
NFGen: Automatic Non-linear Function Evaluation Code
Generator for General-purpose MPC Platforms

Xiaoyu Fan

fanxy20@mails.tsinghua.edu.cn

IIIS, Tsinghua University

Kun Chen

chenkun@tsingj.com

Tsingjiao Information Technology Co.

Ltd.

Guosai Wang

guosai.wang@tsingj.com

Tsingjiao Information Technology Co.

Ltd.

Mingchun Zhuang

mczhuang@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Yi Li

xiaolixiaoyi@tsingj.com

Tsingjiao Information Technology Co.

Ltd.

Wei Xu

weixu@tsinghua.edu.cn

IIIS, Tsinghua University

ABSTRACT
Due to the absence of a library for non-linear function evaluation,

so-called general-purpose secure multi-party computation (MPC)

are not as “general” as MPC programmers expect. Prior arts either

naively reuse plaintext methods, resulting in suboptimal perfor-

mance and even incorrect results, or handcraft ad hoc approxima-

tions for specific functions or platforms. We propose a general tech-

nique, NFGen1, that utilizes pre-computed discrete piecewise polyno-
mials to accurately approximate generic functions using fixed-point

numbers. We implement it using a performance-prediction-based

code generator to support different platforms. Conducting extensive

evaluations of 23 non-linear functions against six MPC protocols on

two platforms, we demonstrate significant performance, accuracy,

and generality improvements over existing methods.

CCS CONCEPTS
• Security and privacy → Security services;

KEYWORDS
Secure Multi-Party Computation (MPC), Non-linear Function Eval-

uation, Automatic Code Generation

ACM Reference format:
Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu.

2022. NFGen: Automatic Non-linear Function Evaluation Code Generator

for General-purpose MPC Platforms. In Proceedings of Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security,
Los Angeles, CA, USA., November 7–11, 2022 (CCS ’22), 20 pages.
https://doi.org/10.1145/3548606.3560565

1 INTRODUCTION
Privacy-preserving computation, especially secure multi-party com-
putation (MPC), has attracted a lot of attention in both academia

and industry. They provide a promising trade-off between min-

ing the data and privacy protection. People have proposed many

general-purpose MPC platforms [7, 23, 26, 29, 37, 41] that provide
high-level abstractions and practical performance, allowing people

to develop secure data processing applications without understand-

ing the details of underlying MPC protocols.

Most platforms use a version of secret sharing (SS) protocols to
build basic secure operations like +, ×, and comparison (e.g., >),

1
The source code is released in https://github.com/Fannxy/NFGen

and then construct complex functions by composing them, just like

writing plaintext expressions. The security of compound opera-

tions/functions is guaranteed by the universal composability [10] of

these protocols. These platforms usually provide built-in support

for common non-linear functions such as reciprocal (
1

𝑥 , for real

number divisions), exponential (𝑒𝑥), logarithm (ln𝑥), and square

root (

√
𝑥). They implement these functions either using generic

numerical methods (e.g. the Newton method) or adopting protocol-

specific algorithms like in [15, 39].

It remains a big challenge, however, to support the large variety

non-linear functions in scientific computing and machine learning,

such as 𝜒2𝑡𝑒𝑠𝑡 and sigmoid. The naive approach is to compose them

with built-in functions. E.g., we can compute 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 by

composing two 𝑒𝑥 , one 1

𝑥 and two +. We refer to this approach as

direct evaluation. Unfortunately, there are four pitfalls.
Pitfall 1: Correctness and precision. Most practical MPC plat-

forms use fixed-point (FXP) numbers instead of the common floating-
point (FLP) ones for efficiency. Although there are attempts to sup-

port FLP in MPC [2], the low performance for + prevents peo-

ple from adopting it. FXP still dominates the practical MPC plat-

forms [7, 23, 26, 29, 37, 41]. Unfortunately, ignoring the differences

between FXP and FLP leads to two severe issues:

First, FXP supports a much smaller range and resolution than

FLP, leading to more overflow/underflow as well as precision loss.

Even worse, FXP cannot represent 𝑁𝑎𝑁 and 𝐼𝑛𝑓 like FLP. Also,

the inputs/outputs on MPC are in ciphertext, so there is no way to

detect overflows. Using 𝑡𝑎𝑛ℎ as an example, even if the function has

a range of [−1, 1], the intermediate results, 𝑒𝑥 and 𝑒−𝑥 , can easily

overflow when |𝑥 | is large. In plaintext, people use a scaling conver-
sion to enlarge the range of FXP, but in MPC, the encrypted 𝑥 makes

scaling costly. In fact, the built-in 𝑡𝑎𝑛ℎ function in MP-SPDZ [23]

gives wrong results if |𝑥 | > 44, even if we increase FXP width to

128 bits. Second, each non-linear function has a precision loss that

accumulates if we compose them with multiple steps. Section 7.3

shows more examples of both issues.

Pitfall 2: Performance. Even with aggressive optimizations, non-

linear function evaluation takes significant time using MPC. De-

pending on the platform, they can be orders of magnitude slower

than the plaintext version. We measure the relative performance

between non-linear functions vs. basic operations in 6 MPC pro-

tocols and observe dramatic differences (Table 1 in Section 7.1).

Composing these functions sequentially makes things even slower.

https://doi.org/10.1145/3548606.3560565
https://github.com/Fannxy/NFGen

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

Pitfall 3: Generality. Although we can write many non-linear

functions using the built-ins, some functions are hard to implement.

For example, functions 𝛾 (𝑥 , 𝑧), Γ(𝑥 , 𝑧) and Φ(𝑥) are defined as in-

tegrals. It is very tedious, if not impossible, to implement them in

MPC using numerical methods and built-in operations.

Pitfall 4: Portability. Even if we can afford the engineering effort

to build a complete scientific computation library, there are too

many performance trade-offs to make it portable to different MPC

systems and applications. MPC systems use a variety of protocols

(to support different security assumptions), number representations

and sizes, as well as custom programming languages. Also, they are

deployed in different hardware/software/network environments.

We want the computation library to maintain efficiency in all cases

with minimal porting efforts.

In this paper, we offer a new scheme, non-linear function code
generator (NFGen), to evaluate non-linear functions on general-

purpose MPC platforms. We approximate each non-linear function

using an𝑚-piece piecewise polynomial with max order 𝑘 (we auto-

matically determine 𝑘 and𝑚). Our approach has three advantages.

First, it only uses secure +, × and > operations supported by all pop-

ular MPC platforms, and we can prove that the security properties

are the same as the underlying platform with the same adversar-

ial models. Second, the evaluation is oblivious, i.e., the operation
sequence is not dependent on input data, allowing for predictable

running time and avoiding timing-related side-channels. Third, ob-

taining the approximation is independent of input data and hence

can be precomputed on plaintext.

Key challenges. Finding a good (𝑘 ,𝑚)-piecewise polynomial ap-
proximation for MPC platforms is a challenging problem. First,

fitting polynomials for FXP computation introduces many chal-

lenges: 1) the polynomial needs to meet both the range and the

resolution requirements of FXP, making sure all intermediate steps

neither overflow nor underflow; 2) an FXP is essentially an integer,

making the polynomials discrete. Fitting one polynomial minimiz-

ing the approximation error is an NP-complete integer programming
(IP) problem. Thus we need to find an approximation. Second, there

is a trade-off between𝑚 and 𝑘 : whether we get more pieces (mainly

leading to more >’s) or use a higher-order polynomial (leading to

more ×’s). The choice depends on the performance of the specific

MPC system, as we discussed above.

Method overview. We compute the polynomial fitting as a pre-

computation step in plaintext. In a nutshell, we first construct a

polynomial with order 𝑘 in FLP using Chebyshev Interpolation [42]

(or Lagrange Interpolation [34] for corner case) and then discretized

it into FXP. We check the accuracy of the FXP polynomial using

random data samples. If it does not achieve the user-specified ac-

curacy, we split the input domain into two and recurse on each

smaller domain. We design a series of algorithms leveraging the

FLP capability to help find a better FXP approximation, like using

two FXPs to expand the range and improving the precision through

residual functions. Section 4 provides the details of the algorithms.

At runtime, we evaluate the (𝑘 ,𝑚)-piecewise polynomial in an

oblivious way, i.e. the execution only depends on (𝑘 ,𝑚), but not
input data. We design an oblivious piecewise polynomial evaluation
(OPPE) algorithm (Section 4.3). To get a good (𝑘 ,𝑚) trade-off on dif-

ferent MPC platforms, NFGen uses a profiler to collect performance

metrics of a specific deployment of an MPC platform and learns

a model to predict the performance with different (𝑘 ,𝑚). NFGen
automatically makes the choice using the prediction and generates

MPC-platform-specific OPPE code using built-in code templates.

NFGen provides templates for both PrivPy [29] and MP-SPDZ [23].

The template is the only platform-dependent part in NFGen, and it

only takes a short template to port NFGen to a new MPC platform.

Evaluation results. We evaluate NFGen against 6 secret sharing
protocols using 15 commonly used non-linear functions on both

PrivPy [29] andMP-SPDZ [23]. We observe significant performance

improvements over baselines (direct evaluation) in 93% of all cases

with an average speedup of 6.5× and a maximum speedup of 86.1×.
NFGen saves 39.3% network communications on average. We also

show that we can avoid the overflow errors and achieve much bet-

ter accuracy comparing with the baseline, and allow a larger input

domain even with small FXP widths. Using logistic regression (LR)

as an example, we demonstrate performance and accuracy improve-

ments over direct evaluation and ad hoc approximations, with 3.5×
speedup and 0.6% − 14% accuracy improvements. Additionally, we

illustrate how NFGen helps users to easily implement otherwise

hard-to-implement functions on MPC by using 8 complex functions

defined as integrals and the 𝜒2 test on real data.

In summary, our contributions include:

1) We propose a series of algorithms to fit an effective piece-
wise polynomial approximation on plaintext, fully considering the

differences between FLP and FXP representations.

2) We design and implement the code generator with automatic

profiling to allow portability to different MPC systems with distinct

performance characteristics.

3) We conduct comprehensive evaluations against six MPC pro-

tocols on two platforms over 23 non-linear functions, showing

significant improvements in performance, accuracy, portability to

different MPC platforms, usability and savings in communications.

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce the background of general-purpose

MPC platforms and FXP numbers for readers unfamiliar with this

area and then review related works.

2.1 General-purpose MPC Platforms
General-purpose MPC platforms usually provide a high-level pro-

gramming front-end with a compiler/interpreter to translate a high-

level code into a series of cryptographic building blocks [21]. They

provide common operators like +, ×, > and
1

𝑥 in the front-end, and

implement these operations using MPC protocols. These platforms

guarantee privacy in the end-to-end algorithms based on the uni-
versal composability of the underlying security protocols. Example

platforms include MP-SPDZ [23], PrivPy [29], CrypTen [26], Se-

cureML [37], ABY [17], and CryptGPU [41] etc. They hugely lower

the barriers of developing privacy-preserving applications.

Most of the general-purpose MPC platforms use secret sharing
(SS) [17, 26, 29, 37, 41] as the underlying protocol. There are a range
of security assumptions (e.g., semi-honest vs. malicious) in these

protocols, resulting in significantly differing performance. Some

platforms allow users to choose the underlying protocols, like [23].

Our goal is to make NFGen protocol-agnostic.

