
Concerto: Cooperative Network-Wide Telemetry with
Controllable Error Rate

Yiran Li
Institute for Interdisciplinary Information Sciences

Tsinghua University
liyr14@mails.tsinghua.edu.cn

Kevin Gao
Institute for Interdisciplinary Information Sciences

Tsinghua University
kevingao96@gmail.com

Xin Jin
Department of Computer Science

Johns Hopkins University
xinjin@cs.jhu.edu

Wei Xu
Institute for Interdisciplinary Information Sciences

Tsinghua University
weixu@tsinghua.edu.cn

ABSTRACT
Network-wide telemetry requires real-time analysis of a
large amount of traffic. Telemetry systems use stream proces-
sors to support various applications, and Protocol Indepen-
dent Switching Architecture switches to reduce the workload
on stream processors. Due to the inefficient use of switch
resources, existing systems cannot fully reduce the workload
on the stream processors. Unlike the existing systems that
treat switches independently when assigning tasks, Con-
certo lets switches work together. The use of cooperating
switches means more resources and a further reduction in
the stream processor’s workload. Furthermore, Concerto
can also adhere to a more stringent error rate requirement.
Our evaluation shows that Concerto reduces the stream pro-
cessor’s workload by as much as 19×, and under the same
workload on the stream processor, Concerto achieves an
error rate of 104× lower than existing systems.

CCS CONCEPTS
•Networks→Networkmonitoring;Programmable net-
works.

KEYWORDS
Network-Wide Monitoring; Programmable Switches; Stream
Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’20, August 24–25, 2020, Tsukuba, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8069-0/20/08. . . $15.00
https://doi.org/10.1145/3409963.3410499

1 INTRODUCTION
Network telemetry systems have powerful detection capa-
bilities. They generate useful status knowledge by collecting
and analyzing network information, providing a basis for
manymonitoring, diagnosis, and operational tasks. To obtain
network status, a network-wide telemetry system should 1)
provide expressive and high fidelity operators, and 2) operate
packets of the whole network in real-time.
Currently, telemetry tasks are run using the Protocol In-

dependent Switch Architecture (PISA) switch [5, 27] and the
stream processor [10, 11]. However, neither of these canmeet
both of the conditions on their own. On the one hand, PISA
switches provide stages for customized packet processing in
real-time, but the limited resources and operations restrict
query fidelity and expressiveness. On the other hand, the
stream processor is capable of general-purpose processing.
Still, even state-of-the-art stream processing systems only
achieve the line rate of the server, failing to process packets
across the entire network [17, 35]. In order to execute expres-
sive operators on the entire network in real-time, existing
systems reduce the stream processor’s workload using PISA
switches [12]. The key to the design of a telemetry system is
to reduce the workload on the stream processor.
The network-wide telemetry system faces similar prob-

lems as traditional systems, but its unique constraints call
for a different solution. Database systems reduce operation
sizes by choosing the evaluation plan. Dataflow computing
frameworks utilize multiple servers by decomposing jobs
into tasks [1, 10]. The telemetry system also targets to reduce
the number of tuples to the stream processor and needs to
split queries among devices. However, telemetry is different
as 1) the switch resources determine the number of operators
on the switch, it is impossible to trade tuple processing speed
for more operators. And 2) the network configuration fixes
the tuple processing workflow, resulting in various switch
sets for different operations. Due to the strict processing con-
straints, telemetry systems are hard to benefit from various

114

https://doi.org/10.1145/3409963.3410499

APSys ’20, August 24–25, 2020, Tsukuba, Japan Yiran Li, Kevin Gao, Xin Jin, and Wei Xu

Tuples

SP
Config

Stream
Processor

Query

Concerto

Q1 Q3Q2

Switch Config

Result

Switch

Figure 1: Concerto architecture.

evaluation plans or dynamic task assignments as database
systems and dataflow computing frameworks.
Existing systems cannot sufficiently reduce the stream

processor’s workload on network-wide telemetry. 1) Ap-
plying basic filtering on switches only reduces the stream
processor’s workload by a small portion. 2) UnivMon [21]
and Marple [26] explore the opportunity to place queries
on multiple switches individually. However, the limited re-
sources of a single PISA switch still restrict the number of
operators offloaded to switches. 3) Sonata [12] observes the
unity between the PISA switch and the stream processor. But
it is limited to the single switch setting due to the complexity
of splitting queries among multiple switches dynamically.
Besides, its zoom-in technique does not provide a fidelity
guarantee about the result with dynamic flows.
As a step towards reducing the workload on the stream

processor with all switches’ resources, we present Concerto,
a network-wide telemetry system that lets switches execute
queries cooperatively. In Sonata, a stream processor and
an edge switch complement each other. Concerto further
orchestrates switches in the path to accompany the stream
processor, performing queries on a much larger scale. Just
as switches route packets in a distributive manner, Concerto
runs queries distributively, resulting in various operator sets
on different switches (Section 3.2). Since Concerto handles
arbitrary topology, it also applies to data center networks.

