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Network Telemetry Provides Useful Status Knowledge
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Traffic Traffic

Executing at SP:        
√General Processing
× Scalability Problem

Executing at PISA Switch
√Real-Time Processing
× Limited Stages & Memory

Executing Location: Stream Processor vs. PISA Switch
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Different Switches Play Different Roles
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Using Switches Independently Is Insufficient
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1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip ))

3 .distinct (( sip , dip ) => (sip , dip ))

4 .map ((_, dip ) => (dip ,1))

5 .scan (( dip ,_) => dip , sum )

6 .filter (( dip , count ) => count ==T)

7 .map (( dip , count ) => dip )
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Using Switches Independently Is Insufficient (Cont.)
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Concerto: Cooperative Network-Wide Telemetry

• Challenge
• Splitting queries among switches while meeting resource & network constraints

• Cooperative query execution model
• Splitting query to multiple PISA switches
• Each switch processes tuples locally
• Various operations on different switches
• Best-effort tuple processing

• Automatic query placement
• Analyzing query restrictions from AST
• Formulating query placement as MIP

• Result
• Reduce the stream processor’s workload by up to 19 ×
• Achieve 104 × lower error rate with the same workload
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Cooperative Query Execution Model
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Query Execution on Switches

9

S1

S2 Stage 1

06 07

05 05 05

05

04

Parser

07

05

Deparser

PHV PHVPkt Pkt

Four-Stage PISA Switch

07:map06:filter

05:scanSubquery 1:

Subquery 2:

Mem. ALU

Stage

Stage 2 Stage 3 Stage 4

Like Bloom Filter

Only Based on Phase



Concerto Puts More Operations on Switches

• Switch hardware
• 4 stages

• 0.5 Mb of registers at each stage

• Results
• Stateless filtering: 2.1 × 106

• Independent stateful: 1.4 × 106

• Concerto: 86
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1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip ))

3 .distinct (( sip , dip ) => (sip , dip ))

4 .map ((_, dip ) => (dip ,1))

5 .scan (( dip ,_) => dip , sum )

6 .filter (( dip , count ) => count ==T)

7 .map (( dip , count ) => dip )
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Flow
# Tuples # Stages

t1, t2 t3, t4 t5 t6, t7 d3 d5
f1 442628 50034 1033 25 3 3
f2 1383594 113584 1739 36 4 3
f3 307941 8874 2194 25 3 3
f1+f2 1826222 163618 2772 61 5 3
f2+f3 1691535 122458 3933 61 4 4
f1+f2+f3 2134163 172492 4966 86 5 4



Evaluation Setup

• Questions: workload reduction, error rate guarantee, scalability

• Topology

• CAIDA trace: captured at a backbone ISP link from New York to San Paulo

• Compared systems
• Stateless: Everflow, DREAM

• EdgeAll: Sonata

• AnyAggre: OpenSketch, UnivMon, Marple

• Metric: # tuples to the stream processor (same as Sonata)
11

Topology # Sites # Links

Claranet 15 018

ATT North America 25 056

Cesnet-10 52 063

OTEGlobe 93 103

ATT North America



Concerto Reduces SP’s Workload on Various Queries
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Concerto Achieves Much Lower Error Rate

13

Error Rate Requirement
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Concerto Scales Well
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Conclusion

• We propose a cooperative query execution model
• Mimics network routing, each switch processes tuples locally

• Independent of the underlying routing method

• Applies to arbitrary topology

• We provide a method to automatically compile queries to PISA switches
• Analyzes the query placement requirement from AST

• Formulates and optimizes query placement on switches using MIP

• We show that the cooperative query execution of Concerto is effective
• Reduces the stream processor’s workload by as much as 19 times

• Achieves an error rate of 104 times lower than state-of-the-art systems
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