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Secure Logistic
Regression
(require sigmoid)

‘Function desc’: {
𝐹: sigmoid
		 𝑎, 𝑏 : [−10, 10],
02: 	𝜀: 10!", 10!#

},
‘System desc’:{
𝑛, 𝑓 :	 96, 48
OPs: {+, >,×…}

}, NFD

FitPiecewise (𝑘, NFD):
Iterate 𝑘:

𝑎 𝑏

𝑎 𝑏

𝑏𝑎 !"#
$

!"#
$

…
…

Try �̂�!
Check ||"
Split if fail

Merge

𝒫"Construct

Code
Generator

@types.vectorize
def sigmoid(x):

breaks = [-1007.0, ...,10.0]
coeffA = [[0.0,... 0.0]]
scaler = [[1.0,... 1.0]]
m = len(coeffA),
k = len(coeffA[0])

…
comp = sfix.Array(m)
for i in range(m):

comp[i] = (x >= breaks[i])
…

return res
Select best plan
and generate:

Load
OPPE
templet

Code

{%&:	62ms
𝑥:		150ms,

km-Profiler ,
…} PPD

𝒫"

Figure 1: End-to-end Workflow of NFGen

Secret sharing protocols require communications among the par-

ticipants on each operation, which results in significantly slower

performance than plaintext (usually 10×−1000× slower, depending
on the protocol and network environment). Also, different opera-

tors in the same protocol exhibit vast performance difference. For

example, in the most common additive secret sharing protocol, +
is almost as fast as plaintext as it is communication-free. However,

× and > require communication and are slower. Non-linear opera-

tions like
1

𝑥 and

√
𝑥 operate more slowly. It is important to make +

fast as it is the most common operation in many applications.

To make + fast, MPC systems need to avoid floating point (FLP)

numbers because the ciphertext exponent in FLP prevents us from

adding up FLPs directly. Thus, almost all practical MPC platforms

use fixed-point (FXP) numbers [11, 26, 29, 36, 37, 41]. FXP repre-

sents each real number as an 𝑛-bit integer, out of which 𝑓 least

significant bits represent the fraction, and the most significant bit is

the sign. We denote it as a ⟨𝑛, 𝑓 ⟩-FXP number. In the ⟨𝑛, 𝑓 ⟩ format,

both the range and resolution of the FXP are fixed to 2
𝑛−𝑓 −1

and

2
−𝑓

, respectively. FXP offers a much smaller range and resolution

than FLP, and thus programmers need to be more careful with over-

flows and precision losses. MPC further complicates the problem

as we cannot detect overflows on ciphertext. Also, the common

scaling method in plaintext FXP requires additional bit operations

in ciphertext and thus becomes expensive in MPC.

2.2 Non-linear Functions in MPC Platforms
Lacking of a complete general numeric computation library, MPC

application developers need to roll their application-specific solu-

tions even for common functions, like logistic regression (LR) [20],

decision trees [15, 31], principal component analysis (PCA) [18]

and neural networks (NNs) [26, 39, 41]. Mohassel et al. [36, 37] use
a 3-piece linear function to replace the slow sigmoid function in

LR and NNs. However, there is no guarantee that the approxima-

tion maintains accuracy in all cases. In fact, we find cases with

significant LR accuracy loss using this approximation.

The most straightforward method to evaluate non-linear func-

tions in MPC is directly adapting the plaintext code and replacing

basic operations to secure ones (e.g., +, × and >). For example,

CrypTen [26] and CryptGPU [41] adopt a series of plaintext al-

gorithms like Newton-Raphson iterations, limit approximations to
implement

1

𝑥 , 𝑒
𝑥
,

√
𝑥 and ln𝑥 . Natively adopting plaintext code

usually leads to poor performance, as we do not know when we

have reached the desirable accuracy and need to iterate more.

There are also protocol-specific approaches. For example, Rathee

et al. [39] implement 10 efficient cryptographic building blocks to

support high-performance non-linear functions like reciprocal-of-
sqrt, sigmoid and exponent. However, these functions are optimized

for their 2-party-computation platform only. Similiarly, Damgård et
al. [15] propose a series of primitives to support efficient machine

learning applications for SPDZ
2
𝑘 protocol [13]. More generally, Cat-

rina et al. [11] design a collection of general building-blocks suitable
for any fixed-point MPC platform and propose an optimized

1

𝑥 prim-

itive using Goldschmidt algorithm on secret FXP. MP-SPDZ [23]

uses the same algorithm.

Another line of methods is to approximate non-linear functions

with polynomials. It is a well-studied problem in plaintext of find-

ing an optimal polynomial approximating a given function 𝐹 (𝑥),
minimizing the maximum difference over a given input domain

[𝑎,𝑏]. Such polynomial is referred to as minimax polynomial [3].
Chebyshev interpolation [42] is a well-known solution. It offers a

close approximation to the minimax polynomial (so-called Cheby-
shev (near) minimax polynomial) [3, 42]. Hesamifard et al. [22]
adopt the Chebyshev polynomial to evaluate sigmoid on homo-

morphic encryption. However, the range of FXP limits the order

𝑘 of the polynomial and prevents it from reaching the desired ap-

proximation accuracy either. Another challenge is that the limited

resolution of FXP cannot capture sometimes-tiny coefficients in

these polynomials. Previous work ignores this problem and leads

to large errors [22]. Boura et al. [8] propose to use Fourier series
to approximate sigmoid in MPC platform. They work around the

range and resolution issues using secure quadruple-precision FLP

but brings in expensive computation overhead.

Unlike previous efforts, we adopt piecewise polynomial and fit

a Chebyshev polynomial for each piece, resulting in improved ac-

curacy. We take into account the differences between FXP and

FLP and handle corner cases. Also, prior works focus on one or a

few functions on a single MPC platform, whereas our goal is to

build a general, cross-platform solution for all Lipschitz-continuous
functions

2
.

3 OVERVIEW
Notations and assumptions. We first describe the notations and

assumptions we use throughout the paper. We assume 𝐹 (𝑥) is a Lip-
schitz continuous function, and we can evaluate 𝐹 (𝑥) in plaintext

2
Even if the functions are Lipschitz continuous, there is no theoretical guarantee that

we will find a feasible approximation for all functions on any accuracy requirements.

However, empirically, NFGenworks well on all the functions we tested.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

using FLP. NFGen approximates 𝐹 (𝑥) by finding a set of feasible

piecewise polynomials with different max order 𝑘 and the number of

pieces𝑚. We denote the set of all feasible polynomials as
ˆP = {𝑝𝑚

𝑘
}.

Each of the 𝑝𝑚
𝑘

contains𝑚 pieces covering the entire input domain

of [𝑎,𝑏] as [𝑤0,𝑤1, . . . ,𝑤 𝑗 , . . . ,𝑤𝑚] (𝑤0 = 𝑎 and𝑤𝑚 = 𝑏). In each

piece 𝑗 , (𝑖 .𝑒 ., [𝑤 𝑗−1,𝑤 𝑗]), we have a polynomial 𝑝
(𝑗)
𝑘
(𝑥) = ∑𝑘

𝑖=0
𝑐𝑖𝑥

𝑖

to approximate it. When the piece index 𝑗 is not important, we use

a shorthand of 𝑝𝑘 (𝑥) to denote it. Throughout the paper, symbols

with a hat (·̂) denote ⟨𝑛, 𝑓 ⟩-FXP representable variables and the

definition of functions like 𝑝𝑚
𝑘

means all the coefficients and terms

are in ⟨𝑛, 𝑓 ⟩-FXP representation (Section 2.1). We assume 64-bit

double-precision FLP is equivalent to R. It is a safe assumption in

our situation, considering both the resolution and range of FLP are

orders of magnitudes larger than FXP of our concern.

NFGen input files. NFGen generates non-linear function approxi-

mation code for different MPC platforms according to two input

files. The first is a user-provided non-linear function definition (NFD),
containing the expression of the target function 𝐹 (𝑥), its domain

[𝑎,𝑏], FXP format ⟨𝑛, 𝑓 ⟩, target accuracy 𝜖 and 0̂ (in Eq. 1), and a

list of the operators supported by the target MPC platform. The

users can generate the second input file, performance profile defini-
tion (PPD), running a NFGen-provided profiler on the target MPC

platform deployment. Note that NFD is MPC-platform-specific but

independent of the actual deployment (i.e., the CPU and network-

ing configurations), and PPD describes the deployment. Separating

them allows better portability across different deployments.

Workflow. Figure 1 illustrates NFGen workflow. NFGen first reads
in the NFD file, and on plaintext runs the algorithms in Section 4

to fit the set of
ˆP with different 𝑘 and 𝑚 settings. Then using

the PPD file, NFGen chooses one 𝑝𝑚
𝑘
∈ ˆP with the 𝑘 and 𝑚 that

maximizes performance on the specific deployment (Section 6.1).

Finally, NFGen outputs the generated code that runs just like any

user-defined function on the target MPC system, using a set of

pre-defined, platform-dependent code templates.

Requirements for a feasible 𝑝𝑚
𝑘
. Given an MPC platform with

⟨𝑛, 𝑓 ⟩-FXP, the target function 𝐹 (𝑥) on input domain [𝑎,𝑏], a feasi-
ble 𝑝𝑚

𝑘
needs to meet the following three conditions.

1) The evaluation of 𝑝𝑚
𝑘
should only consist of provided operators

in the target MPC platform. This requirement is usually true as all

we need are basic operators of +, × and >.

2) All the intermediate results in 𝑝𝑚
𝑘
, including polynomial coef-

ficients 𝑐𝑖 and 𝑥
𝑖
terms, etc., should be representable in ⟨𝑛, 𝑓 ⟩-FXP

without overflow or underflow.

3) For all 𝑥 in the range [𝑎, 𝑏], the 𝑝𝑚
𝑘

should approximate 𝐹 (𝑥)
with high accuracy, sowe need to bound themax error of the approx-
imation rather than the mean error. We measure the approximation

error using the soft relative distance (SRD),

|𝑥 − 𝑦 |𝑑 =

{
|𝑥 − 𝑦 |/|𝑥 |, |𝑥 | > 0̂

|𝑥 − 𝑦 |, |𝑥 | ≤ 0̂

, 0̂ < 𝜖 , (1)

and require

max

𝑥 ∈[𝑎,𝑏]
|𝐹 (𝑥) − 𝑝𝑚

𝑘
(𝑥) |𝑑 ≤ 𝜖 . (2)

The 0̂ is the soft zero. We use soft zeros because the relative

error can be very large when |𝑥 | → 0. For example, for 𝑥 = 2
−50

Algorithm 1: FitPiecewise Algorithm
Global config :FXP format ⟨𝑛, 𝑓 ⟩, max sampling numbers𝑀𝑆 and

max pieces𝑚𝑚𝑎𝑥

Global state :The fitted piecewise polynomial 𝑝𝑚
𝑘

Input :Target function 𝐹 (𝑥) , input domain [𝑎,𝑏] and
order 𝑘

1 Initialize piece counter𝑚𝑐 ← 0 ;

2 if 𝑝𝑘 ← FitOnePiece(𝐹 , [𝑎,𝑏],𝑘) is NOT Null then
3 Add 𝑝𝑘 to global state 𝑝𝑚

𝑘
;

4 end
5 else
6 FitPiecewise(𝐹 , [𝑎,

𝑎+𝑏
2
], 𝑘) ;

7 FitPiecewise(𝐹 , [𝑎+𝑏
2

,𝑏], 𝑘) ;
8 𝑚𝑐+ = 1;

9 If𝑚𝑐 >𝑚𝑚𝑎𝑥 : Exit;
10 end

11 𝑖 ← 0 ;

12 while 𝑖 not reach the tail of 𝑝𝑚
𝑘

do
13 𝑎,𝑏 ← 𝑤𝑖 ,𝑤𝑖+2 in 𝑝𝑚

𝑘
;

14 if 𝑝𝑘 ← FitOnePiece(𝐹 , [𝑎,𝑏],𝑘) is NOT Null then
15 Replace 𝑝

(𝑖)
𝑘

and 𝑝
(𝑖+1)
𝑘

with single 𝑝𝑘 ;

16 else
17 𝑖+ = 1 ;

18 end
19 end
20 Exit

(in FLP), a good representable approximation in a ⟨96, 48⟩-FXP,
𝑥 = 2

−48
gives a large relative error of 2

2 − 1 > 𝜖 . To avoid ruling

out these good-performance approximations, we switch to bound

the absolute error instead when |𝑥 | ≤ 0̂. By default, we set 𝜖 = 10
−3

and 0̂ = 10
−6
. We further relax the accuracy definition to maximum

sample SRD rather than the true maximum SRD by computing the

max error over a sample set of 𝑥 ∈ [𝑎,𝑏] for practical performance.