The main challenge of Concerto comes from the difficulty
of splitting queries among switches while meeting the con-
straints. Concerto solves this challenge by analyzing query
placement requirements and formulating the placement prob-
lem as a mixed-integer program (Section 3.3). By letting the
switches cooperate, Concerto avoids the restrictions caused
by the limited resources of a single switch and provides high
fidelity results in real-time. Figure 1 shows the Concerto
architecture. Our contribution includes:
• We propose a cooperative query execution model that
effectively reduces the stream processor’s workload;
• We provide a method to automatically analyze the
query and optimize its placement on PISA switches;
• We show that Concerto reduces the stream processor’s
workload by as much as 19×, and achieves an error
rate of 104× lower than state-of-the-art systems.

Table 1: Summary of Concerto language constructs.
Construct Description

packetStream Stream of packets in the network.
map(expr) Applying expr to each tuple.
filter(expr) Filtering out tuples that violate expr.
distinct(expr) Leaving one tuple for each expr group.
scan(expr, op) Applying op on tuples with the same expr.
zip(expr, S) Stream matching according to expr.
reduce(expr, op) Same as scan, but only output the final result.
join(expr, S) Matching with stream S according to expr.

2 RELATEDWORK
Reducing workload and improving efficiency are widely dis-
cussed in network telemetry systems. Many systems use
the end-host and optimize for real-time processing on the
CPU [20, 24, 28, 33, 38]. Although state-of-the-art stream pro-
cessing systems achieve the line rate of the server [17, 35],
it is hard for them to process packets across the entire net-
work. The limited resources on switches restrict operations
and scalability. Sampling can largely reduce the resource
consumption on switches [7, 21, 29, 31, 36], but does not
fit most quantitative tasks. The zoom-in technique is an-
other widely-used method [12, 14, 22, 23, 37]. However, it
does not provide any theoretical guarantee about the fidelity
with dynamic flows. Besides, some other systems focus on
algorithmic aspects to improve sketch data structure perfor-
mance [15, 16, 32, 34].Concerto presents a different approach
to utilize switch resources by letting switches cooperate.
Note that Concerto is independent of other techniques, but
can work together with them.

There are various attempts to network-wide query place-
ment. Many systems combine switches and software, espe-
cially the stream processor, to perform telemetry tasks [12,
19, 26, 36]. Sonata [12] is limited to a single switch and does
not provide any method for scaling to multiple switches.
To support network-wide telemetry, UnivMon [21] utilizes
switches along the path, while Marple [26] further considers
operator semantics and places operators at specific switches.
As UnivMon and Marple do not let switches cooperate, Path-
Query [25] and SNAP [2] distribute packet processing logics
among switches. However, they focus on providing functions
and do not take resource consumption andworkload into con-
sideration. Concerto reduces the stream processor’s work-
load by formulating switch cooperation with the network-
wide query placement problem.

3 CONCERTO DESIGN
Table 1 shows the Concerto language constructs, which is a
widely adopted interface [12, 26, 38]. Concerto provides one-
big-switch abstraction by abstracting the traffic as a single
packet stream (packetStream). Concerto supports stateless
operators (map, filter), stateful operators (distinct, scan),

115

Concerto APSys ’20, August 24–25, 2020, Tsukuba, Japan

1 packetStream
2 .map(p => (p.ip.sip ,p.ip.dip))
3 .distinct ((sip ,dip) => (sip ,dip))
4 .map((_,dip) => (dip ,1))
5 .scan((dip ,_) => dip , sum)
6 .filter ((dip ,count) => count==T)
7 .map((dip ,count) => dip)

Figure 2: DDoS detection query.

S1

S2 Stage 1

06 07

05 05 05

05

04

Parser

07

05

Deparser

PHV PHVPkt Pkt

Four-Stage PISA Switch

07:map06:filter

05:scanSubquery 1:

Subquery 2:

Mem. ALU

Stage

Stage 2 Stage 3 Stage 4

Figure 3: Concerto switch-based query execution.

as well as the zip on switches. As it is difficult to determine
the last tuple or to generate all the possible combinations in
a stream, Concerto also provides operators that are always
done on the stream processor (reduce, join). We use the line
number for phase, which is the last executed operator of the
tuple. Figure 2 shows an example query of DDoS detection.
The full list of evaluated queries is shown in Table 5.

