
DataLab: A Version Data Management and Analytics
System

Yang Zhang
Institute of Interdisciplinary

Information Sciences,
Tsinghua University
zhangyang14@

mails.tsinghua.edu.cn

Fangzhou Xu
Institute of Interdisciplinary

Information Sciences,
Tsinghua University

xfz@mails.tsinghua.edu.cn

Erwin Frise
Berkeley Drosophila Genome

Project, Environmental,
Genomics and Systems

Biology Division,
Lawrence Berkeley National

Laboratory, Berkeley
erwin@fruitfly.org

Siqi Wu
Department of Statistics,
University of California,

Berkeley
siqi@stat.berkeley.edu

Bin Yu
Department of Statistics &

EECS, University of California,
Berkeley

binyu@stat.berkeley.edu

Wei Xu
Institute of Interdisciplinary

Information Sciences,
Tsinghua University

weixu@mail.tsinghua.edu.cn

ABSTRACT
One challenge in big data analytics is the lack of tools to
manage the complex interactions among code, data and pa-
rameters, especially in the common situation where all these
factors can change a lot. We present our preliminary expe-
rience with DataLab, a system we build to manage the big
data workflow. DataLab improves big data analytical work-
flow in several novel ways. 1) DataLab manages the revision
of both code and data in a coherent system, and includes
a distributed code execution engine to run users’ code; 2)
DataLab keeps track of all the data analytics results in a
data work flow graph, and is able to compare the code / re-
sults between any two versions, making it easier for users to
intuitively see the results of their code change; 3) DataLab
provides an efficient data management system to separate
data from their metadata, allowing efficient preprocessing
filters; and 4) DataLab provides a common API so people
can build different applications on top of it. We also present
our experience of applying a DataLab prototype in a real
bioinformatics application.

1. INTRODUCTION
People have generated large volumes of data in recent

years. Although ”data scientist” has become a hot posi-
tion in many companies, there are few tools to help their
workflow. As the data science code becomes more complex,
many data analysts start to adopt code revision tools such
as Git. However, the demand of data science goes beyond
what Git can provide.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BIGDSE’16, May 16 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4152-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896825.2896830

First, data science is data-centric, and a dataset can go
through multiple stages of cleaning, labeling and other pre-
processing steps. There might be different versions of each
step. The data scientists need to track the process and the
revisions. A common (but bad) practice is to make redun-
dant copies of the datasets and get confused by meaning-
less file names such as data.csv, data-version1.csv, data-
final-version.csv, data-last-version.csv. Our experi-
ence shows that using the wrong datasets or wrong versions
has been a common source of bugs.

Second, there are many parameters in a machine learning
model, and tuning them to fit the data is a common task in
data science. The huge number of parameters such as learn-
ing rate, initial values, regularization values and so forth
often confuses people. As a result, they can easily lose the
intuition of significance in these parameters to the result.

Third, when the datasets get larger, it is often necessary
for data scientists to setup a distributed platform, and redo
the entire experiments management process in a distributed
system. They are likely to adopt many third party packages
and tools in a data science project but unfortunately it is
usually tedious to configure these packages on machines with
different hardware/software environments.

Last but not least, it is difficult for data scientists to share
their experience about the datasets. Of course they can
share their code and sometimes the analysis results, but it
is hard for other people without a deep understanding of
the particular dataset to take advantage of the code or the
results as they are highly tailored to the data.

The MIT DataHub [1] [2] project supports dataset revi-
sion control, but it does not manage the entire data analytics
development cycle. Thus, it is more of a database manage-
ment tool than a software engineering tool. On the other
hand, the Harvard Dataverse is a data publishing and shar-
ing platform but it lacks data version control and analytics.

In this paper, we present our early experience on DataLab,
a new tool that integrates code, data and execution manage-
ment into a single system. DataLab provides a simple API
so that different types of users can build data specific tools

and interfaces on top of it. There are three key ideas in
DataLab:

1) DataLab keeps both data and code versioned. Each
version of the code has the corresponding version of data.
The only way to modify a dataset is through executing some
code (and we encode the rare events of manually editing on
the data directly as a special type of modification code).
With this design, the users can inherit experiences from code
revision management and extend it to data management in
a natural way.