Indeed, we prove that for any Lipschitz continuous function 𝐹 (𝑥),
the true maximum SRD can be bounded by the sampled version,

for details, see Appendix A.1. Empirically, we find that a modest

sample set (e.g. 1000 per piece) is frequently sufficient (Section 7.3).

4 NON-LINEAR APPROXIMATION
The core of NFGen is to fit a set of piecewise polynomials

ˆP that

estimate the function 𝐹 (𝑥) in plaintext. All 𝑝𝑚
𝑘
∈ ˆP can be evaluated

obliviously in ciphertext. We first introduce the overall algorithm

that recursively finds a good𝑚 for a given 𝑘 if possible. Then we

focus on the algorithm that fits a 𝑝𝑘 for a single piece, which is the

most challenging part due to FXP limitations. Finally, we introduce

the oblivious evaluation algorithm.

4.1 Fitting Piecewise Polynomials
The cost for evaluating 𝑝𝑚

𝑘
is mostly for computing 1) the 𝑘-th

order polynomial and 2) deciding which of the𝑚 pieces that input

𝑥 belongs to. Each 𝑝𝑚
𝑘

has (𝑚 × 𝑘) parameters. We want to deter-

mine𝑚 and 𝑘 automatically. As different MPC platforms may have

different > and × performance, we want to generate multiple plans

with different (𝑘 ,𝑚) choices and let the latter stages (Section 6.1)

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Algorithm 2: FitOnePiece Algorithm
Input :Target function 𝐹 (𝑥) , domain [𝑎,𝑏] and order 𝑘

Return :Feasible discrete polynoimial 𝑝𝑘 or Null

1 ¯𝑘 ← ConstrainK([𝑎,𝑏], ⟨𝑛, 𝑓 ⟩) /* 1) Constrain k */

/* 2) Fit best polynomial in FLP space */

2 Maximum representable points N← 𝑏−𝑎
2
−𝑓 ;

3 if N > ¯𝑘 + 1 then
4 𝑝 ¯𝑘 ← Cheby-Interpolation(𝐹 , [𝑎,𝑏], ¯𝑘)
5 else
6 ¯𝑘 = 𝑁 − 1 ;

7 𝑝 ¯𝑘 ← Lagrange-Interpolation(𝐹 ,N feasible points and
¯𝑘)

8 end
/* 3) & 4) Convert to FXP space */

9 𝑝 ¯𝑘 ← ScalePoly(𝑝 ¯𝑘 , [𝑎,𝑏]) (Algo 5) ;

10 𝑝 ¯𝑘 ← ResidualBoosting(𝑝 ¯𝑘 , 𝐹 , [𝑎,𝑏]) (Algo 6) ;

11 𝑝𝑘 : Expand coefficients and scaling factors of 𝑝 ¯𝑘 to 𝑘 , filling 0 ;

/* 5) Check accuracy, return valid 𝑝𝑘 or Null */

12 Sampled number Ns ← min(𝑀𝑆 ,N) ;
13 X̂← FLPsimFXP(Linspace([𝑎,𝑏],Ns)) ;
14 if max

�̂�∈X̂ |𝑝𝑘 (𝑥) − 𝐹 (𝑥) |𝑑 < 𝜖 then
15 Return: 𝑝𝑘 ;

16 Return: Null ;

to decide which one to use. This step only takes 2-3 seconds on

plaintext in most of our experiments.

We iterate through a number of 𝑘 values. For each 𝑘 , we use

Algorithm 1 to find an𝑚 piece polynomial as a candidate if possible.

We start with the user-defined domain [𝑎,𝑏]. We fit a best-

effort 𝑘th-order polynomial 𝑝𝑘 using FitOnePiece subroutine (Al-

gorithm 2) minimizing the maximum absolute error (Line 2). The

fitting process is quite involved as we need to deal with the limited

range and resolution of FXPs. We leave the details of fitting 𝑝𝑘 to

Section 4.2.

FitOnePiece (Algorithm 2) returns a feasible 𝑝𝑘 satisfying both

representability and accuracy constrains in domain [𝑎,𝑏] if it suc-
cessfully finds it. If it failed, it returns Null, which means that the

order 𝑘 is not enough to fit 𝐹 (𝑥) in domain [𝑎,𝑏], and thus we

split [𝑎,𝑏] into [𝑎, (𝑎 +𝑏)/2] and [(𝑎 +𝑏)/2,𝑏] and recurse on each

smaller ranges (Line 5-10).

As a final step, we try to merge adjacent pieces because splits

may result in unnecessary pieces. For each adjacent pair of pieces,

we try FitOnePiece (Algorithm 2) again to fit a single polynomial in

the combined range with the accuracy requirement satisfied (Line

11-19). Finally, we get the set of all𝑚 𝑘th-order polynomials 𝑝𝑘 ’s,

constructing candidate 𝑝𝑚
𝑘
.

The algorithm eventually terminates, either when𝑚 exceeds the

limit 𝑚𝑚𝑎𝑥 (Line 9), or finds a 𝑝𝑚
𝑘

that passes the accuracy test.

There is no theoretical guarantee that the algorithm will find a

feasible solution or guarantee for the optimality. However, it works

well empirically on all functions in our tests (Section 7.3).

4.2 Fitting Polynomial for One Piece
We introduce the core part of Algorithm 1, the FitOnePiece function

in Algorithm 2, fitting a single 𝑝𝑘 in the domain of [𝑎,𝑏].

Problem Definition. We want to find a 𝑘th-order polynomial

𝑝𝑘 =
∑𝑘
𝑖=0
(𝑐𝑖𝑥𝑖) that approximates 𝐹 (𝑥) over the domain of 𝑥 ∈

[𝑎,𝑏], minimizing the max error. It is important that we limit the

max error instead of the mean error to avoid occasional wrong

results. Formally, we define the following optimization problem.

Minimize max

𝑥 ∈[𝑎,𝑏]
|𝐹 (𝑥) − 𝑝𝑘 (𝑥) |

𝑠 .𝑡 ., 𝑝𝑘 =

𝑘∑
𝑖=0

(𝑐𝑖𝑥𝑖)
(3)

It is easy to show that Eq. 3 is an NP-Complete integer program-
ming (IP) problem, because

𝑝𝑘 (𝑥) =
𝑘∑
𝑖=0

𝑐𝑖𝑥
𝑖 =

𝑘∑
𝑖=0

((𝑐𝑖 · 2𝑓) ·
𝑥𝑖

2
𝑓
) =

𝑘∑
𝑖=0

(𝑐𝑖 ·
𝑥𝑖

2
𝑓
), (4)

where coefficients 𝑐𝑖 ’s are 𝑛-bit integers. We present an effective

approximation by firstly solve the optimal polynomial 𝑝𝑘 in con-

tinuous space and then discretize it to 𝑝𝑘 and optimize it in FXP.

Issues in FXP approximation. FLP offers a much larger range

compared with FXP. For 64-bit double precision FLP, the repre-

sentable range is from −2
1024

to 2
1024

(IEEE754 standard [1]), while

even for ⟨128, 48⟩-bit FXP, the range is only −2
79

to 2
79
. Thus, over-

flows are more common in FXP. For precision, double precision FLP

can represent the smallest number of 2
−1023

, while FXP only has a

fixed 𝑓 -bit resolution. Any number smaller than 2
−𝑓

is rounded off

to zero. Unfortunately, prior MPC algorithms do not handle FXP

correctly, leading to wrong results even if both the domain and

range are representable.

Specifically, We need to find a 𝑝𝑘 =
∑𝑘
𝑖=0

𝑐𝑖𝑥
𝑖
in FXP to approxi-

mate 𝑝𝑘 =
∑𝑘
𝑖=0

𝑐𝑖𝑥
𝑖
in FLP and avoid the following three issues.

Issue 1) 𝑥𝑘 can overflow if |𝑥 | is too large, or underflow if 𝑥 is

close to zero, especially with a large 𝑘 .

Issue 2)When a coefficient 𝑐𝑖 gets small, we need to use many

of the 𝑓 bits to represent the leading 0’s, losing significant bits, and

even causing an underflow if |𝑐𝑖 | < 2
−𝑓

. However, 𝑥𝑖 may be still

large and we need an accurate 𝑐𝑖 for 𝑐𝑖𝑥
𝑖
to approximate 𝑐𝑖𝑥

𝑖
in

the continuous space. In fact, we observe that 𝑐𝑖 tends to be small

when 𝑖 is close to 𝑘 . Intuitively, there is a relationship between the

smoothness of target functions and their polynomial approxima-

tions. The smoother the target function is, the faster its polynomial

approximation converges (coefficient |𝑐𝑛 | → 0 with 𝑛 →∞). Theo-
retically, [42] shows that for Chebyshev polynomials, the absolute

value of 𝑘th-order coefficient |𝑐𝑘 | is inversely proportional to the

exponent of its order 𝑘 , presenting a quick descending rate.

Issue 3) Converting all parameters into FXP involves many

roundings to evaluate the polynomial (rounding the fractional parts

beyond the 𝑓 bits to 0, in both computing 𝑥 to the 𝑘th power and

adding-up all terms)
3
, hurting the precision.

Our solution. Algorithm 2 outlines our solution. The algorithm

firstly uses Chebyshev interpolation or Lagrange interpolation to

find the optimal polynomial in the continuous space (represented

by double-precision FLPs) and transfer the polynomial to discrete

space (represented by FXPs) while avoiding the above issues.

3
The conversion is done through FLPsimFXP (Algo 4), which is analyzed in Appen-

dix A.2

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

Algorithm 3: ConstrainK
1 Function ConstrainK(domain [𝑎,𝑏], FXP format ⟨𝑛, 𝑓 ⟩):
2 |𝑥 |𝑚𝑎𝑥 ← max(|𝑎 |, |𝑏 |) and |𝑥 |𝑚𝑖𝑛 ← min(|𝑎 |, |𝑏 |) ;
3 𝑘𝑂 ← 𝑘 if (|𝑥 |𝑚𝑎𝑥 < 1) else 𝑛−𝑓 −1

log
2
(|�̂� |𝑚𝑎𝑥) ;

4 If 𝑎 · 𝑏 < 0 then 𝑘𝑈 ← 3;

5 Else 𝑘𝑈 ← 𝑘 if (|𝑥 |𝑚𝑖𝑛 > 1) else 𝑓

− log
2
(|�̂� |𝑚𝑖𝑛) ;

Return :Maximum feasible
¯𝑘 ← min(𝑘 ,𝑘𝑂 ,𝑘𝑈)

Algorithm 4: FLPsimFXP : 𝑥 → 𝑥

Input :𝑥 ∈ R and FXP format ⟨𝑛, 𝑓 ⟩.
Return :𝑥

1 If (|𝑥 | > 2
𝑛−𝑓 −1) : Return: 2

𝑛−𝑓 −1
;

2 If (|𝑥 | < 2
−𝑓) : Return: 0 ;

3 Return: round2 (𝑥 , 𝑓)

Algorithm 5: ScalePoly : 𝑝𝑘 → 𝑝𝑘

Input :𝑝𝑘 =
∑𝑖=𝑘

𝑖=0
(𝑐𝑖 · 𝑥𝑖) in continuous space, domain [𝑎,𝑏].

Return :𝑝𝑘 =
∑𝑖=𝑘

𝑖=0
(𝑐𝑖 · 𝑥𝑖 · 𝑠𝑖) in discrete space.