The difficulty of network-wide telemetry comes from com-
piling the query to multiple switches, which takes query
characteristics, network configurations, and switch resources
into account. In this section, we start by providing basics for
PISA-switch-based tuple processing. Next, we describe the
cooperative query execution model of Concerto. Then, we
introduce Concerto’s automatic query planning method. At
last, we use a case study to see the improvement of Concerto.

3.1 Tuple Reduction Using Switches
3.1.1 Protocol Independent Switch Architecture. The PISA
switch provides a fixed number of stages for customized pro-
cessing, together with a configurable parser and deparser [5,
27]. Figure 3 illustrates a four-stage PISA switch. We omit
buffers for simplicity. For each incoming packet, the parser
generates a packet header vector (PHV). The PHV is then
used for customized packet processing and converted to the
header of the outgoing packet at the deparser. Within each
stage, when the PHVmatches a customized rule in the match
table, the specified operation is performed at the action ALU.
Action ALUs support stateful operations with the help of
register memories. Stages and registers are the key resources
of the PISA switch. A typical PISA switch has 1-32 physical
stages and 0.5-32Mb of registers for each stage [6].

3.1.2 Offloading dataflow operators to switches. Concerto
offloads query to PISA switches by translating operations to

match-actions. Stateless operators and zip require a single
match-action table to transform or remove the tuple in PHV.
With the limited register in a single stage, stateful operators
use consecutive hash tables like Bloom filter [3] or count-min
sketch [8] to meet the required error rate. For k keys, when
requiring the error rate less than p, the maximum number
of distinct items n supported by d levels of hash tables is,

n =
⌊
−k · ln

(
1 − p

1
d
)⌋
.

We can precompute the number of hash tables given the
trace and the error rate. In Figure 3, the stateful operator
05:scan takes three stages, while others take one stage.

3.1.3 Best-effort tuple processing. InConcerto, switches send
intermediate result tuples to the stream processor only when
the switch resources are not enough or the expr is not exe-
cutable on the switch. It also distinguishes scan and zip from
reduce and join to offload restricted operations to switches
and leave general operations to the stream processor.

3.2 Cooperative Query Execution
Due to the strict hardware restrictions and the complex rout-
ing, network-wide telemetry systems are hard to benefit
from classical solutions. Different from identical workers
in dataflow computing frameworks, each PISA switch in
the network plays a unique role. Moreover, since network
telemetry is more about filtering tuples than joining tables,
it is more important to utilize switch resources efficiently.

Concerto proposes a cooperative query execution model.
The model assigns various parts of the query to different
switches and chains their stages to perform the query. The
chaining finishes automatically as packets transfer. Concerto
focuses on deterministic but potentially multi-path routing.
That is, Concerto knows all switches a packet may traverse.
This is a reasonable and common assumption [14, 21] as
networks usually select among available paths. Note that
Concerto is independent of the underlying routing method,
as long as it knows the possible paths.

Each switch processes the tuple based on local information
only (i.e., tuple’s phase). The switch does not need to keep the
sizable routing or operation information on other switches
to process tuples.

Concerto adds a custom header before the payload to carry
tuples and phases among switches. As Concerto does not
modify original headers, other network behaviors are pre-
served. Table 5 (column Header) shows the maximum tuple
size of different queries. We can see the maximum header
overhead of evaluated queries is less than an IP header.
Figure 3 also shows the model. For example, the switch

receives tuples at phase 4 from both S1 and S2. The switch
processes all tuples of phase 4 to phase 5 ignoring its source.

116

APSys ’20, August 24–25, 2020, Tsukuba, Japan Yiran Li, Kevin Gao, Xin Jin, and Wei Xu

02:map

ANY
ANY

sip, dip
03:dist.

ANY
ANY

sip, dip
04:map

ANY
ANY

dip
05:scan

DST
DST

dip
06:filter

ANY
DST

count
07:map

ANY
DST

dipt1 t7t6t5t4t3t2

Figure 4: Query analysis of DDoS detection.

Table 2: Restriction solving of zip.
Same Direction Opposite Direction

ANY SRC DST ANY SRC DST
ANY ANY SRC DST LST DST SRC
SRC SRC SRC SP SRC SP SRC
DST DST SP DST DST DST SP

3.3 Automatic Query Planning
Concerto plans the query under the cooperative execution
model in two steps: 1) analyzing the placement requirement
of the query, and 2) compiling the query to switches. The
analysis deals with query semantics by extracting operators’
placement restrictions, which is independent of network
configurations. The compilation minimizes the stream pro-
cessor’s workload while meeting various constraints.

