
Concerto: Cooperative Network-Wide
Telemetry with Controllable Error Rate

Yiran Li Kevin Gao Xin Jin Wei Xu

Network Telemetry Provides Useful Status Knowledge

2

Query Interface

Telemetry System Core
Switch Config Telemetry Tuples

Switch

DDoS Det. New TCP Port Scan
Expressive & High
Fidelity Operators

Operates Packets
of Whole Network
in Real-Time

Traffic Traffic

Executing at SP:
√General Processing
× Scalability Problem

Executing at PISA Switch
√Real-Time Processing
× Limited Stages & Memory

Executing Location: Stream Processor vs. PISA Switch

3

Protocol Independent Switch Architecture

P
arser

D
ep

arser
Stage 1

Mem. ALU

Stage 2

Mem. ALU

DDoS Det.

Network Telemetry System

Task Assignment
SP vs. PISA Switch

Different Switches Play Different Roles

4

Cluster Manager

Driver Program

Worker

ExecutorExecutorExecutorExecutor

Worker

ExecutorExecutorExecutorExecutor

Worker

ExecutorExecutorExecutorExecutor

Big Data Frameworks

Dynamically Assign
to Available Executor

Identical Workers, Executors

S1

S2

S3

SP

Query

Switches with Different Roles

Statically Assign to
Specific Switch

Telemetry Systems

vs.

Core

Using Switches Independently Is Insufficient

5

S1

S2

S3

SRC
Edge

DST
Edge

SP

SRC

1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip))

3 .distinct ((sip , dip) => (sip , dip))

4 .map ((_, dip) => (dip ,1))

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip))

3 .distinct ((sip , dip) => (sip , dip))

4 .map ((_, dip) => (dip ,1))

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

DDoS Detection Query

Unused

Unused

Splitting Query Between SP
& Edge Switch Dynamically

Using Switches Independently Is Insufficient (Cont.)

6

S1

S2

S3

SRC
Edge

DST
Edge

SP

SRC

1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip))

3 .distinct ((sip , dip) => (sip , dip))

4 .map ((_, dip) => (dip ,1))

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

Static Splitting & Using
Switches Independently

Duplicated

Unused

Wasted1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip))

3 .distinct ((sip , dip) => (sip , dip))

4 .map ((_, dip) => (dip ,1))

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

DDoS Detection Query

Concerto: Cooperative Network-Wide Telemetry

• Challenge
• Splitting queries among switches while meeting resource & network constraints

• Cooperative query execution model
• Splitting query to multiple PISA switches
• Each switch processes tuples locally
• Various operations on different switches
• Best-effort tuple processing

• Automatic query placement
• Analyzing query restrictions from AST
• Formulating query placement as MIP

• Result
• Reduce the stream processor’s workload by up to 19 ×
• Achieve 104 × lower error rate with the same workload

7

SP
Config

Stream
Processor

Query

Concerto Core

Q
1

Q
3

Q
2

Switch Config Intermediate Tuples

Result

Switch

Cooperative Query Execution Model

8

S1

1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip))

3 .distinct ((sip , dip) => (sip , dip))

4 .map ((_, dip) => (dip ,1))

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

1→3

3→5

5→7

S2

S3

Phase 7
Phase 4 SP

4→7

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

Query Execution on Switches

9

S1

S2 Stage 1

06 07

05 05 05

05

04

Parser

07

05

Deparser

PHV PHVPkt Pkt

Four-Stage PISA Switch

07:map06:filter

05:scanSubquery 1:

Subquery 2:

Mem. ALU

Stage

Stage 2 Stage 3 Stage 4

Like Bloom Filter

Only Based on Phase

Concerto Puts More Operations on Switches

• Switch hardware
• 4 stages

• 0.5 Mb of registers at each stage

• Results
• Stateless filtering: 2.1 × 106

• Independent stateful: 1.4 × 106

• Concerto: 86

10

1 packetStream

2 .map (p => (p.ip.sip ,p.ip. dip))

3 .distinct ((sip , dip) => (sip , dip))

4 .map ((_, dip) => (dip ,1))

5 .scan ((dip ,_) => dip , sum)

6 .filter ((dip , count) => count ==T)

7 .map ((dip , count) => dip)

f1: S1 → S6

S1

2 3 33

S2

2 - - -

S6

5 5 56

S7

5 5 56
S3

3 3 33

S5

4 - - -f2: S2 → S6

f3: S2 → S7
Stream

Processor

7

Result
Tuples

S4

4 - - -

Flow
Tuples # Stages

t1, t2 t3, t4 t5 t6, t7 d3 d5
f1 442628 50034 1033 25 3 3
f2 1383594 113584 1739 36 4 3
f3 307941 8874 2194 25 3 3
f1+f2 1826222 163618 2772 61 5 3
f2+f3 1691535 122458 3933 61 4 4
f1+f2+f3 2134163 172492 4966 86 5 4

Evaluation Setup

• Questions: workload reduction, error rate guarantee, scalability

• Topology

• CAIDA trace: captured at a backbone ISP link from New York to San Paulo

• Compared systems
• Stateless: Everflow, DREAM

• EdgeAll: Sonata

• AnyAggre: OpenSketch, UnivMon, Marple

• Metric: # tuples to the stream processor (same as Sonata)
11

Topology # Sites # Links

Claranet 15 018

ATT North America 25 056

Cesnet-10 52 063

OTEGlobe 93 103

ATT North America

Concerto Reduces SP’s Workload on Various Queries

12

SSpreader New TCP Port Scan DDoS In. Flows SSH Brute Slowloris

108

106

104

102

#
Tu

p
le

s

Single-Query Performance on Various Queries

Stateless EdgeAll AnyAggre Concerto

BetterLog-
Scaled

Concerto Achieves Much Lower Error Rate

13

Error Rate Requirement

107

106

105

104

#
Tu

p
le

s

101 10-1 10-3

10-5
Error Rate (%)
One Query

108

107

106

105

104

101 100

10-1
Error Rate (%)
Four Queries

Stateless EdgeAll AnyAggre Concerto

104

Concerto Scales Well

14

One Query

104

102

100

N
o

rm
al

iz
ed

 #
Tu

p
le

s

Normalized Workloads on Various Topologies

Four Queries

104

102

100

Two Queries

103

100

Stateless EdgeAll AnyAggre Concerto

Similar Similar Similar

Different Different
Normalized
To Concerto

Conclusion

• We propose a cooperative query execution model
• Mimics network routing, each switch processes tuples locally

• Independent of the underlying routing method

• Applies to arbitrary topology

• We provide a method to automatically compile queries to PISA switches
• Analyzes the query placement requirement from AST

• Formulates and optimizes query placement on switches using MIP

• We show that the cooperative query execution of Concerto is effective
• Reduces the stream processor’s workload by as much as 19 times

• Achieves an error rate of 104 times lower than state-of-the-art systems

15

Thanks!
Q&A