1 Character 𝑥 ← max (|𝑎 |, |𝑏 |) , most likely to overflow ;

2 for 𝑖 ← 0 to 𝑘 do
3 𝑐𝑖 , 𝑠𝑖 ← ScaleC(𝑐𝑖 , ⟨𝑛, 𝑓 ⟩, 𝑖 ,𝑥) ;
4 end
5 Return 𝑝𝑘 .

6 Function ScaleC(𝑐 , ⟨𝑛, 𝑓 ⟩, order 𝑘 and 𝑥):

7 𝑠𝐶𝑈𝐹 ← 2
−𝑓

;

8 𝑠𝐶𝑂𝐹 ← FLPsimFXP(𝑐�̂�𝑘

2
𝑛−𝑓 −1

,𝑛, 𝑓) ;
9 𝑠 ← min {max (𝑠𝐶𝑈𝐹 , 𝑠𝐶𝑂𝐹) , 1} ;

10 𝑐 ← FLPsimFXP(𝑐
𝑠

,𝑛, 𝑓) ;
11 Return 𝑐 , 𝑠 ;

Step 1: Constraining 𝑘 to avoid overflow (Issue 1). First, to

avoid 𝑥𝑘 overflow or underflow (issue 1), we find the max feasible

¯𝑘 ≤ 𝑘 , guaranteeing that 𝑥
¯𝑘
does not overflow or underflow∀𝑥 ∈

[𝑎,𝑏] (Line 1 in Algorithm 2). In ConstrainK (Algorithm 3), over-

flow is easy to constrain, as we only need (|𝑥 |𝑚𝑎𝑥)𝑘𝑂 ≤ 2
𝑛−𝑓 −1

,

or 𝑘𝑂 ≤
𝑛−𝑓 −1

log
2
|𝑥 |𝑚𝑎𝑥

if |𝑥 |𝑚𝑎𝑥 > 1 (Line 3). Underflow is more in-

volved, as if 0 ∈ [𝑎,𝑏], |𝑥 | can be arbitrarily close to zero. In such

case, we heuristically limit 𝑘𝑈 to 3 (Line 4). Otherwise, we need

(|𝑥 |𝑚𝑖𝑛)𝑘𝑈 ≥ 2
−𝑓

, or 𝑘𝑈 ≤
𝑓

(− log
2
|𝑥 |𝑚𝑖𝑛) if |𝑥 |𝑚𝑖𝑛 < 1 (Line 5).

The max feasible
¯𝑘 is the smallest number among {𝑘 ,𝑘𝑂 and𝑘𝑈 }.

Step 2: Fitting a polynomial in FLP. We use Chebyshev interpo-
lation [42] that interpolates on

¯𝑘 + 1 Chebyshev roots to construct

the Chebyshev polynomial (Line 4), which is a close approximation

to the real minimax polynomial, i.e., minimizing the max approx-

imation error. The method is widely adopted in practice (plain-

text) [3, 42]. There is a corner case when [𝑎,𝑏] is so small that

𝑏−𝑎
2
−𝑓 ≤ ¯𝑘 + 1, i.e., the domain in such case does not contain enough

points to fit the
¯𝑘th-order polynomial. We construct the (𝑏−𝑎

2
−𝑓 −1)th-

order polynomial trying to cover all the discrete points. Specifically,

Algorithm 6: ResidualBoosting
Input :𝑝𝑘 in discrete space, target 𝐹 (𝑥) and domain [𝑎,𝑏].
Return :𝑝∗

𝑘
in discrete space.

1 𝑝∗
𝑘
← 𝑝𝑘 , 𝑅 ← 𝐹 − 𝑝∗

𝑘
;

2 Sample number Ns ← min (Max samples𝑀𝑆 ,All points
𝑏−𝑎
2
−𝑓) ;

3 X̂← FLPsimFXP(Linspace([𝑎,𝑏],Ns)) ;
4 for 𝑘′ ← 𝑘 − 1 to 0 do
5 𝑟𝑘′ ← Cheby-Interpolation(𝑅, [𝑎,𝑏],𝑘′) ;
6 𝑝

𝑡𝑚𝑝

𝑘
← Boost(𝑝∗

𝑘
, 𝑟𝑘′ , [𝑎,𝑏]) ;

/* Boost when benefit exist. */

7 if (max
�̂�∈X̂ |𝐹 (𝑥) − 𝑝

𝑡𝑚𝑝

𝑘
(𝑥) |𝑑 < max

�̂�∈X̂ |𝐹 (𝑥) − 𝑝∗𝑘 (𝑥) |𝑑) then
8 𝑝∗

𝑘
= 𝑝

𝑡𝑚𝑝

𝑘
, 𝑅 = 𝐹 − 𝑝∗

𝑘
;

9 end
10 end

Return :𝑝∗
𝑘

11 Function Boost(𝑝𝑘 ,𝑟𝑘′ ,𝑘 ≥ 𝑘′ with domain [𝑎,𝑏]):

12 𝑝𝑘′ (𝑥) =
∑𝑘′

𝑖=0
(𝑐 (�̂�𝑘)

𝑖
· 𝑠 (�̂�𝑘)

𝑖
+ 𝑐 (𝑟𝑘′)

𝑖
) · 𝑥𝑖 ;

13 𝑝𝑘′ ← ScalePoly(𝑝𝑘′ , [𝑎,𝑏]) ;
14 𝑝𝑘 (𝑥) =

∑𝑘′
𝑖=0
(𝑐 (�̂�𝑘′)

𝑖
· 𝑥𝑖 · 𝑠 (�̂�𝑘′)

𝑖
) +∑𝑘

𝑖=𝑘′+1 (𝑐
(�̂�𝑘)
𝑖

· 𝑥𝑖 · 𝑠 (�̂�𝑘)
𝑖
) ;

Return :𝑝𝑘

we use Lagrange interpolation [34] to solve the polynomial using

all discrete points (Line 7).

Note that both Chebyshev and Lagrange methods fit the polyno-

mial in continuous space using FLP. Then we need to convert them

back into the FXP space. Issue 2-3 arise on this conversion.

Step 3: Converting to FXP space with a scaling factor to en-
large the representation range (Issue 2).Aswementioned, when

we round the fitted 𝑐𝑖 ’s to 𝑐𝑖 ’s in FXP, 𝑐𝑖 may be too small to repre-

sent precisely. As 𝑐𝑖 ’s are in plaintext, we can use the typical scaling

factors to enlarge its representation range. We translate each FLP 𝑐𝑖
into two FXP numbers, (𝑐𝑖 , 𝑠𝑖), letting 𝑐𝑖 ≥ 𝑐𝑖 to be large to preserve

sufficient significant bits and 𝑠𝑖 ≤ 1 is a scaling factor such that

𝑐𝑖 ≈ 𝑐𝑖𝑠𝑖 . We want to let 𝑐𝑖 contain more significant bits to maintain

precision, but we need to avoid a too large 𝑐𝑖 that causes 𝑐𝑖𝑥
𝑘
to

overflow, especially when 𝑥𝑘 is large. More precisely, we require:

1) 𝑐𝑖𝑥
𝑘 ≤ 2

𝑛−𝑓 −1
, i.e., it does not overflow; 2) 𝑠𝑖 itself is a valid FXP,

and 3) 0 < 𝑠𝑖 ≤ 1, i.e., it indeed scales up the coefficient, not making

it even smaller. Algorithm 5 converts all FLP coefficients 𝑐𝑖 into

(𝑐𝑖 , 𝑠𝑖) FXP pairs, satisfying all the three requirements.

Step 4: Further reducing the rounding precision loss using
residual boosting (Issue 2 - 3). After step 3, we get an FXP ap-

proximation 𝑝 (𝑥) = ∑𝑘
𝑖=0
(𝑐𝑖𝑥𝑖𝑠𝑖). The rounding errors in 𝑐𝑖 and 𝑠𝑖

exacerbate the difference between the approximation and the real

𝐹 (𝑥), and we use a residual function 𝑅(𝑥) = 𝐹 (𝑥) − 𝑝𝑘 (𝑥) in FLP to

capture the difference. If we can estimate 𝑅(𝑥) with another dis-

crete polynomial 𝑟𝑘′ (𝑥) with 𝑘 ′ < 𝑘 , we may get a better precision

if we use 𝑝𝑘 (𝑥) + 𝑟𝑘′ (𝑥) to approximate 𝐹 (𝑥).
We observe that we may approximate 𝑅(𝑥) using a series of

lower-order FXP polynomials because the lower-order coefficients

tend to be larger and preserve more significant bits. Algorithm 6

illustrates the residual boosting procedure. In a nutshell, the al-

gorithm iterates 𝑘 ′ through (𝑘 − 1) to 1, trying to fit a 𝑘 ′th-order

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Algorithm 7: OPPE Algorithm (OPPE)

Config :Three parts plaintext parameters of 𝑝𝑚
𝑘
: �̂� (without

endpoint �̂�𝑚),𝐶 = {𝑐 𝑗 ,𝑖 } and 𝑆 = {𝑠 𝑗 ,𝑖 }.
Input :Secret input [𝑥].
Return :The secret evaluation result of [𝑝𝑚

𝑘
(𝑥)].

1 [comp] ← GT([𝑥],�̂�) # compare 𝑥 with each break point. ;

2 [mask] ← ADD([comp],−leftshift([comp], 1)) ;
3 for 𝑖 ← 0 to 𝑘 − 1 do
4 [coeff]𝑖 ←

∑̂𝑗=𝑚−1

𝑗=0
MUL([mask] 𝑗 ,𝑐 𝑗 ,𝑖) ;

5 [scaler]𝑖 ←
∑̂𝑗=𝑚−1

𝑗=0
MUL([mask] 𝑗 , 𝑠 𝑗 ,𝑖) ;

6 end
7 [xterm] ← CalculateKx([𝑥],𝑘) ;
8 Return

∑̂𝑖=𝑘−1

𝑖=0
(MUL(MUL([coeff]𝑖 , [xterm]𝑖) , [scaler]𝑖) ;

9 Function CalculateKx([𝑥],𝑘):
/* Calculate [1, [𝑥], [𝑥]2, …, [𝑥]𝑘] */

10 shift← 1, [res] ← [1, tail([𝑥],𝑘)] /* repeat [𝑥] 𝑘 times */

11 while shift < 𝑘 do
12 [res]shift:

= MUL([res]shift:
, [res]

:−shift) ;
13 shift× = 2 ;

14 end
15 Return [res] ;

polynomial 𝑟𝑘′ approximating 𝑅(𝑥) using the same Chebyshev in-

terpolation as in Algorithm 2 and ScalePolyAlgorithm 5.We add 𝑟𝑘′

to 𝑝𝑘 through function Boost in Algorithm 6 if we are able to obtain

smaller max error on sample set X̂. The residual boosting algorithm
is best-effort and opportunistic, but empirically, it performs well

(Section 7.5).

Step 5: Checking if the polynomial is actually feasible and
returning it if so. As the last step, we get sample set X̂ from

[𝑎,𝑏] in FXP and check the accuracy of 𝑝𝑘 (𝑥) obtained from the

previous steps by computing |𝑝𝑘 (𝑥) − 𝐹 (𝑥) |𝑑 ,∀𝑥 ∈ X̂ and find the

max error. If the check passes (max SRD less than 𝜖), we return the

polynomial to Algorithm 1, otherwise the function returns a Null,

causing Algorithm 1 to recurse on smaller ranges.

4.3 The Runtime Evaluation Algorithm OPPE
At runtime, we take the output of Algorithm 1, 𝑝𝑚

𝑘
, as plaintext

config, and take the secret-shared value [𝑥] as ciphertext input ([𝑥]
indicate the secret shares of value 𝑥 among each party), to compute

the result [𝑝𝑚
𝑘
[𝑥]] in the oblivious piece-wise polynomial evaluation

(OPPE) Algorithm 7. The piecewise polynomial 𝑝𝑚
𝑘

is described

by three parameters:𝑊 = [𝑎 = �̂�0, �̂�1, �̂�2, . . . �̂�𝑚 = 𝑏] (without
endpoint �̂�𝑚) are the boundaries for the𝑚 pieces, the coefficients

𝑐 𝑗 ,𝑖 and scaling factors 𝑠 𝑗 ,𝑖 for all 𝑗 = 0 . . .𝑚 − 1 and 𝑖 = 0 . . . 𝑘 .

