Concerto: Cooperative Network-Wide
Telemetry with Controllable Error Rate

Yiran LI Kevin Gao XinJin Wel Xu

..“\\\\\\\“.
& A . ’ '
~ ST, "
= & Z T (\
H * Fo TS, ."a * "
g3 fosr ez 9 Zz
AL o) = > -
Az e a3 & H
0% GszEaty & H
LA E & &
N2 Ut £ % o L
“. B A g\ T . h U . .
. ~1914- & singhua
'\\\\\\\\\s“. g u nlverSIty

UNIVERSITY

Network Telemetry Provides Useful Status Knowledge

Query Interface

/(DDOS Det.) (NewTCP) (Port Scan)
} s

Expressive & High
Fidelity Operators

Telemetry System Core
Operates Packets . . WV~
of Whole Network Switch COI S [e\/emez‘ry Tuples
iIn Real-Time \ - /I =
N7 O
s |
/

Switch .
S~ A

Executing Location: Stream Processor vs. PISA Switch

Task Assignment
(DDOS Det.) ? SP vs. PISA Switch

Executing at SP:
V General Processing —— SPQfK §g kafka

x Scalability Problem Streaming
Executing at PISA Switch
V Real-Time Processing
x Limited Stages & Memory p - -
Stage 1 Stage 2 -
: N 3 .
Traffic 7))) o Traffic
= o
Mem. ALU) | Mem. ALU, B

Protocol Independent Switch Architecture

Network Telemetry System

Different Switches Play Different Roles

Big Data Frameworks

(Driver Program)

Cluster Manager

r

Worker b

Executor

_

k"'=

a Worker b

Executor

_

k"'=

Dynamically Assign
to Available Executor

|\

Executor

_

Y

ldentical Workers, Executors

" Specific Switch

Telemetry Systems

(LQuey)

Core

Statically Assign to

Switches with Different Roles

Using Switches Independently Is Insufficient

Splitting Query Between SP
& Edge Switch Dynamically

(., dip) => (dip ,1))
((dip,.) =>dip, sum)
filter ((dip, count) => count ==T)

.map

.SCan

~N o o &~

.map ((dip, count) => dip)

packetStream

.map (p => (p.ip.sip ,p.ip. dip))
distinct ((sip, dip) => (sip, dip))
.map ((_, dip) => (dip ,1))

.scan ((dip,_) => dip, sum)

filter ((dip, count) => count ==T)

