	0.586	0.580	0.671					
Loose Matrix	0.146	0.150	0.218	0.327					

Precision/Recall

nformation Sciences

Dataset

Method

Results

Results: Comparing to MEPPS

• Metric

Precision

Recall

F-measure

	MEPPS	GoogLeNet	VGG-16	ResNet-101						
Calcification	0.698/0.457	0.673/0.446	0.663/0.481	0.704/0.492						
Lipid Core	0.373/0.273	0.533/0.419	0.536/0.372	0.576/0.474						
Hemorrhage	0.526/0.299	0.710/0.499	0.717/0.487	0.729/0.622						
Loose Matrix	0.103/0.253	0.422/0.091	0.522/0.138	0.488/0.246						
	F-measure									
	MEPPS	GoogLeNet	VGG-16	ResNet-101						
Calcification	0.552	0.536	0.557	0.580						
Lipid Core	0.315	0.469	0.439	0.520						
Hemorrhage	0.382	0.586	0.580	0.671						
Loose Matrix	0.146	0.150	0.150 0.218 0.							

Precision/Recall

Results

Results: Different CNNs

• Metric

Precision

Recall

F-measure

	MEPPS	GoogLeNet	VGG-16	ResNet-101						
Calcification	0.698/0.457	0.673/0.446	0.663/0.481	0.704/0.492						
Lipid Core	0.373/0.273	0.533/0.419	0.536/0.372	0.576/0.474						
Hemorrhage	0.526/0.299	0.710/0.499	0.717/0.487	0.729/0.622						
Loose Matrix	0.103/0.253	0.422/0.091	0.522/0.138	0.488/0.246						
	F-measure									
	MEPPS GoogLeNet VGG-16									
Calcification	0.552	0.536	0.557	0.580						
Lipid Core	0.315	0.469	0.439	0.520						
Hemorrhage	0.382	0.586	0.580	0.671						
Loose Matrix	0.146	0.150	0.218							

Precision/Recall

Results

Results: Different accuracy on different compositions

Metric

Precision

Recall

F-measure

Calcification 0.698/0.457 0.673/0.446 0.663/0.481 0.704/0.492 Lipid Core 0.373/0.273 0.533/0.419 0.536/0.372 0.576/0.474 Hemorrhage 0.526/0.299 0.710/0.499 0.717/0.487 0.729/0.622 Loose Matrix 0.103/0.253 0.422/0.091 0.522/0.138 0.488/0.246 Lipid Core 0.552 0.0536 0.557 0.580 0.580 Lipid Core 0.382 0.586 0.580 0.671 Hemorrhage 0.345 0.459 0.240 0.247		MEPPS	GoogLeNet	VGG-16	ResNet-101				
Lipid Core 0.373/0.273 0.533/0.419 0.536/0.372 0.576/0.474 Hemorrhage 0.526/0.299 0.710/0.499 0.717/0.487 0.729/0.622 Loose Matrix 0.103/0.253 0.422/0.091 0.522/0.138 0.488/0.246 Loose Matrix MEPPS GoogLeNet VGG-16 ResNet-101 Calcification 0.552 0.536 0.439 0.520 Lipid Core 0.315 0.469 0.439 0.520 Hemorrhage 0.382 0.586 0.580 0.671	Calcification	0.698/0.457	0.673/0.446	0.663/0.481	0.704/0.492				
Hemorrhage 0.526/0.299 0.710/0.499 0.717/0.487 0.729/0.622 Loose Matrix 0.103/0.253 0.422/0.091 0.522/0.138 0.488/0.246 F-measure F-measure F-measure F-measure F-measure Calcification 0.552 0.536 0.557 0.580 0.520 Lipid Core 0.315 0.469 0.439 0.520 0.520 Hemorrhage 0.382 0.586 0.580 0.671	Lipid Core	0.373/0.273	0.533/0.419	0.536/0.372	0.576/0.474				
Loose Matrix0.103/0.2530.422/0.0910.522/0.1380.488/0.246F-measureMEPPSGoogLeNetVGG-16ResNet-101Calcification0.5520.5360.5570.580Lipid Core0.3150.4690.4390.520Hemorrhage0.3820.5860.5800.671	Hemorrhage	0.526/0.299	0.710/0.499	0.717/0.487	0.729/0.622				
F-measureMEPPSGoogLeNetVGG-16ResNet-101Calcification0.5520.5360.5570.580Lipid Core0.3150.4690.4390.520Hemorrhage0.3820.5860.5800.671	Loose Matrix	0.103/0.253	0.422/0.091	0.522/0.138	0.488/0.246				
MEPPS GoogLeNet VGG-16 ResNet-101 Calcification 0.552 0.536 0.557 0.580 Lipid Core 0.315 0.469 0.439 0.520 Hemorrhage 0.382 0.586 0.580 0.671	F-measure								
Calcification 0.552 0.536 0.557 0.580 Lipid Core 0.315 0.469 0.439 0.520 Hemorrhage 0.382 0.586 0.580 0.671		MEPPS	GoogLeNet	VGG-16	ResNet-101				
Lipid Core 0.315 0.469 0.439 0.520 Hemorrhage 0.382 0.586 0.580 0.671	Calcification	0.552	0.536	0.557	0.580				
Hemorrhage 0.382 0.586 0.580 0.671	Lipid Core	0.315	0.469	0.439	0.520				
	Hemorrhage	0.382	0.586	0.580	0.671				
LOOSE MIATRIX 0.146 0.150 0.218 0.327									