All plaintext and ciphertext inputs are FXP numbers. We use ADD,
MUL and GT in Algorithm 7 to denote the subroutines evaluating

secure addition, multiplication and greater-than, respectively (

∑̂
means summation through ADD).

OPPE Design. OPPE Algorithm 7 treats each subroutine as an

arithmetic black box and organize them obliviously, i.e., the exe-

cution path is independent of the inputs. For details of the oblivi-

ousness property, see Appendix A.4. OPPE first determines which

piece [𝑥] belongs to, using one vectorized GT and one ADD (Lines

1-2). The comparison result is a ciphertext vector [mask], containing

a single one, and all other elements are zeros. Line 3-6 select the
coefficients and scaling factors obliviously, using the [mask]. Line 7

computes all [𝑥]𝑖 ,∀𝑖 = 0 . . . 𝑘 using (⌊log𝑘⌋ + 1) vectorizedMUL’s
(each on two ciphertext vectors with size < 𝑘) using the subrou-

tine CalculateKx. Line 8 computes every term using two MUL’s:
MUL(MUL(𝑐 𝑗 ,𝑖 ,𝑥𝑖), 𝑠 𝑗 ,𝑖), and adds up the products to compute the

result. Note that we must execute the two MULs in this specific

order to take advantage of the scaling factor.

Complexity. Algorithm 7 uses (2𝑘𝑚) plaintext-with-ciphertext
MUL’s, 𝑚 GT’s and 𝑂 (𝑘 log𝑘) MUL’s. We can also leverage the

vector (a.k.a., SIMD) optimization in many MPC platforms. If so,

we only need (⌊log𝑘⌋ + 1) rounds of ciphertext MUL, 2 rounds

of plaintext-with-ciphertext MUL, and 1 round of GT. Thus the
running time is predictable on an MPC platform, independent of

input 𝑥 . Appendix A.3 shows the complexity analysis of OPPE

algorithm.

Independent operations and parallelism.We observe that the

[mask] computation and coefficient selection step (Line 1-6) is inde-

pendent of the CalulateKx routine (Line 7). Thus if anMPC platform

supports concurrency, we can run both independently, further re-

ducing the running time. Also, when the input vector 𝑥 is long,

we automatically break it up into multiple pieces to utilize the

underlying platform’s threading support to evaluate each piece.

5 SECURITY ANALYSIS

Security definitions. NFGen uses the same security definitions

as the secure multi-party protocol of underlying MPC platform, 𝜋𝑓
that aims to let 𝑛 parties evaluate function 𝑓 without a trusted third

party. The security is defined as the security properties achieved in

the presence of some adversaryA who can control a set of at most

𝑡 corrupted parties according to some adversarial model. Different
protocols have their own choices of both the adversarial model and

security properties to achieve, usually for trade-off of performance.

The common adversarial model trade-offs include 4 dimensions

[30]: 1) corruption strategy: adaptive vs. non-adaptive; 2) corruption
proportion: dishonest vs. honest-majority; 3) behavior : malicious vs.

semi-honest; 4) power : informational vs. computational-secure.

Under these assumptions, protocols usually achieve the following

two essential security properties: privacy and correctness. Option-
ally, there are other security properties a protocol may consider [32].

E.g., fairness, i.e., if one party receives the result, all parties receive

it; and guaranteed delivery: whether the joint parties can always

receive the results.

Security assumptions of NFGen. NFGen builds on top of general-
purpose MPC platforms with each party carrying out the computa-

tion connected through secure channels. NFGen assumes that three

secure subroutines ADD,MUL and GT evaluating secret addition,

multiplication and greater-than are provided and all the inputs are

secret-shared among computation parties before the evaluation

of the generated protocol. These assumptions are easily to meet

as various implementations of secret addition, multiplication and

greater-than have been proposed and some of them are widely

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

adopted (e.g., [4, 16]). Specifically, NFGen introduces no different as-
sumptions about the adversary model for the underlying protocols

that implement the three required subroutines.

Security analysis ofNFGen. We illustrate the security ofNFGen’s
code generation approach by showing that it guarantees the same
security properties as the three subroutines in the presence of the

same adversary.

1) Obviously, the pre-computation steps (Algorithm 1 - 6) are

independent of secret inputs and performed offline, thus cannot

affect any security property;

2) To prove the privacy and security properties, we directly follow

the real-ideal paradigm introduced in [9]. It defines security by

requiring that the distribution of the protocol evaluation in the real
world is indistinguishable from the ideal world with a trusted third

party. Under this paradigm, we show that NFGen generates the 𝑝𝑚
𝑘

evaluation protocol by composing the three subroutines as so-called
arithmetic black boxes in the standardmodular composition way [9]
without revealing any information nor introducing any interaction.

Thus, NFGen naturally inherits the same security property of the

subroutines from the Canetti’s composition theorem [9]. The security

preserving property is the direct result of the composition theorem.

We show the detailed analysis in Appendix B.

3) We show that NFGen provides the same optional security

properties as the underlying protocols. Using guaranteed delivery as

an example, if the provided subroutines offer this property, meaning

that there is no abort within these subroutines, the 𝑝𝑚
𝑘

evaluation

protocol (Algorithm 7) will not abort either, as there is no breakpoint

in the routine. On the other hand, if the subroutines are secure with
abort, Algorithm 7 does not try to handle these abortions at all and

lets the protocol abort.

6 IMPLEMENTATION
In this section, we briefly introduce how we integrate the fitted

ˆP
into the target MPC system.

6.1 Profiler and Performance Prediction
In order to select the best 𝑝𝑚

𝑘
∈ ˆP, we need to model the perfor-

mance of specific deployed MPC systems. Such modeling is not

straightforward as the performance not only depends on the MPC

protocols but also on the implementation and deployment. We use

a profiler that runs on the target system to automatically build the

performance prediction model.

The execution time of Algorithm 7 depends on (𝑘 ,𝑚) only, mak-

ing the prediction possible. We use the profiler to measure the eval-

uation time 𝑡 of 2, 000 configurations of piecewise polynomial sam-

ples with different (𝑘 ,𝑚) combinations (𝑘 ∈ [3, 10] and𝑚 ∈ [2, 50]).
Then we fit amultivariate polynomial regression model [28] on these

samples. Note that the performance model is independent of 𝐹 (𝑥),
and thus we only need to profile once per system.

Some MPC systems provide built-in functions that are highly

optimized for their settings, such as
1

𝑥 , 𝑒
𝑥
, or ln𝑥 . For example, MP-

SPDZ provides a very efficient
1

𝑥 [11]. If users list these functions

in the NFD, the profiler also measures the performance of such

functions. If 𝐹 (𝑥) is simple, it may be better off taking the direct

evaluation approach. Direct evaluation is only viable with all the

three conditions: 1) 𝐹 (𝑥) does not contain 𝑒𝑥 as an intermediate

step, as it is highly likely to overflow; 2) 𝐹 (𝑥) contains less than
three steps with non-linear functions to avoid unpredictable error

accumulations and 3) the predicted running time of direct evalua-

tion is shorter than all 𝑝𝑚
𝑘
∈ ˆP. We rarely find suitable cases to use

direct evaluation, but on functions like 𝑖𝑠𝑟𝑢, which is 1/(1 + |𝑥 |),
effectively just a single

1

𝑥 , direct evaluation is 1.6× faster than the

best 𝑝𝑚
𝑘

(Section 7.2).

We can either run the profiler in pre-computation or run it just-
in-time right before running a large MPC task. In this paper, we do

all profiling and plan selections in the pre-computation.

6.2 OPPE Code Generation
Different MPC platforms offer not only different high-level lan-

guages, but also different support for vector operations and multi-

threading. To best utilize these platform-specific optimizations

while still remain portable, we use a template-based code generation

approach to implement OPPE (Algorithm 7).

NFGen provides MPC-platform-specific code templates imple-

menting OPPE. Each template is highly optimized for a specific

platform. For example, the code template uses multi-threading in

PrivPy to compute all independent segments concurrently [29], and

leverages the probability trunction optimizations in MP-SPDZ [14].

Note that we only need to customize the OPPE template for each

platform, and all other procedures in NFGen are reuseable across
platforms. Currently, we support both PrivPy and MP-SPDZ.

Using the templates, it is straightforward to generate 𝑝𝑚
𝑘

evalua-

tion code, as we only need to insert 𝑝𝑚
𝑘

parameters in to the code

template as literals. Appendix C shows an example of NFD, PPD

and generated code. The generated code runs the same as normal

functions in the target MPC system.

We pass 𝑝𝑚
𝑘

as literals in generated code instead of arguments

to OPPE function, because compilers in platforms like MP-SPDZ

significantly improves performance if all input lengths (in our case,

𝑚 and 𝑘) are statically known.

7 EVALUATION
In our evaluation, we show that NFGen is able to 1) offer better

performance and lower communication costs across algorithms,

protocols and systems; 2) avoid the overflow/underflow errors in

the traditional approaches, and provide better accuracy in complex

functions; 3) calculate sophisticated non-linear functions otherwise

requiring extensive calculus knowledge to implement; 4) support a

large domain with reasonable accuracy even with a very limited

number of bits; and 5) benefit real applications with both perfor-

mance and accuracy improvements. We also evaluate the different

design choices in NFGen, such as the effectiveness of profiling, scal-

ing and residual boosting.

7.1 Experiment Setup

MPC platforms. We evaluate NFGen on two MPC platforms, MP-

SPDZ [23] that implements over 30 secret sharing protocols (and

we choose 5 for evaluation), and PrivPy [29] that only supports a

single protocol. MP-SPDZ first compiles the high-level code into

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Table 1: MPC Settings with Varied Operation Performance
Sec model No. MPC sys S × (ms) ×: >: 1

𝑥
:

√
𝑥 : ln𝑥 : 𝑒𝑥

Semi

-honest

A PrivPy Rep2k 1 1 : 11 : 67 : 55 : 118 : 44

B Rep2k 2 1 : 4 : 31 : 75 : 68 : 107

C RepF 32 1 : 1 : 11 : 28 : 26 : 47

D Shamir 81 1 : 1 : 8 : 16 : 15 : 29

Malicious

E Ps-Rep2k 851 1 : 1 : 16 : 35 : 26 : 97

F Ps-RepF 84 1 : 2 : 24 : 56 : 44 : 137

B-E use ⟨96, 48⟩-FXP and A uses ⟨128, 48⟩. Column 3 is the absolute time (in

ms) to compute × on 100-dimensional vector and Column 4 is the relative per-

formance to ×.

bytecode to execute with underlying protocols, while PrivPy ex-

ecutes programs by interpreting Python code at runtime. Both

platforms support FXP number with different width.

Secret sharing protocols. We adopt six different secret-sharing

protocols, covering different security assumptions over adversarial

behaviors (semi-honest or malicious); computation domains (over
a ring of Z

2𝑘 or finite field F𝑝 by modulo a prime 𝑝) and sharing
methods (using replicated secret sharing or shamir secret sharing).
We briefly introduce each protocol in the following.