2) For efficiency reasons, DataLab automatically stores
and manages data and metadata separately. Metadata are
fields that are commonly used by the users when they fil-
ter or display the datasets. For example in ImageNet [6],
raw data are the image files and metadata contains the cor-
responding file name and classification labels. During the
preprocessing steps, users often perform selections based on
the metadata, and this organization provides efficient se-
lection operations. The data and metadata are linked by
unique IDs.

3) DataLab includes data processing engines not just as a
user convenience tool, but also it enables automatical recre-
ation of datasets that is no longer available in the storage.
DataLab keeps all versioned data and codes as a directed
acyclic graph (DAG), which we call data work flow (DWF),
to remember the dependency among these entities. In this
way, we can reproduce any deterministic executions at any
time as long as we have the raw data and the code.

There are five tightly coupled key components in Data-
Lab. They work together to solve the four problems above.
The data manager manages the data and metadata. The
code manager extends the GitLab [8] system and connects
codes with the datasets using unique submitting IDs. The
execution engine integrates multiple processing backends,
including both single node engines like R or Python and
distributed frameworks like Spark [24]. The user interface
module provides comparison tools on both code and data,
as well as an online editor. Our experience shows that the
interface module is essential for small edits to the code, es-
pecially for non-technical users. Finally, the system core
maintains the data work flow graph model and schedules all
the dataset caching / executions. We provide an intuitive
API to access all the DataLab functionalities.

We have implemented an early prototype of DataLab and
developed a bioinformatics application with real users based
on the DataLab API. The prototype supports multiple data
formats with versioning and provides both single machine
and Spark-based execution engines. With DataLab, we solved
many experiment and data management problems our users
face. We describe the early experience developing these
functionalities in Section 3.

2. DATA MODEL
We introduce the DataLab data model in this section. We

first describe the logical data model that presents the user-
facing data structures, including code, data and execution
records. Then we discuss about how we link all these data
together using a data work flow graph, and it is the core
functionality for DataLab system. Finally we briefly intro-
duce how we manage the logical data structures efficiently on
a distributed cluster with a combination of revision control
systems, NoSQL databases and distributed file systems.

2.1 Logical data model
DataLab manages three types of ”data”, the dataset under

study, the analytics code and the system execution records.
We first introduce the data model from a user point of view
and then we discuss how we implement the physical model
efficiently in Section III.

Logical Dataset.
From a user’s point of view, the data under study are or-

ganized as semistructured data tables. The users can issue
queries over the table. The users can only query the meta-
data fields. The result of the query is either a data table
containing only the metadata fields, or a data file with both
the metadata fields and the raw data (such as the images).

We allow the users to add or modify the metadata fields.
For example, when a user generates a new set of labels for
each image in ImageNet [6] either using a machine learning
algorithm or manual labelling, she can choose to introduce
a new field with her own label, or modify the existing field
containing the label. All the user-created metadata fields
are treated the same as the first class citizen and can be
queried in the same way as all other fields. The new field is
versioned, and all versions are always accessible to the users.
The users can specify which version of the fields they want
to query.

Users can create new datasets too. Users can also name a
new dataset. This is a common practice for data preprocess-
ing tasks - the users can preprocess the dataset into a new
one and start more analytics from the preprocessing results.
In this case, a convenient name for the resulting dataset
can be handy. DataLab remembers how each dataset is de-
rived from other datasets and code, and we will discuss more
about the dependency tracking in the next subsection.

Code.
In DataLab, users’ code is the key to the entire data ana-

lytics process. Users’ code includes two parts, the program
texts and the configuration parameters. We adapt GitLab
to manage both so users can get a single consistent interface.
We use the Git commit ID as the unique IDs for each version
of both the code and the data. We extend the GitLab API
allowing users to compute the resulting dataset by executing
the code.

The current configuration file is a key-value storage that is
available for both DataLab system and the user’s program.
The users can specify the input dataset, the output dataset
/ field of the program, as well as which programs / platforms
to run on. The DataLab system takes these parameters and
runs the program.

The users can also specify some variables in the configura-
tion files for their own code, such as various parameters for
machine learning algorithms. These parameters are made
available in their programs as if they are passed in through
the command line. Forcing users to specify the parame-
ters in a configuration file rather than real command line
helps DataLab to keep track of the entire analytics process,
minimizing chances that users make untracked parameter
changes.