3.3.1 Query placement analysis. Figure 4 shows the analy-
sis result of DDoS detection. Concerto analyzes the query
placement in three steps. 1) Concerto parses the query into
an abstract syntax tree. Each box in the figure represents an
operator, and this step fills the first two lines of the box. Con-
certo builds separate DAGs for each query. 2) Concerto then
extracts each operator’s local restriction from expr (third
line). The restriction has four types: SRC, DST, ANY, and SP,
representing source edge switch, destination edge switch,
any switch, and the stream processor, respectively. 3) Finally,
Concerto propagates the local restrictions to final restrictions
(fourth line). For an SRC-type (DST-type) operator, Concerto
marks its preceding (succeeding) operators to be SRC (DST).
Placing zip is more complicated as it involves two streams.
Concerto tries to reverse the second stream when manipulat-
ing streams of the opposite directions (e.g., matching source
IP with destination IP). The detailed rules for zip are shown
in Table 2, in which LST stands for where the second stream
places the previous stateful operator. When requirements
conflict with each other, the operator will be marked SP.

3.3.2 Query compilation. Concerto formulates and solves
the placement problem as amixed-integer program (MIP) like
previous works [2, 12, 21]. The formulation uses the trace to
generate the number of tuples at different stages and paths,
and the required number of stages for stateful operators.
Table 3 summaries the variables in the network-wide query
planning problem. We use subscripts t ,u,v for phases, s for
stages,w,x for switches, and p for paths. For simplicity, we
focus on the single query setting, and only present the core
formulation for the cooperative query execution model. We
can easily extend it to multi-query by duplicating variables.

Table 3: Symbol list.

Input from the Network Configuration
S The number of stages in PISA switches.
op Virtual origin node of path p before the source edge switch.
ew,v Edge from w to v .
Input from Queries and the Trace
Zt Indicates whether phase t performs a stateful operation.
Np,t The number of tuples generated after phase t on path p .
Tuple Processing Variable
Cw,t,u Indicates whether w processes tuples at phase t to u .
Fp,w,t,u Indicates whetherw processes tuples in path p from t to u .
Hp,w,t Indicates whether tuples in path p are at phase t after w .
Lw,t Processing load of the stateful operator of phase t at w .
Tt,n The maximum number of tuples handled by n consecutive

hash tables for the stateful operator of phase t .
Output
Xw,t,s Indicates whether phase t executes at stage s of w .

∀w, t :
∑
u>t

Cw,t,u ≤ 1 (1)

∀w, t < v ≤ u : Cw,t,u = 1→
∑
s≤S

Xw,v,s > 0 (2)

∀w, n, Zt = 1 : Lw,t > Tw,t,n →
∑
s≤S

Xw,t,s > n (3)

Figure 5: Tuple processing constraints.

∀p, t : Hp,op ,t = δt,0 (4)
∀p, 0 < t < u, ew,x ∈ p : Fp,x,t,u = Hp,w,t ∧Cx,t,u (5)

∀p, u, ew,x ∈ p : Hp,w,u = 0→ Hp,x,u =
∑
t<u

Fp,x,t,u (6)

∀p, u, ew,x ∈ p : Hp,w,u = 1→ Hp,x,u = 1 −
∑
v,u

Hp,x,v

(7)

∀w, Zt = 1 : Lw,t =
∑
p

Np,t ·
∨

u<t≤v
Fp,w,u,v (8)

Figure 6: Path constraints.

The formulation divides into five parts: 1) The target. The
target balances the average and the maximum number of tu-
ples sent from edge switches to the stream processor by min-
imizing their sum, which is similar to that of UnivMon [21]
and Sonata [12]; 2) Switch hardware constraints. Concerto
guarantees the register usage is within the limit, and the
order of operators is preserved among stages. Sonata also
has similar constraints; 3) Tuple processing. For any input
phase t , Concerto ensures that each switch only has one
result phase u, operators from phase t + 1 to u are installed
at some stage, and there are enough tables for stateful oper-
ators. Figure 5 shows the constraints; 4) Path. For each path,
a switch processes tuples from phase t to u, if and only if it
has corresponding rules, and the previous switch in the path
sends out tuples at phase t . Figure 6 shows the constraints.
We use δ to stand for Kronecker delta, which is one if and
only if the two subscripts are equal; 5) Tuple reporting. A