First we introduce the four semi-honest protocols: A. PrivPy-
Rep2k is an 2-out-of-4 replicated secret sharing protocol, proposed

by Li et al. [29]. It splits each value 𝑥 into four shares over a ring of

Z
2𝑘 and let each party 𝑃𝑖 (𝑖 = 1, 2, 3, 4) holds two shares, satisfying

that any two parties can reconstruct 𝑥 while each one sees two

random integers. B. Rep2k and C. RepF two protocols split a value

𝑥 into three shares, satisfying that 𝑥 ≡ 𝑥1 + 𝑥2 + 𝑥3 (mod 𝑀) and
let each party 𝑃𝑖 (𝑖 = 1, 2, 3) holds (𝑥𝑖 ,𝑥𝑖+1)(indexes wrap around

3).𝑀 = 2
𝑘
for Rep2k protocol and𝑀 = 𝑝 for RepF protocol where

𝑝 is a prime. D. Shamir shares a value 𝑥 ∈ F though a random

chosen 2-degree polynomial 𝑓𝑠 , such that 𝑓𝑠 (0) = 𝑥 . Each party 𝑃𝑖 ,

(𝑖 = 1, 2, 3) holds a distinct point over polynomial 𝑓𝑠 . They together

can reconstruct 𝑓𝑠 and obtain 𝑥 = 𝑓𝑠 (0) while any set less than

three parties contain no information about 𝑥 .

Then we introduce the two malicious protocols: E. Ps-Rep2k and

F. Ps-RepF : Ps refers to Post-Sacrifice strategy proposed by Lindell et
al. [30]. It compiles a semi-honest protocol into a malicious secure

version by adding a verification step. The verification step let the

honest parties detect cheating behavior with high probability. The

initial work [30] only considers finite field (Ps-RepF) and the follow-
up work [13] extends it to ring (Ps-Rep2k).

We choose these six protocols not only because they are common

practical protocols with different assumptions, but also because

they exhibit various performance characteristics on the basic oper-

ations, which is helpful to show the generality of NFGen. Table 1
summarizes the selected MPC settings (S) with the absolute per-

formance of × and the performance of the other basic operations

relative to ×.
Evaluation environment. We perform all the evaluations on a

cluster of four servers with two 20-core 2 GHz Intel Xeon CPUs and

180 GB RAM each, connected through 10 Gbps Ethernet. MP-SPDZ

uses only three servers while PrivPy uses all four.

7.2 Performance

We use 15 widely-used non-linear functions for performance

evaluation, including 8 activation functions used in deep learning

and 7 probability distribution functions. The input domain of each

function is set to the interval without a close-to-zero derivative,

as these intervals are hard to approximate while others can be

simply approximated with some constants. We run these functions

on all six protocols in the two MPC platforms, and compare the

performance with direct evaluation as the baseline (except sigmoids
which is the built-in functions in both platforms). In all cases, we set

the accuracy requirement to 𝜖 = 10
−3

and 0̂ = 10
−6

(defined in Eq. 1),

and run the experiments on 10,000 evenly spaced 𝑥 samples. We

measure the computation time on 100-dimensional vectors. Table 2

shows five examples and Appendix D lists all the 15 functions. We

have the following important observations:

Performance. 1) NFGen achieves significant performance gain in

93% of these cases, with an average speedup of 6.5× and a max

speedup of 86.1× (Bs_dis on Rep2k).
2) NFGen significantly reduces communication, with an average

reduction of 39.3% and a max of 93%, but it is not proportional to

the speedups. This is because the OPPE algorithm uses a fixed num-

ber of communication rounds, and each round involves vectorized

comparisons and multiplications (depending on 𝑘 and𝑚), while the

baseline evaluates the function step-by-step, and thus may involve

more rounds, leading to longer computation time.

3) The more complicated a function is, the more likely NFGen
achieves a better speedup, for the same reason above.

4) Smaller𝑚 values perform better for most functions. As both

MP-SPDZ and PrivPy support vectorized > operations, the latency

is largely dependent of𝑚, even on the 100-dimensional vectors.

5) In malicious protocols (settings E and F), NFGen is more likely

to achieve smaller speedup or even slowdowns on a few functions

like sigmoid. There are two reasons: a) the × and > are very slow,

and the intensive ×’s introduce more validation checks (the Ps-
protocols use extra multiplication triplets to detect cheating); b)

the validation checks prevent efficient batch (vector) operations in

MP-SPDZ, resulting in less efficient OPPE execution.

Effectiveness of the profiler. 1) For the soft_sign function, on

all protocols in MP-SPDZ, NFGen automatically falls back to direct

evaluation (Section 6.1), while on PrivPy, it uses 𝑝8

8
polynomial and

achieves a 6.1× speedup. This is because the function essentially

computes an absolute value (equivalent to a >, plus a 1

𝑥). Both >

and
1

𝑥 are significantly slower than × in PrivPy, but it is not the

case for MP-SPDZ, as Table 7.1 shows. Thus, based on the profiler

results, NFGen chooses different evaluation strategies. In fact, we

manually test the polynomial approach for MP-SPDZ, and it is 1.6×
slower than direct evaluation (with the most efficient polynomial

(𝑝10

6
)), showing the effectiveness of the profiler.

2) The profiler can also select different (𝑘 ,𝑚) settings for differ-
ent protocols in MP-SPDZ. For example, it chooses different (𝑘 ,𝑚)s
for different protocols in computing sigmoid. Specifically, it uses a
larger 𝑘 for Rep2k (more × and fewer >), as > is 4× slower than ×
in Rep2k, according to Table 7.1.

3) For RepF , Ps-Rep2k, Ps-RepF and Shamir , the profiler tends to
choose larger𝑚 for a smaller 𝑘 , because the relative performance

between × and > is about 1 : 1 in these settings. Thus computing

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

Table 2: Examples in Performance Evaluations (Full Results in Appendix D)

𝐹 (𝑥) S ✓ (𝑘 ,𝑚) 𝑇
Fit

Communication (MB) Computation time (ms)

Base NFGen Save Base NFGen SpeedUp

sigmoid(𝑥) = 1

1+𝑒−𝑥
𝑥 ∈ [−50,+50], 𝐹 (𝑥) ∈ [0.0, 1.0]

Non-linear buildling-blocks: 2

A × (10, 8) 4.3 618 263 60% 147 23 6.3×
B ✓ (7, 10) 3.5 1 1 -5% 137 124 1.1×
C ✓ (5, 14) 3.5 4 4 -5% 1155 802 1.4×
D ✓ (5, 14) 3.5 18 19 -8% 1863 1525 1.2×
E ✓ (5, 14) 3.5 212 308 -45% 75949 106857 0.7×
F ✓ (5, 14) 3.5 207 234 -13% 9732 11224 0.9×

tanh(𝑥) = 𝑒𝑥 −𝑒−𝑥
𝑒𝑥 +𝑒−𝑥

𝑥 ∈ [−50,+50], 𝐹 (𝑥) ∈ [−1.0, 1.0]
Non-linear buildling-blocks: 3

A × (9, 8) 4.5 1876 216 90% 335 21 15.7×
B × (5, 9) 3.2 13 1 92% 800 80 10.0×
C × (5, 9) 3.2 19 3 83% 5901 597 9.9×
D × (5, 9) 3.2 64 14 78% 8882 1115 8.0×
E × (5, 9) 3.2 996 197 80% 337530 68550 4.9×
F × (5, 9) 3.2 966 150 84% 45486 7309 6.2×

soft_sign(𝑥) = 𝑥
1+|𝑥 |

𝑥 ∈ [−50, 50], 𝐹 (𝑥) ∈ [−1.0, 1.0]
Non-linear buildling-blocks: 2

A × (8, 8) 1.9 518 231 60% 131 21 6.1×
B ✓ NA 1.3 1 1 0% 79 78 1.0×
C ✓ NA 1.3 2 2 0% 451 437 1.0×
D ✓ NA 1.3 8 8 0% 741 753 1.0×
E ✓ NA 1.3 52 52 0% 15507 15520 1.0×
F ✓ NA 1.3 49 49 0% 2315 2373 1.0×

Normal_dis(𝑥) = 𝑒
− 𝑥

2

2√
2𝜋

𝑥 ∈ [−10,+10], 𝐹 (𝑥) ∈ [0.0, 0.4]
Non-linear buildling-blocks: 1

A × (8, 12) 5.2 420 295 30% 67 24 2.8×
B × (8, 12) 3.6 3 2 45% 4906 156 31.5×
C × (8, 12) 3.6 7 5 27% 5029 970 5.2×
D × (8, 12) 3.6 24 23 5% 6588 1846 3.6×
E × (5, 22) 3.6 257 481 -87% 89740 166328 0.5×
F × (8, 12) 3.6 249 301 -21% 14908 14861 1.0×

Bs_dis(𝑥) [5] =
(√

𝑥+
√

1

𝑥
2𝛾𝑥

)
𝜙

(√
𝑥−

√
1

𝑥
𝛾

)
𝛾 = 0.5, 𝑥 ∈ [10

−6
, 30], 𝐹 (𝑥) ∈ [0.0, 0.2]

Non-linear buildling-blocks: 3

A × (10, 8) 4.0 2815 263 90% 630 22 29.1×
B × (7, 11) 3.2 13 1 89% 11463 133 86.1×
C × (5, 16) 3.2 23 5 79% 14631 915 16.0×
D × (5, 16) 3.2 65 22 66% 19167 1763 10.9×
E × (5, 16) 3.2 741 352 53% 239549 122325 2.0×
F × (5, 16) 3.2 718 268 63% 42157 13136 3.2×

*𝑇
Fit

is the time for 𝑝𝑚
𝑘

fitting in seconds. ✓indicates whether baseline achieves the accuracy requirements.

𝑂 (log𝑘) rounds of ×s is more expensive than a single round of

vectorized >.

Independence and parallelism. We adopt two types of optimiza-

tions to accelerate the online phase performance: 1) Independent

evaluation of × and >: As we have discussed in Section 4.3, it

is independent to perform the comparisons and to compute 𝑥 to

the 𝑘-th power. We evaluate the speedup on PrivPy by running

them independently
4
. Figure 2(a) shows the performance results

with/without independent evaluation. We can see the optimization

provides a 1.3− 1.4× speedup even on small 100-dimensional input.

2) Concurrency on large inputs: Figure 2(b) shows the perfor-

mance with varied numbers of threads on 10
6
input. We observe

good speedup up to 10 threads (about 4× speedup comparing with

the single-thread) for all four functions we evaluate. Using more

than 10 threads decreases performance as given the vector size, cost

of threading overweights the speedup.

7.3 Accuracy

4
MP-SPDZ does not support customized multi-threading in its user-level language so

we do not adopt this optimization.

(a) Evaluate ×, > Independently (IE)
(b) Multi-threads Acceleration

Figure 2: Performance Optimizations

Accuracy against the baseline. We compute the soft relative

distance (SRD in Section 3) on each of the 10,000 input samples. We

see a large variation of SRDs on different functions, and Figure 3

shows the cumulative distribution functions (CDFs) of the SRDs on
each function for both the baseline and NFGen.

We observe the following: 1) 100% of the SRD of all 10k samples

are under 10
−3

(the target 𝜖), ranging between 10
−12

and 10
−3
,

as expected. 2) In comparison, the baseline shows diverse errors

across functions. The 𝐶𝑎𝑢𝑐ℎ𝑦_𝑑𝑖𝑠 is very accurate as it is just a

1

𝑥 (NFGen falls back to direct evaluation in this case). However,

in some functions, the baseline shows errors way exceeding the

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Figure 3: CDF of the Relative Errors

Figure 4: Overflow Error Examples

10
−3

limit (dashed vertical line in Figure 3) on over 10% samples

(Function 𝐵𝑠_𝑑𝑖𝑠 has 100% and 𝑡𝑎𝑛ℎ has more than 35%). There are

two reasons: precision loss due to concatenatingmultiple non-linear

functions and errors due to overflow/underflow. 3) Baseline has a

larger percentage of samples with smaller errors (e.g. < 10
−9
) than

NFGen. This is as expected too:NFGen is based on a regressionmodel

to approximate, while baseline is a direct computation. However, we

believe the predictable accuracy is more important than sometimes

getting smaller errors.