System Execution Records.
Internally in DataLab, we keep records for each step of

the users’ code submissions and executions. After receiving

user’s submission request and executing user code on the
DataLab system, we automatically store the commit ID, the
commit time, execution logs and so on. These execution
records are essential to maintain the data work flow we will
discuss next.

2.2 Data Work Flow
To maintain the version hierarchy of datasets, we proposed

the concept of data work flow (DWF) as the logical relations
behind DataLab system, with which datasets are connected
to each other based on their derivation dependencies. DWF
is the core of DataLab and the foundation of reproducible
data management.

In a DWF, a node represents a particular version of a
dataset. A directed edge connects two nodes if one dataset
is derived from the other. The labels on the edges show
the code version that is used in the experiment. Figure 1
provides an example of the DWF.

It is obvious that the DWF graph is a directed acyclic
graph (DAG). Figure 1 shows two common structures in
DWF: one-to-one and many-to-one.

Figure 1: An example of DWF graph

In a one-to-one structure, a dataset is derived from a sin-
gle parent dataset. For example, users can create an anno-
tated dataset and link it back to the original dataset, and
they can also generate new datasets for further research and
share them with other users. Many-to-one structure repre-
sents the case that one dataset is derived from two or more
parent datasets. Many operations like merging data from
two spreadsheets into a single table.

We implement these structures by adding a parent prop-
erty to the metadata of the new generated dataset so that
when we process one dataset we can find the parent dataset
by reading this property directly. Also, we implement func-
tions to compare the differences between a dataset or pro-
grams to its parent or child dataset. This feature helps users
to easily see the consequences of their code changes.

The DWF graph serves two purposes: 1) it is used to
allow the system to schedule the evaluations / re-evaluations
of certain datasets, and 2) it allows users to manage their
entire experiment history, including knowing which version
of the dataset generates which results.

DWF is similar to the concept of data dependency graph
that is common in many systems. For example, Spark uses
a directed acyclic graph to manage Resilient Distributed
Datasets (RDD) [23] while Dryad [9] uses the dependency
graph to organize individual partitions and steps for dis-

tributed computing. We use the graph differently in that
DWF keeps track of the execution history and versions of
the datasets, rather than the intermediate execution states.

2.3 Physical data model
It is non-trivial to implement the logical data model ef-

ficiently, as naively we have to keep all existing versions in
the storage and manage a large number of datasets. Here we
introduce the general ideas of our physical data structures.

Physical Datasets.
First, we separate the storage of data and metadata. For

example, the former can be a bunch of image files, video
files or system log files, which are usually too large to store
in a database, and thus we store them in a distributed file
system like Hadoop File System (HDFS) [18]. With mod-
ern distributed file systems, we can sequentially scan on the
datasets efficiently but it is impossible to perform efficient
random access into a particular data point. To solve the
problem, we store the labels and annotations of each image,
such as file name, size and content descriptions separately in
a NoSQL database to accelerate queries. We link the data
and metadata with a system-generated ID.

As we keep versioned data for each field, a new dataset
is just a collection of fields with an explicit dataset name
and version number. Currently we use MongoDB to store
all the data, and as an on-going work, we are migrating to a
column-oriented database to further improve performance.

Managing code revisions and the data work flow graph.

In the physical point of view, users’ personal information,
submitting records and corresponding parameters are stored
in our Database system.

We store all users’ codes in a GitLab server, and we use
the GitLab API to communicate with it. All the execu-
tion records, except for logs from the users’ program, are
imported back into the MongoDB as a special system table.
The execution engine framework is mapped to users’ project
directories to simplify the path management for each user.
We are migrating to a container-based deployment manage-
ment system [14] as a future work.

We keep the DWF graph as a separate background task.
As we keep track of all execution records, we are able to con-
struct the DWF, which helps users to find out data prove-
nance and understand their data better.

3. SYSTEM IMPLEMENTATION AND APIS
In this section, we present the physical architecture design

and the details on how DataLab works internally.

3.1 System Architecture
Figure 2 shows the system architecture design of DataLab

system that consists of the following five components.

The data manager.
manages the data and the metadata. For efficiency rea-

sons, although logically we treat data and metadata as a
single entity, physically we separate the storage as we de-
scribe in Section 2.

The code manager.