117

Concerto APSys ’20, August 24–25, 2020, Tsukuba, Japan

f1: S1 → S6

S1

2 3 3 3

S2

2 - - -

S6

5 5 5 6

S7

5 5 5 6
S3

3 3 3 3

S5

4 - - -f2: S2 → S6
f3: S2 → S7

Stream
Processor

7
Result
Tuples

S4

4 - - -

Flow t1, t2 t3, t4 t5 t6, t7 d3 d5
f1 442628 50034 1033 25 3 3
f2 1383594 113584 1739 36 4 3
f3 307941 8874 2194 25 3 3
f1 + f2 1826222 163618 2772 61 5 3
f2 + f3 1691535 122458 3933 61 4 4
f1 + f2 + f3 2134163 172492 4966 86 5 4

Figure 7: DDoS detection query planning onConcerto.

switch cannot report tuples at multiple phases except for
those from parallel subqueries (e.g., zip). Compared to pre-
vious works using MIP, Concerto handles a more elaborate
problem of letting switches cooperate.

3.4 Case Study: DDoS Detection
We now provide some intuition for the difference between
Concerto and other systems through DDoS detection (Fig-
ure 2) query planning. In Figure 7, there are seven switches
and three flows. We set each switch with four stages, and 0.5
Mb of registers at each stage, which is more strict than Bare-
foot Tofino [27]. We use the error rate of 1%, and generate
the number of tuples at each phase (ti) and the number of
stages to perform stateful operators (dj) from the trace. Note
Concerto does not distinguish different flows for processing.
Concerto plans query according to the network configu-

rations and the query analysis result (Figure 4). In Figure 7,
numbers on the top of each switch represent operators in-
stalled at stages. We use squares to indicate that the switch
processes tuples in a particular flow. As a result, with the co-
operative query execution method, Concerto utilizes switch
resources and only sends 86 tuples to the stream processor.
Existing systems cannot use resources on switches effi-

ciently. For example, limited by the number of stages on
edge switches, Sonata can only process tuples of f1 to phase
3, sending over 1.7 million tuples to the stream processor.
Although UnivMon can use all the switches from a global
perspective, the resource of a single switch still restricts its
operator placement. Thus, UnivMon can process tuples of f1
and f3 to phase 3 at S1 and S7, respectively, sending about 1.4
million tuples. By splitting the query to multiple switches,
Concerto executes more operators on switches and reduces
the stream processor’s load by four orders of magnitude.

4 PRELIMINARY EVALUATION
We now use experiments to show that by splitting queries
to multiple switches, Concerto reduces the workload on
the stream processor. We use the number of tuples sent to

Table 4: Evaluated topologies.
Topology Number of Sites Number of Links

Claranet 15 18
ATT North America 25 56
Cesnet-10 52 63
OTEGlobe 93 103

Table 5: Evaluated Concerto queries.

ID Query # Lines
Worst-Case Bits
PHV Header

(Processing) (Transfer)

1 Superspreader 6 123 72
2 Newly opened TCP 6 91 48
3 Port scan 7 107 56
4 DDoS 7 123 72
5 TCP incomplete flows 12 191 88
6 SSH brute force 6 139 88
7 Slowloris attacks 14 240 136

the stream processor as the workload metric that we try to
minimize, which is the same as Sonata [12].

4.1 Evaluation Setup

Topology.We use representative real-world ISP topologies
from the Topology Zoo dataset [18]. We set 20% of the ISPs
to be edge switches. Table 4 shows the evaluated topologies.
By default, we evaluate on the ATT North America topology,
Trace.We use CAIDA’s anonymized packet trace [9], which
was captured from an ISP’s backbone link between New York
and Sao Paulo. We randomly assign IP addresses and split
the trace accordingly. As Sonata, we also replay the trace at
20× speed to emulate the edge switch’s workload (20Mpps
on average) and use a time window of three seconds.
Application. Table 5 shows the evaluated queries from ex-
isting applications [4, 12, 30, 36–38]. Column PHV shows the
bits required to process the whole query in one switch, while
Header shows the maximum size of the tuple (e.g., phase 3 of
DDoS detection). With only a small portion of packets carry
a tuple, and the maximum size of a tuple is less than an IP
header, the overall overhead is negligible.
Query compilation.We use simulated PISA switch to eval-
uate various settings. By default, we use an error rate of 1%,
and a typical switch setting with 16 stages, 8Mb of register
memory per stage, and each operator can use up to half of the
memory [12]. The core query planning contains 1,000 lines
of Python code and uses Gurobi optimizer [13]. With only a
few cases (a significant amount of concurrent queries) take
more than 10 minutes, we set the time limit to 10 minutes.
Compared systems.We divide six state-of-the-art systems
into three categories (Table 6). As we are interested in the net
effect of using different methods, we add constraints on MIP
to simulate different systems. Note our evaluation result for

118

APSys ’20, August 24–25, 2020, Tsukuba, Japan Yiran Li, Kevin Gao, Xin Jin, and Wei Xu

Table 6: Evaluated telemetry systems.
Method Description System

Stateless Apply only stateless operators on
switches.