Precision/Recall

Background

Dataset

Method

Results

Results: False Positive

36

Contributions of Each Contrast Weighting

- Use each contrast weighting to train separate models
- F-measure of each tissue class

Contrast Weighting	Calcification	Lipid/Necrotic Core	Hemorrhage	Loose Matrix
T1W	0.538	0.496	0.443	0.020
T2W	0.494	0.515	0.323	0.387
TOF	0.468	0.465	0.487	0.080
MP-RAGE	0.337	0.437	0.681	0.015
ALL	0.580	0.520	0.671	0.327

Results

Model Ensemble

- Average: average over the softmax layer of four models
- Learning: learn the weights of feature maps of upscore layer

Model	Fibrous Tissue	Calcification	Lipid/Necrotic Core	Hemorrhage	Loose Matrix
Average	0.963	0.518	0.522	0.608	0.009
Learning	0.963	0.585	0.557	0.691	0.335
ResNet-101	0.962	0.580	0.520	0.671	0.327

38

Method

Results

Model Ensemble: Learning

Model Ensemble: weights of each feature map

4 models trained with 4 channels separately

Method

- 5 score maps for each contrast weighting in each model
- 20 feature maps

Dataset

40

Model Ensemble: weights of each feature map

Contrast Weighting	Calcification	Lipid/Necrotic Core	Hemorrhage	Loose Matrix
T1W	0.538	0.496	0.443	0.020
T2W	0.494	0.515	0.323	0.387
TOF	0.468	0.465	0.487	0.080
MP-RAGE	0.337	0.437	0.681	0.015
ALL	0.580	0.520	0.671	0.327

 でしていためでは、

 でしたのでは、

 でしたのでは、

 でしたのでは、

 でしたのでは、

 でしたのでは、

 でしたのでしたのでは、

 でしたのでは、

 でしたのでは、

Model Ensemble: weights of each feature map

Contrast Weighting	Calcification	Lipid/Necrotic Core	Hemorrhage	Loose Matrix
T1W	0.538	0.496	0.443	0.020
T2W	0.494	0.515	0.323	0.387
TOF	0.468	0.465	0.487	0.080
MP-RAGE	0.337	0.437	0.681	0.015
ALL	0.580	0.520	0.671	0.327

Confusion Matrix

TPFPFNTN

sensitivity specificity

MEPPS

Calcifi	cation	Lipid	Lipid Core		Hemorrhage			Loose	Matrix
202	14	306	69		81	98		72	634
139	3085	379	2686		19	3242		85	2649
0.592	0.995	0.447	0.975		0.810	0.971	_	0.459	0.807

ResNet

Calcifi	cation	Lipi	id Core		Hemo	rrhage		Loose	Matrix	
270	42	567	169		84	34		83	91	
71	3057	118	2586		16	3306		74	3192	1
0.792	0.986	0.827	0.939	-	0.840	0.990	-	0.529	0.972	
									🕘 🗰	•

Dataset

Method

Results

Conclusion

43

nformation Sciences

Results: Running time

- Takes ~11s on a Titan X GPU
- For whole-slice (16 slices) prediction

	MEPPS	GoogLeNet	VGG-16	ResNet-101	
Time (sec)	10.0	9.1	8.9	11.4	

Conclusion

- We apply CNNs to automatically recognize carotid plaque components
- Modify the network to receive multi-contrast input
- Lower the down sampling ratio to maintain high resolution
- CNNs achieve better accuracy than traditional Bayesian methods while running in acceptable time

45

R

Method

Results

Final Remarks

- CNNs can replace many traditional methods in medical image processing
- Key challenge: labeled data
- esp. high quality label for CNN training \neq medical report
- Future direction: reducing the labeling requirement, transfer? Active learning?

Background Motivation Dataset Method Results Conclusion

47