Figure 2: System overview

extends the GitLab system and connects codes with the
datasets using unique submitting IDs. The code manager
also manages a configuration file in which the users can spec-
ify the source / target datasets as well as various configura-
tion parameters. The code manager triggers data processing
execution and automatically reports the version of code /
data being used.

The execution engine.
supports multiple execution backends, which can be one

single machine or a cluster. Currently we support Python
and R for single node, and Spark for clusters. The execution
engine is a necessary part of the system for two reasons: 1)
it is convenient for the users as setting up the distributed
infrastructure would be tedious; and 2) we need automatic
execution to link the code with its resulting datasets. In
other words, executing the code within the DataLab system
allows us to recover lost/deleted intermediate datasets as
long as we have the raw data and the code itself.

The user interface module.
It is a common scenario that users analyze some datasets

and make reports about the data, such as calculating pre-
cision and recall in a natural language processing task, or
evaluating the daily investment returns in a stock market
back-testing task. DataLab system is capable of comparing
any pair of these analysis histories and displays the changes
on codes or parameters, which lead to changes in results.
This UI design helps users obtain best algorithm and pa-
rameter settings.

The system core.
It is the key component in DataLab that manages the

relationships of all the executions and versions. It is respon-
sible for processing user requests and managing resources for
both computing and storage tasks.

We build our DataLab system based on open source projects
including GitLab, MongoDB, Hadoop [22] and Spark. We
reuse the UI of GitLab for code editing and DataHub for
data display. DataLab makes full use of advantages of these
projects and integrated them to provide stable services for
users to manage their data and codes for data science tasks.

3.2 A typical workflow in DataLab

Data import.
Importing data is a prerequisite step for system core to

engage computing. It also tells system core how to extract
metadata from the raw data. For example, if user has a
large set of images or unstructured logs, she needs to define
the rule about how these data files are organized.

Code submission and execution.
Whenever a user pushes her code to GitLab server, the

GitLab server notifies the system core through a web hook.
System core pushes user requests to its queue, and at the
same time, it pops the request at the head of the queue and
handles it. System core copies the code in this request to the
execution engine, which runs it with the user specified pa-
rameters and inputs. After the task is finished, the system
core records this request, including the commit ID of this
push operation of GitLab server, user specified parameters
and any other application specific information. In occasions
when runs of experiments generate new datasets, system
core also records the relations between these datasets, (de-
tails in the next section). Notice that we copy only code,
not data in the entire process.

Reading the results.
Finally, through the system core, a user can check the

records of all her datasets and the entire execution. It would
be very helpful for researchers to find the most suitable pa-
rameter value if they can compare all the results that she ob-
tains alongside changes of parameters. Further more, users
can share their datasets and analytic code with others by
simply sharing the name of dataset and the commit ID.

3.3 Core APIs
DataLab provides API extending a normal code revision

control system like Git, and Table 1 show the most impor-
tant ones. Users are also able to extend APIs with their own
codes, which will be described in Section 4 in detail.

4. CASE STUDY
We have tested a DataLab prototype in a real-world bioin-

formatics case study, and we report our early experience
here.

4.1 Background of the application.
Many life science research projects depend on a vast amounts

of data. We worked with the Berkeley Drosophila Genome
Project [21] and the Department of Statistics at UC Berke-
ley to create a prototype application. The ultimate goal of
the project is to identify gene interaction networks during
development of the model organism Drosophila melanogaster
(fruit fly) to infer putative genes involved in human devel-
opmental diseases or cancer. The project team consists of a
group of biologists and statisticians.

The team has collected over 120,000 images showing spa-
tial gene expression patterns of Drosophila embryos at dif-
ferent development stages. The dataset is publicly available
at http://insitu.fruitfly.org. In an ongoing process, the team
has been mining these images to study interactions among
different genes. Co-occurrence of two genes at the same
spatial location indicates gene-gene interaction but spatial
patterns vary widely. They developed an analytics pipeline
consisting of multiple preprocessing steps including align-

Core APIs
name functionality input output
create create a project dataset name null
upload upload a dataset to a project file or directory name null
import import a dataset to the system file or directory name null
merge merge two dataset into one two dataset names null
diff check out the difference two dataset names spreadsheet
submit push codes to system and execute commit ID null

Table 1: Core APIs

ing, resizing and registration. After preprocessing, several
machine learning algorithms were applied to the dataset.