Everflow [39],
DREAM [22]

EdgeAll Apply as many as possible oper-
ators on edge switches. Sonata [12]

AnyAggre
Apply stateful operators at any
switches and aggregate to the
stream processor.

OpenSketch [36],
UnivMon [21],
Marple [26]

SSpreaderNew TCPPort Scan DDoS In. FlowsSSH BruteSlowloris
102

105

108

#
Tu

pl
es

Stateless EdgeAll AnyAggre Concerto

(a) Single-query performance on various queries.

1 2 3 4 5 6 7
104
106
108

Concurrent Queries

#
Tu

pl
es

Stateless EdgeAll AnyAggre Concerto

(b) Different numbers of queries.

Figure 8: Stream processor’s workload on single
queries and various numbers of concurrent queries.

each method is superior to that of the represented systems
as MIP removes redundant resource consumptions.

4.2 Performance of Different Queries
We now quantify how much Concerto reduces the stream
processor’s workload. The data point marks the average
number of tuples sent to the stream processor by switches,
and the error bar indicates the maximum and minimum
values. Note as Concerto reduces the workload by a large
portion, we use logarithmic scales on the y-axes.

Single query. As Figure 8(a) shows, comparing with the
best previous methods for each query, Concerto reduces the
stream processor’s workload by as much as 19×, and 7.8× on
average. Although AnyAggre places queries network-wide, it
does not analyze queries carefully, forcing stateful operators
to use the stream processor. EdgeAll can use edge switches to
meet most of the resource requirements of a single query and
supports stateful operators on the switch. Hence, it performs
better than other existing methods. Note Sonata behaves
worse than EdgeAll since it is limited to a single switch. The
query analysis helps Concerto to perform stateful opera-
tors in network-wide telemetry, and the cooperative model
utilizes the resources of multiple switches.

Multiple queries. As Figure 8(b) shows, Concerto is able
to outperform existing methods by ∼15× when there are a

2 4 8 12 16 20 24
104

106

Stage

#
Tu

pl
es

Stateless EdgeAll AnyAggre Concerto

(a) Single-query.

4 8 16 24 32
104

106

108

Stage

#
Tu

pl
es

(b) Multi-query.

Figure 9: Number of stages of PISA switch.

0.5 1 2 4 8 16 32
104

106

Memory Size (Mb)

#
Tu

pl
es

Stateless EdgeAll AnyAggre Concerto

(a) Single-query.

0.5 1 2 4 8 16 32
104

106

108

Memory Size (Mb)

#
Tu

pl
es

(b) Multi-query.

Figure 10: The register size of the PISA switch.

small number of concurrent queries. When there are seven
concurrent queries, Concerto still reduces the workload by
28%. Different from single queries, AnyAggre performs bet-
ter when there are many concurrent queries. The reason is
AnyAggre distributes operators of different queries to mul-
tiple switches to utilize their resources. Concerto improves
performance less on many concurrent queries since they use
up critical resources such as stages in edge switches.

4.3 Robustness on Parameters
We now evaluate the robustness of Concerto under different
switch hardware constraints and error rate requirements.
We use the superspreader for single-query evaluation and
four concurrent queries for multi-query evaluation.

PISA switch constraints. The number of stages directly af-
fects the number of operators on the switch. In the extreme
case where the edge switch has unlimited stages, whether us-
ing non-edge switches does not matter. As Figure 9(a) shows,
when there are few stages, Concerto performs well by utiliz-
ing all switches’ resources. And when given a large number
of stages, EdgeAll performs on par with Concerto. In the
case of multi-query (Figure 9(b)), Concerto requires more
stages to reduce the workload. Increasing the register size
reduces the number of stages required to perform stateful op-
erators. In both single-query (Figure 10(a)) and multi-query
(Figure 9(b)) cases, we can observe similar results as chang-
ing the number of stages. Concerto provides performance
gain under various resource constraints.

Error rate requirement. As Figure 11(a) shows, Concerto
achieves a much lower error rate alongside a lower workload
on the stream processor. For the single query, given the same
workload, Concerto can achieve an error rate that is 104×

119

Concerto APSys ’20, August 24–25, 2020, Tsukuba, Japan

101 10−1 10−3 10−5
104

106

Error Rate (%)

#
Tu

pl
es

Stateless EdgeAll AnyAggre Concerto

(a) Single-query.