.map ((dip, count) => dip)
\ 1 | packetStream
5 _

Unused

~~~
—
—

~N oo o~ WON -

DDoS Detec;tion Query
.map (p => (p.ip.sip ,p.ip. dip))

3 | .distinct (( sip , dip ) => (sip , dip ) S,




Using Switches Independently Is Insufficient (Cont.)

Static Splitting & Using
Switches Independently

(., dip ) => (dip ,1))
((dip,.) =>dip, sum)
filter (( dip, count ) => count ==T)

.map
.scan

~N o o &~

.map ((dip, count) => dip)

packetStream

.map (p => (p.ip.sip ,p.ip. dip ))
distinct (( sip, dip ) => (sip, dip))
.map ((_, dip) => (dip ,1))

.scan ((dip,_) => dip, sum)

filter ((dip, count ) => count ==T)
.map ((dip, count ) => dip)

DDoS Detec;tion Query

Duplicated

~N oo o~ WON -

1 | packetStream
2 | .map (p => (p.ip.sip ,p.ip. dip))

3 | .distinct (( sip, dip ) => (sip, dip))




Concerto: Cooperative Network-Wide Telemetry

* Challenge
* Splitting queries among switches while meeting resource & network constraints
* Cooperative query execution model ey (O () (O) €
* Splitting query to multiple PISA switches / @ @ @ Result
* Each switch processes tuples locally o Stream
* Various operations on different switches Concerto Core Contid processor

* Best-effort tuple processing

* Result
* Reduce the stream processor’'s workload by up to 19 X
* Achieve 10* X lower error rate with the same workload



Cooperative Query Execution Model

6 | .filter (( dip , count ) => count ==T)
71 .map ((dip, count ) =>dip)

l
1| packetStream ( \)‘
2| .map (p => (p.ip.sip ,p.ip. dip )) v_ ! Pha;e~ - = _
3| .distinct (( sip , dip ) => (sip , dip )) -

Phase 4 Sp

5.scan ((dip, ) =>dip, sum)
6 | .filter (( dip, count) => count ==T)
7 | .map ((dip, count ) =>dip)

4 .map ((_, dip) => (dip ,1))

5|.scan ((dip, ) => dip, sum)




Query Execution on Switches

Like Bloom Filter f Stage A

Subquery 1: (05;scarD i
[

Subquery 2: @G:filtemw:map) —
=

\ Mem. ALUJ

4 PHV

I K- »[ 05

CYN === =
PR o [ o7 | rEEeE BT >0+
05

/ a:
/ ) 04 .......................... }.
@ Parser Stage 1 Stage 2 Stage 3 Stage 4 Deparser

1

Four-Stage PISA Switch

Pkt

Only Based on Phase



Concerto Puts More Operations on Switches

* Switch hardware
* 4 stages
* 0.5 Mb of registers at each stage

* Results
* Stateless filtering: 2.1 x 10°
* Independent stateful: 1.4 x 10°
* Concerto: 86

1 | packetStream
2 | .map (p => (p.ip.sip ,p.ip. dip ))
* 3 | .distinct ((sip, dip) => (sip, dip))
@ $95U|t 4 | .map ((_, dip) => (dip ,1))
* uples | ¢ | ccan((dip.) => dip., sum)
Pfézeeig;r 6 | .filter (( dip, count) => count ==T)
S7 7 | .map ((dip, count) =>dip)
Flow # Tuples # Stages
t1, 12 t3,t4 t5 t6,t7 d3 d5
fl 442628, 50034 1033 | 25 3 | 3
f2 1383594f 113584| 1/39 | 36 4 3
f3 307941 8874 2194 | 25 3 | 3
f1+12 1826222| 163618 2772 | 61 5 | 3
f2+13 1691535| 122458 3933 | 61 4 | 4
f1+f2+f3 2134163| 172492| 4966 | 86 5 4

10




Evaluation Setup

* Questions: workload reduction, error rate guarantee, scalability

* Topology ATT North America
Topology # Sites  # Links
Claranet 15 18
ATT North America 25 56
Cesnet-10 52 63
OTEGlobe 93 103

* CAIDA trace: captured at a backbone ISP link from New York to San Paulo

* Compared systems
» Stateless: Everflow, DREAM
* EdgeAll: Sonata
* AnyAggre: OpenSketch, UnivMon, Marple

* Metric: # tuples to the stream processor (same as Sonata)



Concerto Reduces SP’'s Workload on Various Queries

lIstateless IEdgeAll IAnyAggre BConcerto
108 |

s

104 |

—H
—H

— |

I

#Tuples
\

10 |

Log- SSpreader New TCP Port Scan  DDoS  In. Flows SSH Brute Slowloris Better

Scaled | | |
Single-Query Performance on Various Queries

12



Concerto Achieves Much Lower Error Rate

—e— Stateless —m—EdgeAll —e—AnyAggre —— Concerto

108 |
: s
107 ;
w | T
D 10° z
= 10° i
F* 105 — T
4 e
10 100 | 4
101 10-1 10-3 101 100
Error Rate (%) 1 Error Rate (%)
One Query Four Queries

Error Rate Requirement

13



Concerto Scales Well

lIStateless MEdgeAll IAnyAggre [IConcerto

Similar Similar Similar
S e N ~N - N N e 7 N
Sl PR ] ol DR | B
— i 103 i L l
§ 102 | * lh 102 |
C—E I |
C§> 100 L JﬂT JﬂT L‘T 100 | LU Th J-m } 100 | J]H lllﬂ J-Jﬂ J-llﬁ
Z T T T T T ] ] ' ) ' .
& W ev@ oo N W @v@ o o s @y@ oo
(’J\ré( P:\ C@%(\ O’\?/ (’J\rd{ « 66%(\ O’ﬂ((/ G\a‘ P:\ C}e%(\ O’\?/

Different |
Normalized One Query €, T\w0 Queries M Four Queries

fo Concerto Normalized Workloads on Various Topologies

14



Conclusion

* We propose a cooperative query execution model
* Mimics network routing, each switch processes tuples locally
* Independent of the underlying routing method
* Applies to arbitrary topology

* We provide a method to automatically compile queries to PISA switches
* Analyzes the query placement requirement from AST
* Formulates and optimizes query placement on switches using MIP

* We show that the cooperative query execution of Concerto Is effective
* Reduces the stream processor’s workload by as much as 19 times
* Achieves an error rate of 10* times lower than state-of-the-art systems



Thanks!
Q&A