For example, to find common spatial regions in the gene
expression patterns, the team developed a Nonnegative Ma-
trix Factorization (NMF) algorithm to extract these regions,
called principle patterns, from the image dataset with soft-
ware package called SPAMS (SPArse Modeling Software)
[13].

We used DataLab to support the data analytics. We pro-
vided two execution backends, Python and a Spark cluster.
We support Python for compatibility with existing code,
while Spark provides a distributed execution environment.
We used DataLab to identify the principal patterns.

In the remaining part of this section, we summarize the
problems that DataLab has helped to solve in the process.

Figure 3: Pipeline of fruit fly image analysis case study

4.2 Preprocessing and data selection.
Users often want to choose only a subset of images. For

example, they want to select only a few genes corresponding
to certain annotation terms or based on previous machine
learning results. With DataLab, the users can query the
metadata with some codes such as selecting operations and
automatically generate a subset of the images. This is the
key benefit of separating the metadata with the raw data,
and it helps save huge space in storage consumption and
time in data transmission.

DataLab provides APIs to organize the data into a queryable
format. Currently DataLab allows importing data from im-
age files, SQL databases, tsv (tab separated) files, and csv

(comma separated) files. Using the APIs, users can conve-
niently choose which columns to use as metadata or data,
as well as filter out redundant or unnecessary data.

We customized the standard scripts of DataLab to provide
dedicated filters on attributes such as gene names, related

genes and data source. We also developed data importers to
import datasets with metadata is embedded in the dataset
itself, such as DICOM files, which are widely used in scientific
imaging.

4.3 Supporting different preprocessing meth-
ods

Different analysis methods require different data prepro-
cessing methods.

Sometimes the preprocessing steps create extra metadata
that are required in the filters in later stages, in addition to
the data itself. For example, the team developed an organ
detection technique to segment later-stage embryo images
showing the boundaries of the developing organs into areas
with organ structures. In the preprocessing step, images
are segmented into ”super pixels” [15]. To classify the super
pixel into organs, the team wants to label and query these
super pixels. We designed a custom data structure to store
the super pixel information as metadata. As the DataLab
API allows for storing metadata in many different formats,
we can easily store and manage this new data structure, just
as the other metadata.

4.4 Managing parameters in different experi-
ments.

The number of the principle patterns K is the key param-
eter for the NMF algorithm. To find the optimal number
of K, the team proposed a novel model selection method,
staNMF, to identify a K with the most stable NMF results
from different initializations [19]. Figure 3 shows the en-
tire pipeline. The stability measurement determined K by
systematically setting K to different values, applying NMF
with random initial values and measuring the stability of
the output set of principal patterns. StaNMF selects the K
with the highest overall stability. For each K, it takes 100
NMF runs for precise measurement of stability.

DataLab helps to keep track of the entire history for dif-
ferent results with various K values. Thus, the users can
not only see the stability measurements of using different K
values, but also the NMF results for using a particular K.

The speed of the NMF algorithm is limited. As datasets
grow in size, the running time required to find the proper K
and corresponding principle patterns will become unaccept-
able. Thus, the next problem that DataLab needed to solve
is execution efficiency.

4.5 Handling large datasets efficiently.
As the image dataset gets large, the efficiency in process-

ing directly affects the overall progress of the data analysis.
For example, the preprocessed dataset contains a matrix of
405×1640 = 664, 200 values. The final stage of the pipeline,

the NMF algorithm, takes 200 seconds for 10 repetitions set-
ting K = 21 on a single core machine. We built two Spark
clusters to increase NMF execution speed. The smaller one
consists of 3 machines with 16 cores and 32G memory each
while the larger one consists of 20 machines with 8 cores
and 16G memory each. With these two clusters, same ex-
periment takes only 20 seconds on the smaller cluster and 16
second on the larger one to finish, suggesting that expanding
the cluster does provide more computation power.

4.6 Reviewing and comparing results under
different setups.

In a traditional data analytics pipeline, as the data under-
goes multiple stages of preprocessing and feature extraction,
it is tedious to match which part of the results is derived
from which part of the dataset, making it less intuitive for
the domain experts to understand the result.

DataLab automatically generates a UI of the dataset af-
ter any execution. Specifically, it chooses a set of random
samples to display on the UI. Users can choose to display
these data samples side-by-side with those from the previous
version of the experiment and can thus get a clear view of
how their datasets evolves through each version.