101 100 10−1
104

106

108

Error Rate (%)

#
Tu

pl
es

(b) Multi-query.

Figure 11: Error rate requirement.

Clar
ane

t
ATT

NA
Ces

net-
10

OTE
Glo

be

100

102

104

N
or
m
al
iz
e d

#
Tu

pl
es

(a) One query.
Clar

ane
t

ATT
NA
Ces

net-
10

OTE
Glo

be

100

102

Stateless EdgeAll AnyAggre Concerto

(b) Two queries.
Clar

ane
t

ATT
NA
Ces

net-
10

OTE
Glo

be

100

101

102

(c) Four queries.

Figure 12: Normalizedworkload on various topologies
with different numbers of concurrent queries.

lower. As for the multi-query case, Concerto reduces the
workload by a relatively smaller amount, but can still reach
a 10× lower error rate with the same workload. Requiring a
lower error rate has a similar effect of reducing the register
size. Thus it is unsurprising to find that the two subfigures of
Figure 11 are mirror images of Figure 10(a) and Figure 10(b).
Cooperatively utilizing resources from multiple switches
enable Concerto to achieve far lower error rates.

4.4 Scalability
Topology size influences performance because larger net-
works tend to share the same switch with more paths. We
use real-world WAN topologies of different sizes from the
topology zoo [18]. We evaluate different numbers of con-
current queries to eliminate the influence of query load and
observe the net effect of changing topology. For better com-
parison, we normalize the tuple number to that of Concerto.
We can observe from Figure 12 that the improvement

of Concerto is stable among different topologies. Within
each subfigure, the relative number of tuples to the stream
processor does not change much with the topology, which
suggests the topology has a limited impact on performance.
Comparing different subfigures, we can find the improve-
ment changes as the number of concurrent queries changes,
meaning that the query has a more significant impact on
performance. This proves the scalability of Concerto.

5 CONCLUSION AND FUTUREWORK
To analyze large amounts of traffic in real-time, network-
wide telemetry systems need to reduce the workload on the
stream processor. Concerto proposes a cooperative query

execution model that reduces the stream processor’s work-
load under the constraints of query requirements, switch
hardware, and routing. Results on real-world trace show that
by splitting queries to multiple switches, Concerto reduces
the stream processor’s workload by as much as 19×, and
achieves an error rate of 104× lower than existing systems.

For future work, we plan to add timestamp support, which
will enable Concerto to perform queries such as high latency
detection [26]. Adding timestamp support requires redesign-
ing the interface. Besides, we are also trying to make the
query analysis more powerful by finding common parts of
subqueries to reduce resource consumption.

ACKNOWLEDGEMENT
We would like to show great appreciation to our shepherd
Qun Huang and anonymous reviewers for their feedback.
This work is supported in part by the National Natural Sci-
ence Foundation of China (NSFC) Grant 61532001 and gift
funds from Huawei, Ant Financial, Nanjing Turing AI Insti-
tute, and the Zhongguancun Haihua Institute for Frontier
Information Technology.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer
Rexford, and David Walker. 2016. SNAP: Stateful Network-Wide Ab-
stractions for Packet Processing. In Proceedings of the 2016 ACM SIG-
COMM Conference. Association for Computing Machinery, 29–43.

[3] Burton H Bloom. 1970. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[4] Kevin Borders, Jonathan Springer, and Matthew Burnside. 2012.
Chimera: A Declarative Language for Streaming Network Traffic Anal-
ysis. In Proceedings of the 21st USENIX Conference on Security Sympo-
sium. USENIX Association, 19.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 99–110.

[7] Cisco. 2020. NetFlow. https://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios-netflow/index.html.

120

https://www.tensorflow.org/
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

APSys ’20, August 24–25, 2020, Tsukuba, Japan Yiran Li, Kevin Gao, Xin Jin, and Wei Xu

[8] Graham Cormode and Shan Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75.

[9] Center for Applied Internet Data Analysis (CAIDA). 2019. The CAIDA
UCSD Anonymized Internet Traces - 201901. https://www.caida.org/
data/passive/passive_dataset.xml.

[10] The Apache Software Foundation. 2020. Apache Flink. https://flink.
apache.org/.

[11] The Apache Software Foundation. 2020. Apache Spark. https://spark.
apache.org/.

[12] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming
network telemetry. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, Association for
Computing Machinery, 357–371.

[13] LLC Gurobi Optimization. 2020. Gurobi Optimizer Reference Manual.
http://www.gurobi.com

[14] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018.
Network-Wide Heavy Hitter Detection with Commodity Switches.
In Proceedings of the Symposium on SDN Research. Association for
Computing Machinery, Article 8, 7 pages.

