Concerto: Cooperative Network-Wide
Telemetry with Controllable Error Rate
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Network Telemetry Provides Useful Status Knowledge
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Executing Location: Stream Processor vs. PISA Switch

Task Assignment
(DDOS Det. ) ? SP vs. PISA Switch
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Different Switches Play Different Roles

Big Data Frameworks
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Using Switches Independently Is Insufficient

Splitting Query Between SP
& Edge Switch Dynamically

(., dip ) => (dip ,1))
((dip,.) =>dip, sum)
filter (( dip, count ) => count ==T)

.map

.SCan

~N o o &~

.map ((dip, count) => dip)

packetStream

.map (p => (p.ip.sip ,p.ip. dip ))
distinct (( sip, dip ) => (sip, dip))
.map ((_, dip) => (dip ,1))

.scan ((dip,_) => dip, sum)

filter ((dip, count ) => count ==T)

.map ((dip, count ) => dip)
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DDoS Detec;tion Query
.map (p => (p.ip.sip ,p.ip. dip))

3 | .distinct (( sip , dip ) => (sip , dip ) S,




Using Switches Independently Is Insufficient (Cont.)

Static Splitting & Using
Switches Independently

(., dip ) => (dip ,1))
((dip,.) =>dip, sum)
filter (( dip, count ) => count ==T)

.map
.scan
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.map ((dip, count) => dip)

packetStream

.map (p => (p.ip.sip ,p.ip. dip ))
distinct (( sip, dip ) => (sip, dip))
.map ((_, dip) => (dip ,1))

.scan ((dip,_) => dip, sum)

filter ((dip, count ) => count ==T)
.map ((dip, count ) => dip)

DDoS Detec;tion Query

Duplicated
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1 | packetStream
2 | .map (p => (p.ip.sip ,p.ip. dip))

3 | .distinct (( sip, dip ) => (sip, dip))




Concerto: Cooperative Network-Wide Telemetry

* Challenge
* Splitting queries among switches while meeting resource & network constraints
* Cooperative query execution model ey (O () (O) €
* Splitting query to multiple PISA switches / @ @ @ Result
* Each switch processes tuples locally o Stream
* Various operations on different switches Concerto Core Contid processor

* Best-effort tuple processing

* Result
* Reduce the stream processor’'s workload by up to 19 X
* Achieve 10* X lower error rate with the same workload



Cooperative Query Execution Model

6 | .filter (( dip , count ) => count ==T)
71 .map ((dip, count ) =>dip)

l
1| packetStream ( \)‘
2| .map (p => (p.ip.sip ,p.ip. dip )) v_ ! Pha;e~ - = _
3| .distinct (( sip , dip ) => (sip , dip )) -

Phase 4 Sp

5.scan ((dip, ) =>dip, sum)
6 | .filter (( dip, count) => count ==T)
7 | .map ((dip, count ) =>dip)

4 .map ((_, dip) => (dip ,1))

5|.scan ((dip, ) => dip, sum)




Query Execution on Switches
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Concerto Puts More Operations on Switches

* Switch hardware
* 4 stages
* 0.5 Mb of registers at each stage

* Results
* Stateless filtering: 2.1 x 10°
* Independent stateful: 1.4 x 10°
* Concerto: 86

1 | packetStream
2 | .map (p => (p.ip.sip ,p.ip. dip ))
* 3 | .distinct ((sip, dip) => (sip, dip))
@ $95U|t 4 | .map ((_, dip) => (dip ,1))
* uples | ¢ | ccan((dip.) => dip., sum)
Pfézeeig;r 6 | .filter (( dip, count) => count ==T)
S7 7 | .map ((dip, count) =>dip)
Flow # Tuples # Stages
t1, 12 t3,t4 t5 t6,t7 d3 d5
fl 442628, 50034 1033 | 25 3 | 3
f2 1383594f 113584| 1/39 | 36 4 3
f3 307941 8874 2194 | 25 3 | 3
f1+12 1826222| 163618 2772 | 61 5 | 3
f2+13 1691535| 122458 3933 | 61 4 | 4
f1+f2+f3 2134163| 172492| 4966 | 86 5 4
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Evaluation Setup

* Questions: workload reduction, error rate guarantee, scalability

* Topology ATT North America
Topology # Sites  # Links
Claranet 15 18
ATT North America 25 56
Cesnet-10 52 63
OTEGlobe 93 103

* CAIDA trace: captured at a backbone ISP link from New York to San Paulo

* Compared systems
» Stateless: Everflow, DREAM
* EdgeAll: Sonata
* AnyAggre: OpenSketch, UnivMon, Marple

* Metric: # tuples to the stream processor (same as Sonata)



Concerto Reduces SP’'s Workload on Various Queries
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Concerto Achieves Much Lower Error Rate
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Concerto Scales Well

lIStateless MEdgeAll IAnyAggre [IConcerto
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Conclusion

* We propose a cooperative query execution model
* Mimics network routing, each switch processes tuples locally
* Independent of the underlying routing method
* Applies to arbitrary topology

* We provide a method to automatically compile queries to PISA switches
* Analyzes the query placement requirement from AST
* Formulates and optimizes query placement on switches using MIP

* We show that the cooperative query execution of Concerto Is effective
* Reduces the stream processor’s workload by as much as 19 times
* Achieves an error rate of 10* times lower than state-of-the-art systems
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