4.7 Sharing the analysis results
The data analytics results eventually become part of the

public dataset and the users want to store them in the long
term and share these results publicly with other researchers.
Current implementation of DataLab still lacks user permis-
sion management functionality, but as the data are all pub-
lic, it is still useful in our case. We allow creating separate
views in the UI to show some experiments and the results
while hiding others. Also we allow users to name certain
dataset with human friendly names. These features help
sharing the results. We are working on user permission man-
agement subsystem as an important future work.

5. RELATED WORK
Source code version control and management system has

a long history, from CVS to SVN to Git. These tools track
the versions of files and keeps the different branches so that
users can look back their files easily. They are designed to
handle modest-sized files and thus not suitable for storing
data.

Versioning has been a hot topic in database research field
in recent works likes arrays [17] and graphs [11]. These work
implement elementary operations for comparing differences
between versions. Other temporal database systems like
[16, 20] provide querying versions with linear chains but do
not support other complicated structures of data versions
like tree-structured versions.

Some workflow tools like Chimera [7], Pegasus [5] and Vis-
trails [3] take the concept of data workflow similar to the
workflow we use in our DataLab system. However, they
all lack the separation of raw data, metadata and versions
of datasets. Other tools like Orchestra [10] and Fusion ta-
bles[12] use the concept of data collaboration among users
but lack the capability of data version control and manage-
ment.

DataHub [1] is built based on the systems above and it
implements more sophisticated techniques for data version
control and management so that it behaves like a Git service
for data management. On the other hand, it also provides

collaboration among users. However, users must manipulate
their datasets on their own computers, which means they
have to upload and download datasets frequently.

6. FUTURE WORK
Our early experience with DataLab reveals a number of

important problems that we will focus on as our future work.

Storing all revision history efficiently.
Obviously it is impossible and unnecessary to store all

datasets created by users’ programs. We realize that we can
reproduce every dataset as long as its parent datasets in the
DWF are available and the execution is deterministic. In
this situation, we can delay the computation to generate (or
regenerate) a dataset until the user asks to look at the results
or a descendant of the result. It is similar to the concept of
lazy evaluation in functional programming. We plan to add
lazy evaluation to DataLab system to make it a data-driven,
”smart”system that only does the necessary evaluations, and
only keeps the most likely used result datasets.

One challenge is that a model can be generated from a
randomized algorithm with random seeds. To make sure
that an execution is repeatable, we have to record all random
seeds for a deterministic replay, if requested by the users.

Multi-users and data security.
Currently DataLab is for a single user. There are two

challenges to support a multi-tenant environment. First,
the data privacy is important. We will need fine granularity
of data access control to specify which user can read/modify
which part of the data. Data versioning and user-generated
metadata makes the access control model trickier than a
typical multi-tenant database system. Second, we have to
handle malicious programs submitted by the users. For ex-
ample, a malicious or buggy user programs can use up all
system resources or even delete useful datasets. We plan to
leverage the existing visualization and container technolo-
gies to keep the user program in a sandbox, and leverage
our versioned data storage to keep the data safe.

Big data on the user behavior.
With DataLab, users perform the entire analysis in our

system. It provides us with an excellent opportunity to
study users’ submission records. We can not only use these
records to predict which dataset the user will request next
for performance optimizations, but also we can learn how
different people (programmers, data scientists, domain ex-
perts) interact with code, data and the resulting model. In
this way, we may be able to automatically provide sugges-
tions/hints to users, especially those who are new to the
data science field.

7. CONCLUSION
The challenge of software engineering in big data applica-

tions lies in the tightly integration of code, data. Also, how
fast we can process the data is also a big concern, often af-
fecting people’s choices on different algorithms. Through our
early experience with DataLab, we demonstrated the benefit
to integrate code, data and the execution environment as a
single system. Using the data work flow graph, we can repro-
duce every version of dataset, keep track of user’s experiment
records for data analysis tasks and maintain dependencies

between datasets at the same time. We also need to notice
that big data applications are domain specific, and thus we
provide simple yet powerful APIs for users to extend and
customize in order to fit different application. Our experi-
ence with a real bioinformatics application shows promising
results.