[15] Qun Huang, Patrick P. C. Lee, and Yungang Bao. 2018. Sketchlearn:
Relieving User Burdens in Approximate Measurement with Automated
Statistical Inference. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. Association for Com-
puting Machinery, 576–590.

[16] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019.
QPipe: Quantiles Sketch Fully in the Data Plane. In Proceedings of the
15th International Conference on Emerging Networking Experiments And
Technologies. Association for Computing Machinery, 285–291.

[17] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo:
Distributed Monitoring and Diagnosis Stack for High-speed Networks.
In Proceedings of the 16th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 421–436.

[18] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. 2011. The internet topology zoo. IEEE Journal on
Selected Areas in Communications 29, 9 (2011), 1765–1775.

[19] Yuliang Li, RuiMiao, Changhoon Kim, andMinlan Yu. 2016. FlowRadar:
A Better NetFlow for Data Centers. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation. USENIX
Association, 311–324.

[20] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Ro-
bust and general sketch-based monitoring in software switches. In
Proceedings of the ACM Special Interest Group on Data Communication.
Association for Computing Machinery, 334–350.

[21] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of the 2016
ACM SIGCOMM Conference. Association for Computing Machinery,
101–114.

[22] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2014. DREAM: Dynamic Resource Allocation for Software-Defined
Measurement. In Proceedings of the 2014 ACM Conference on SIGCOMM.
Association for Computing Machinery, 419–430.

[23] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2015. SCREAM: Sketch Resource Allocation for Software-Defined
Measurement. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. Association for Computing
Machinery, Article 14, 13 pages.

[24] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2016. Trumpet: Timely and Precise Triggers in Data Centers. In Proceed-
ings of the 2016 ACM SIGCOMMConference. Association for Computing
Machinery, 129–143.

[25] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and
David Walker. 2016. Compiling Path Queries. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation.
USENIX Association, 207–222.

[26] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-Directed Hardware Design for
Network Performance Monitoring. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. Association
for Computing Machinery, 85–98.

[27] Barefoot Networks. 2020. Tofino. https://www.barefootnetworks.com/
products/brief-tofino.

[28] Vern Paxson. 1999. Bro: a system for detecting network intruders in
real-time. Computer networks 31, 23-24 (1999), 2435–2463.

[29] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,Wes Felter, Kanak
Agarwal, John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-
scale monitoring and control for commodity networks. ACM SIG-
COMM Computer Communication Review 44, 4 (2014), 407–418.

[30] Vyas Sekar, Michael K Reiter, and Hui Zhang. 2010. Revisiting the case
for a minimalist approach for network flow monitoring. In Proceedings
of the 10th ACM SIGCOMM conference on Internet measurement. ACM,
328–341.

[31] sFlow.org. 2020. sFlow. https://sflow.org/.
[32] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S.

Muthukrishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection
Entirely in the Data Plane. In Proceedings of the Symposium on SDN
Research. Association for Computing Machinery, 164–176.

[33] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simpli-
fying Datacenter Network Debugging with Pathdump. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. USENIX Association, 233–248.

[34] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive
and Fast Network-Wide Measurements. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication.
Association for Computing Machinery, 561–575.

[35] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang,
Karl Deng, and Lihua Yuan. 2019. DShark: A General, Easy to Program
and Scalable Framework for Analyzing in-Network Packet Traces.
In Proceedings of the 16th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 207–220.

[36] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic
Measurement with OpenSketch. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation. USENIX
Association, 29–42.

[37] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2011. ProgME:
towards programmable networkmeasurement. IEEE/ACMTransactions
on Networking 19, 1 (2011), 115–128.

[38] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and
Boon Thau Loo. 2017. Quantitative Network Monitoring with NetQRE.
In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. Association for Computing Machinery, 99–112.

[39] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul
Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al.
2015. Packet-level telemetry in large datacenter networks. In ACM
SIGCOMM Computer Communication Review, Vol. 45. ACM, 479–491.

121

https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://flink.apache.org/
https://flink.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://www.gurobi.com
https://www.barefootnetworks.com/products/brief-tofino
https://www.barefootnetworks.com/products/brief-tofino
https://sflow.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Concerto Design
	3.1 Tuple Reduction Using Switches
	3.2 Cooperative Query Execution
	3.3 Automatic Query Planning
	3.4 Case Study: DDoS Detection

	4 Preliminary Evaluation
	4.1 Evaluation Setup
	4.2 Performance of Different Queries
	4.3 Robustness on Parameters
	4.4 Scalability

	5 Conclusion and Future Work
	References