Errors due to overflows/underflows. When the evaluation of

𝐹 (𝑥) uses an intermediate result in a large range, like 𝑒𝑥 , it over-

flows given an 𝑥 with |𝑥 | > ln 2
(96−48−1) ≈ 33.2 in MP-SPDZ with

⟨96, 48⟩-FXP. The top two rows in Figure 4 plot SRD vs. 𝑥 value

for the baselines, and show the overflow cases, where the SRD can

exceed 10
5
, even if the range of 𝐹 (𝑥) is perfectly representable. In

comparison, the bottom two rows in Figure 4 show that SRDs are

less than 10
−3

in NFGen. It also uncovers that NFGen has larger

SRD when 𝐹 (𝑥) is close to zero, as the accuracy of polynomial

approximation are constrained by the limited resolution of FXP.

Error accumulation. The error accumulation problem widely ex-

ists in scientific computing [3], even with double precision numbers.

Figure 5: Error Accumulation Case

Table 3: Secret Sharing Reconstruction Loss
Simulation Secret Sharing

Max(×10
−4
) Mean(×10

−5
) Max(×10

−4
) Mean(×10

−5
)

tanh 8.06 3.88 8.06 3.88

soft_plus
∗

7.67 2.94 8.00 2.98

sigmoid 3.98 1.87 3.98 1.87

elu 8.50 12.87 8.50 12.87

selu 5.24 1.94 5.24 1.94

gelu 8.79 6.11 8.79 6.11

isru 8.61 28.18 8.61 28.18

normal_dis
∗

3.40 1.01 10.49 2.53

gamms_dis 8.80 3.11 8.80 3.11

chi_square 7.27 10.70 7.50 10.70

exp_dis 7.39 19.76 7.39 19.77

log_dis 4.24 3.28 4.24 3.28

bs_dis
∗

5.96 1.98 6.91 1.97

Using FXP makes the problem worse, especially when the calcula-

tion of the target functions has many steps. As NFGen approximate

the entire 𝐹 (𝑥) in one shot, it does not accumulate errors.

We take the 𝐵𝑠_𝑑𝑖𝑠 function (Row 5 in Table 2), whose calculation

has four steps, as an example. 1) 𝑥11 ←
√
𝑥 ; 𝑥12 ← 1

𝑥 ; 2) 𝑥2 ←√
𝑥12; 3) 𝑥3 ← 𝜙 (𝑥11−𝑥2

𝛾) and 4) 𝑥4 ← (𝑥11+𝑥2

2𝛾∗𝑥) ∗ 𝑥3. Using 10k 𝑥

samples, we compute the SRD after each step, and plot the CDF in

Figure 5 (left). We can see that although the first two steps results

in negligible SRD that is smaller than 10
−10

, more samples starts

to show larger SRD after steps 3 and 4. After step 4, only less

than half of the samples meet the accuracy requirement of 10
−3
.

Figure 5 (right) shows the evaluation results, and we find obvious

inaccuracies for 𝑥 ∈ [0.054, 18], without overflow or underflow. In

comparison, NFGen successfully limits the error below 3.8 × 10
−4

using 𝑝11

5
.

Accuracy loss in secret sharing. The secret sharing and re-

construction processes in MPC platforms may introduce extra

inaccuracies as they approximate each real value in fixed-point

shares [11, 37] (we call it secret sharing reconstruction error (SSRE)).
For example, we observe that the value of exactly 1 × 10

−14
, after

secret sharing and reconstruction, may become 1.06581 × 10
−14

.

This SSRE also adds inaccuracy to the final evaluation result. To

quantify the contribution of SSRE, we compare the SRD using real

MPC to our simulated FXP (without SSRE). Table 3 shows the com-

parison (* highlights cases with different results). We can see that

SSRE does increase the inaccuracy, but the contribution is small

comparing to other sources of inaccuracy.

Accuracy with different FXP widths. Many MPC platforms of-

fer configurable ⟨𝑛, 𝑓 ⟩ for FXP numbers. While reducing 𝑛 saves

computation cost, a small𝑛 limits the input domain for both baseline

methods and NFGen, because we need to represent all inputs, inter-

mediate results and outputs with the number of bits. We conduct

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

Table 4: Domain Restriction with Data Representation
Config 𝐹 (𝑥) (𝑘 ,𝑚) Origin 𝐷 Ours 𝐷

⟨128, 64⟩
0̂ = 10

−6

𝜖 = 10
−4

𝑡𝑎𝑛ℎ (6, 11) [−44.4, 44.4] (−10
19

, 10
19)

soft_plus (9, 9) [−44.4, 44.4] (−10
19

, 10
19)

Normal_dis (6, 48) [−9.4, 9.4] (−10
19

, 10
19)

Bs_dis (10, 9) [0.0, 24.1] (0, 10
19)

⟨96, 48⟩
0̂ = 10

−6

𝜖 = 10
−3

𝑡𝑎𝑛ℎ (6, 11) [−33.3, 33.3] (−10
14

, 10
14)

soft_plus (6, 11) [−33.3, 33.3] (−10
14

, 10
14)

Normal_dis (10, 9) [−8.2, 8.2] (−10
14

, 10
14)

Bs_dis (5, 14) [0.1, 18.6] (0, 10
14)

⟨64, 32⟩
0̂ = 10

−5

𝜖 = 10
−3

𝑡𝑎𝑛ℎ (5, 9) [−22.2, 22.2] (−10
9
, 10

9)
soft_plus (7, 9) [−22.2, 22.2] (−10

9
, 10

9)
Normal_dis (10, 9) [−6.7, 6.7] (−10

9
, 10

9)
Bs_dis (5, 14) [0.1, 13.0] (0, 10

9)

⟨32, 16⟩
0̂ = 10

−2

𝜖 = 5 · 10
−2

𝑡𝑎𝑛ℎ (4, 6) [−11.1, 11.1] (−10
4
, 10

4)
soft_plus (4, 6) [−11.1, 11.1] (−10

4
, 10

4)
Normal_dis (4, 7) [−4.7, 4.7] (−10

4
, 10

4)
Bs_dis (5, 5) [0.1, 7.4] (0, 10

4)

* The function range are actually defined by 0̂, we set outer range to

default constant (e.g., 𝑡𝑎𝑛ℎ (𝑥) = −1 for ∀𝑥 ≤ −18.79).

experiments with 𝑛 ranging from 32 to 128 and compare the sup-

ported 𝑥 domain between the baseline and NFGen and summarize

the results in Table 4.

We observe: 1) As 𝑛 gets smaller, the ranges shrink for both

cases. NFGen supports a much larger domain even for 𝑛 = 32. This

is because the baseline domain is severely limited by the range of

intermediate results, e.g.
1

𝑥 overflows when 𝑥 gets close to zero

and 𝑒𝑥 overflows when 𝑥 > ln 2
𝑛−𝑓 −1

. 2) In contrast, 𝑛 affects

the domain in NFGen in two different ways: a) it directly limits

representable 𝑥 to |2𝑛−𝑓 −1 |; b) it limits the representation of 𝑥𝑘 ,

forcing us to use only small 𝑘 values (Column 3). We see that NFGen
can automatically adapt to the 𝑛 settings by reducing the 𝑘 values

to prevent overflows. 3) As expected, a small 𝑘 limits the accuracy

we can achieve. We empirically determine the minimal possible

accuracy (both 0̂ and 𝜖) when we require𝑚 < 1000 (Column 1),

and find that even in the ⟨32, 16⟩ setting (i.e. the max representable

number is only 2
15
), we can still maintain an 𝜖 ≈ 5%, covering

almost the entire representable domain between −10
4
and 10

4
.

Limitations on accuracy. As NFGen uses approximations, there

is no guarantee that it will find a workable polynomial with small

𝜖s. We have shown that when 𝜖 = 10
−3
, we can successfully find

approximations for all 15 functions. When we set 𝜖 = 10
−4
, we fail

to find a good 𝑝𝑚
𝑘

for 𝐺𝑎𝑚𝑚𝑎_𝑑𝑖𝑠 . If we further limit 𝜖 to 10
−5
, six

out of the 15 functions fails to fit. However, considering that MPC

is mostly employed on data mining applications that do not require

high precision, we believe NFGen strikes the right balance between
efficiency and predictable accuracy.

7.4 Applied in Real Algorithms
NFGen benefits MPC algorithms mainly in two ways. First, it im-

proves both performance and accuracy for existingMPC algorithms.

Second, it allows people to evaluate advanced non-linear functions

that we cannot construct with simple built-ins. We use logistic

regression (LR) as an example to show the first benefit, and use a

series of special functions and the 𝜒2
test to show the second.

Logistic Regression (LR) Accuracy. LR [6] is one of the most

utilized data mining algorithms, both in plaintext and MPCs. The

Figure 6: Sigmoid Approximation Comparison

Table 5: Performance Analysis of sigmoid
Data setting

∗
Real NFGen SecureML [36, 37] [22]

(0.5, 3, 0.2) 59.2 59.2 49.2 58.6

(0.6, 3, 0.1) 62.5 62.5 50.8 62.2

(0.7, 3, 0.1) 65.8 65.8 51.4 65.3

(0.7, 4, 0.1) 61.9 61.9 50.0 61.5

* The three numbers are arguments class_sep, clusters_per_class
and learning_rate passed to the Python sklearn library’s

make_classifiation() funtion to generate the dataset.

Table 6: Logistic Regression Speedups
Dataset Method Train(sec) Test(sec)

Adult [27]

(48, 842 × 65)

PrivPy 413.1 1.8

NFGen 43.6 / 9.5× 0.8 / 2.3×

Bank [38]

(41, 188 × 63)

PrivPy 72.8 1.6

NFGen 20.4 / 3.6× 0.8 / 2.0×

Branch [40]

(400, 000 × 480)

PrivPy 703.8 12.2

NFGen 199.9 / 3.5× 6.9 / 1.8×

major challenge for MPC is the slow performance of evaluating sig-
moid. Prior projects use a 3-piece linear function [36, 37], and [22]

uses single Chebyshev polynomial to approximate the sigmoid. Fig-
ure 6 compares the sigmoid function with different approximations.

People argue that the accuracy of sigmoid does not affect the

LR accuracy[22, 36, 37]. To evaluate this argument, we generate

four datasets using Python sklearn’s make_classifiation()method,

and use them to train LR models using different approximations.

Table 5 reports the LR prediction accuracy. We see that the 3-piece

approximation can lead to significant LR accuracy loss, while the

approximation in [22] slightly reduces accuracy. In comparison,

NFGen achieves almost the same accuracy as the plaintext result.

Thus, sigmoid accuracy does affect LR performance in some cases.

NFGen provides an efficient way to evaluate sigmoid with high

accuracy, eliminating the need for ad hoc approximations.

LR performance. We use 3 real datasets to evaluate LR training

and inference time on PrivPy. We omit evaluation on MP-SPDZ

as it needs to pre-compile all input data into the program, but the

compiler fails on large datasets. Independent of the dataset, we set

the 𝑥 domain to [−10, 10], which is a typical setting in practice

when the distribution of dataset is unknown (when 𝑥 ∉ [−10, 10],
output 0 or 1). Table 6 shows the results. We can see that NFGen
achieves 3.5× to 9.5× speedup in training and 1.8× to 2.3× speedup

for inference using 𝑝6

8
and with same Accuracy as plaintext LR.