8. ACKNOWLEDGMENTS
This research is supported in part by the National Natural

Science Foundation of China Grants 61033001, 61361136003,
61532001, China 1000 Talent Plan Grants, Tsinghua Ini-
tiative Research Program Grants 20151080475, a Microsoft
Research Asia Collaborative Research Award, and a Google
Faculty Research Award.

9. REFERENCES
[1] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan,

Amol Deshpande, Aaron J Elmore, Samuel Madden,
and Aditya G Parameswaran. Datahub: Collaborative
data science & dataset version management at scale.
arXiv preprint arXiv:1409.0798, 2014.

[2] Anant Bhardwaj, Amol Deshpande, U Maryland
UMD, Aaron Elmore, David Karger, Sam Madden,
Aditya Parameswaran, Harihar Subramanyam, Eugene
Wu, and Rebecca Zhang. Collaborative data analytics
with datahub.

[3] Steven P Callahan, Juliana Freire, Emanuele Santos,
Carlos E Scheidegger, Cláudio T Silva, and Huy T Vo.
Vistrails: visualization meets data management. In
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 745–747.
ACM, 2006.

[4] Kristina Chodorow. MongoDB: the definitive guide. ”
O’Reilly Media, Inc.”, 2013.

[5] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James
Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, G Bruce Berriman, John Good, et al.
Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific
Programming, 13(3):219–237, 2005.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR,09, 2009.

[7] Ian Foster, Jens Vöckler, Michael Wilde, and Yong
Zhao. Chimera: A virtual data system for
representing, querying, and automating data
derivation. In Proc of Scientific and Statistical
Database Management, 2002. Proceedings. 14th
International Conference on, pages 37–46. IEEE, 2002.

[8] GitLab. http://gitlab.com. Accessed September 1,
2015.

[9] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In ACM
SIGOPS Operating Systems Review, volume 41, pages
59–72. ACM, 2007.

[10] Zachary G Ives, Nitin Khandelwal, Aneesh Kapur, and
Murat Cakir. Orchestra: Rapid, collaborative sharing
of dynamic data. In CIDR, pages 107–118, 2005.

[11] Udayan Khurana and Amol Deshpande. Efficient
snapshot retrieval over historical graph data. In Data

Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 997–1008. IEEE, 2013.

[12] Jayant Madhavan, Sreeram Balakrishnan, Kathryn
Brisbin, Hector Gonzalez, Nitin Gupta, Alon Y
Halevy, Karen Jacqmin-Adams, Heidi Lam, Anno
Langen, Hongrae Lee, et al. Big data storytelling
through interactive maps. IEEE Data Eng. Bull.,
35(2):46–54, 2012.

[13] Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro. Online learning for matrix
factorization and sparse coding. The Journal of
Machine Learning Research, 11:19–60, 2010.

[14] Dirk Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux
Journal, 2014(239):2, 2014.

[15] Xiaofeng Ren and Jitendra Malik. Learning a
classification model for segmentation. In Computer
Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 10–17. IEEE, 2003.

[16] Betty Salzberg and Vassilis J Tsotras. Comparison of
access methods for time-evolving data. ACM
Computing Surveys (CSUR), 31(2):158–221, 1999.

[17] Adam Seering, Philippe Cudre-Mauroux, Samuel
Madden, and Michael Stonebraker. Efficient versioning
for scientific array databases. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on,
pages 1013–1024. IEEE, 2012.

[18] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file
system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10.
IEEE, 2010.

[19] Ann S. Hammonds Susan E. Celniker Bin Yu Siqi Wu,
Antony Joseph and Erwin Frise. Stability driven
nonnegative matrix factorization to interpret spatial
gene expression and build local gene networks.
Submitted.

[20] Richard T Snodgrass. The TSQL2 temporal query
language, volume 330. Springer Science & Business
Media, 2012.

[21] Pavel Tomancak, Benjamin P Berman, Amy Beaton,
Richard Weiszmann, Elaine Kwan, Volker Hartenstein,
Susan E Celniker, and Gerald M Rubin. Global
analysis of patterns of gene expression during
drosophila embryogenesis. Genome biology, 8(7):R145,
2007.

[22] Tom White. Hadoop: The definitive guide. ”O’Reilly
Media, Inc.”, 2012.

[23] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the
9th USENIX conference on Networked Systems Design
and Implementation, pages 2–2. USENIX Association,
2012.

[24] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: cluster
computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud
computing, volume 10, page 10, 2010.