Hard-to-implement functions. A big problem MPC practition-

ers face is how to implement some commonly-used but hard-to-

implement functions, such as 𝛾 (𝑥), Γ(𝑥) and Φ(𝑥). These functions
are defined as integrals, and it takes much mathematical skills to

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Table 7: Special Functions Demonstration
Target Function Parameter (𝑘 ,𝑚) 𝑇Fit(sec)

𝛾 (𝑥 ,𝑧) =
∫ 𝑥

0
𝑡𝑧−1𝑒𝑡 𝑑𝑡 , 𝑥 ∈ [0, 15]

𝑧 = 1 (6, 4) 1.1

𝑧 = 2 (5, 6) 1.6

𝑧 = 3 (6, 6) 2.0

Γ (𝑥 ,𝑧) =
∫ ∞
𝑥

𝑡𝑧−1𝑒𝑡 𝑑𝑡 , 𝑥 ∈ [0, 10]
𝑧 = 1 (6, 6) 1.1

𝑧 = 2 (8, 4) 1.1

𝑧 = 3 (7, 4) 1.2

𝑒𝑟 𝑓 (𝑥) = 2√
𝜋

∫ 𝑥

0
𝑒−𝑡

2

𝑑𝑡 , 𝑥 ∈ [0, 5] NA (4, 6) 0.8

Φ(𝑥) = 2√
2𝜋

∫ 𝑥

0
𝑒
−𝑡2

2 𝑑𝑡 , 𝑥 ∈ [−5, 5] NA (8, 6) 1.2

Table 8: 𝜒2 Test using Real Datasets
Dataset Feature Dof (𝑘 ,𝑚) Error Time(sec)

Cervical [33]

(72 × 20)

5 features for demo

Sexual behavior 5 (6, 11) 0

13.8

Eating behavior 7 (5, 13) 0

Personal hygine 11 (5, 14) 0

Social support 11 (5, 14) 0

Attitude 6 (5, 11) 0

Sepsis [12]

(110, 204 × 3)

age 10 (5, 12) 0

63.3sexual 1 (5, 98) 0

episode number 4 (5, 9) 0

approximate them using the limited operators in MPC (and impossi-

ble sometimes). NFGen naturally solves the problem for all Lipschitz

continuous functions as long as there is a plaintext implementa-

tion available. We demonstrate 8 hard-to-implement functions in

Table 7. We see that like other functions, it only takes about 1-2

seconds to generate the approximation and achieve small 𝑘 and𝑚

meeting the same accuracy requirement.

The 𝜒2 test on real datasets. 𝜒2 test [35] is a classic statistical
method. Unfortunately, the 𝑝 value from 𝜒2

test depends on the 𝛾

and Γ functions in Table 7, as 𝑝 = 1 − 𝛾 (𝑘
2

,
𝑥
2
)

Γ (𝑘
2
) , where

𝛾 (𝑘
2

,
𝑥
2
)

Γ (𝑘
2
) is the

CDF of 𝜒2
distribution, 𝑥 is the statistical value and 𝑘 is the degree-

of-freedom (Dof) parameter that is typically set to the number of

classes minus 1. No current MPC framework supports 𝜒2
test yet, to

our knowledge. We show that we can easily implement 𝜒2
test with

NFGen on real datasets. The datasets contain features of a patient

with certain diseases, and as a typical task in medical research, we

use 𝜒2
test to determine whether the probability of a disease is

correlated to a feature. Table 8 shows that we can evaluate cases

with different Dofs, and achieve the same result as in plaintext (with

3 significant digits).

7.5 Effectiveness of Design Choices
We conduct an ablation study to evaluate the design choices in

NFGen, including the Scaling factor (Algorithm 5), Residual boosting
(Algorithm 6) and the Merge stage in Algorithm 1, using the same

setting as in Section 7.2, on Rep2k.
We evaluate each technique on four functions, and Table 9 sum-

marizes the result. We measure three metrics on each ablation case:

1) 𝑇Fit is the runtime of Algorithm 1; 2) Best (𝑘 ,𝑚) is the best-

performance 𝑝𝑚
𝑘

we find; 3) Failures count the number of cases

where we do not find a feasible 𝑝𝑚
𝑘

for 𝑘 with𝑚 < 𝑚𝑚𝑎𝑥 .

Table 9: Ablation Studies
𝐹 (𝑥) Metric NFGen no merge no boosting no scaling

𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑇Fit 3.1 2.2 14.0 2.6

Best (𝑘 ,𝑚) (7, 10) (5, 20) (7, 10) (7, 12)

Failures 0 0 1 0

soft_plus

𝑇Fit 2.7 1.8 14.1 2.0

Best (𝑘 ,𝑚) (7, 4) (4, 30) (7, 4) (4, 9)

Failures 0 0 1 0

𝑠𝑒𝑙𝑢

𝑇Fit 1.3 0.9 1.2 36.0

Best (𝑘 ,𝑚) (8, 9) (6, 14) (8, 9) (6, 12)

Failures 0 0 0 3

Gamma_dis

𝑇Fit 4.3 1.1 40.8 1.2

Best (𝑘 ,𝑚) (7, 21) (5, 35) NA (5, 26)

Failures 0 0 7 0

Key observations include: 1) Though each technique takes extra

pre-computation time, the overhead is less than 1 second per tech-

nique. However, without them some functions are even slower to fit,

e.g. 𝑠𝑒𝑙𝑢 w/o scaling and𝐺𝑎𝑚𝑚𝑎_𝑑𝑖𝑠 w/o residual boosting are both

slower because some otherwise possible 𝑝𝑚
𝑘

will not pass the check

and results in more searching steps. 2) The merge step significantly

reduces𝑚, as the splitting strategy often unnecessarily increases

the number of pieces. 3) Failures are more often if we remove resid-

ual boosting or scaling, showing that they effectively make some

approximation possible by remedying inaccuracies introduced by

the FLP-FXP conversion.

8 CONCLUSION AND FUTUREWORK
Creating general-purpose MPC platforms is analogous to creating a

new computation system from scratch usingMPCprimitives instead

of instructions. Non-linear function evaluation, akin to plaintext

numeric libraries, is one of these systems’ foundations. Prior ap-
proaches either naively attempted to reuse plaintext algorithms that

resulted in erroneous results and/or slow performance, or devel-

oped ad hoc approximations that were tightly coupled with either

specific functions or MPC platforms. Neither method possesses the

generality or performance necessary to serve as a viable foundation.
NFGen is, to our knowledge, the first attempt for a generic solu-

tion. We can accurately approximate general non-linear functions

using piecewise polynomials by properly handling FXP and FLP

operations. We achieve portability across multiple MPC systems

and protocols by utilizing code generation and profiler-based per-

formance prediction. Extensive evaluations verify our approach’s

effectiveness, accuracy, and generality.

As future work, we are going to support more MPC platforms,

explore approximation algorithms with stronger theoretical guar-

antees, as well as support the evaluation of multi-dimensional non-

linear functions.

ACKNOWLEDGEMENTS
We thankMenghua Cao and Zhilong Chen for insightful discussions

during the design of NFGen. We thank Yuanxi Dai and Xinze Li for

their assistance with the security analysis. We thank Xiang Wang

and Haoqing He for their help during the implementations.

This work is supported in part by the National Natural Science

Foundation of China (NSFC) Grant 71872094 and gift funds from

Nanjing Turing AI Institute.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229

[2] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. 2013. Se-

cure Computation on Floating Point Numbers. In The Network and Distributed

System Security Symposium (NDSS).

[3] Kendall Atkinson and Weimin Han. 2005. Theoretical Numerical Analysis.

Vol. 39. Springer.

[4] Donald Beaver. 1991. Efficient Multiparty Protocols using Circuit Randomization.

In Annual International Cryptology Conference. Springer.

[5] Zygmunt W Birnbaum and Sam C Saunders. 1969. A New Family of Life Distri-

butions. Journal of applied probability (1969).

[6] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern Recognition and

Machine Learning, Chapter 4.3.4. Springer.

[7] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework

for Fast Privacy-preserving Computations. In European Symposium on Research

in Computer Security. Springer.

[8] Chillotti Ilaria Gama Nicolas Jetchev Dimitar Peceny Stanislav Petric Alexander

Boura, Christina. 2018. High-Precision Privacy-Preserving Real-Valued Function

Evaluation. In International Conference on Financial Cryptography and Data

Security (FC).

[9] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic

Protocols. Journal of CRYPTOLOGY (2000).

[10] Ran Canetti. 2001. Universally Composable Security: A new Paradigm for Cryp-

tographic Protocols. In IEEE Symposium on Foundations of Computer Science

(FOCS). IEEE.

[11] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-

point Numbers. In International Conference on Financial Cryptography and

Data Security (FC). Springer.

[12] Davide Chicco and Giuseppe Jurman. 2020. Survival Prediction of Patients

with Sepsis from Age, Sex, and Septic Episode Number Alone. Scientific reports

(2020).

[13] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPDZ
2
𝑘 : Efficient MPC mod 2

𝑘
for Dishonest Majority. In Advances

in Cryptology—Crypto.

[14] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Secure Evaluation of

Quantized Neural Networks. Proceedings on Privacy Enhancing Technologies

(PET) (2020).

[15] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl,

and Nikolaj Volgushev. 2019. New Primitives for Actively-secure MPC over

Rings with Applications to Private Machine Learning. In IEEE Symposium on

Security and Privacy (S&P). IEEE.

[16] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.

2006. Unconditionally secure constant-rounds multi-party computation for equal-

ity, comparison, bits and exponentiation. In Theory of Cryptography Conference

(TCC). Springer.

[17] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for Efficient Mixed-protocol Secure Two-party Computation.. In The

Network and Distributed System Security Symposium (NDSS).

[18] Xiaoyu Fan, Guosai Wang, Kun Chen, Xu He, and Wei Xu. 2021. PPCA: Privacy-

preserving Principal Component Analysis using Secure Multiparty Computation

(mpc). arXiv preprint arXiv:2105.07612 (2021).

[19] Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. 2014. Oblivi-

ous radix sort: An efficient sorting algorithm for practical secure multi-party

computation. Cryptology ePrint Archive (2014).

[20] Kyoohyung Han, Jinhyuck Jeong, Jung Hoon Sohn, and Yongha Son. 2020. Effi-

cient Privacy Preserving Logistic Regression Inference and Training. Cryptology

ePrint Archive (2020).

[21] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.

SoK: General Purpose Compilers for Secure Multi-party Computation. In IEEE

Symposium on Security and Privacy (S&P). IEEE.

[22] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N Wright. 2018.

Privacy-preserving Machine Learning as a Service. Proceedings on Privacy

Enhancing Technologies (PET) (2018).

[23] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-party Computa-

tion. In ACM SIGSAC Conference on Computer and Communications Security

(CCS).

[24] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC.

In International Conference on the Theory and Application of Cryptology and

Information Security (ASIACRYPT). Springer.

[25] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

2017. Self-normalizing Neural Networks. Advances in neural information

processing systems (NIPS) 30 (2017).

[26] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. 2021. CrypTen: Secure Multi-party Com-

putation Meets Machine Learning. Advances in Neural Information Processing

Systems (NIPS) (2021).

[27] Ron Kohavi et al. 1996. Scaling up the Accuracy of Naive-bayes Alassifiers: A

Decision-treeHybrid.. In ACMSIGKDD International Conference onKnowledge

Discovery & Data Mining (KDD).

[28] The Scikit learn Documentation. 2011. Polynomial regression: extending linear

models with basis functions. https://scikit-learn.org/stable/modules/linear_

model.html. (2011).

[29] Yi Li and Wei Xu. 2019. PrivPy: General and Scalable Privacy-preserving Data

Mining. In ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining (KDD).

[30] Yehuda Lindell and Ariel Nof. 2017. A Framework for Constructing Fast MPC

over Arithmetic Circuits with Malicious Adversaries and an Honest-majority. In

ACM SIGSAC Conference on Computer and Communications Security (CCS).

[31] Yehuda Lindell and Benny Pinkas. 2000. Privacy Preserving Data Mining. In

Annual International Cryptology Conference. Springer.

[32] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. Honeybadgermpc and asynchromix: Practical

asynchronous mpc and its application to anonymous communication. In ACM

SIGSAC Conference on Computer and Communications Security (CCS).

[33] Rizanda Machmud, Adi Wijaya, et al. 2016. Behavior Determinant Based Cervical

Cancer Early Detection with Machine Learning Algorithm. Advanced Science

Letters (2016).

[34] Wolfram MathWorld. 2015. Lagrange interpolating polynomial. (2015).

[35] William Mendenhall, Robert J Beaver, and Barbara M Beaver. 2012. Introduction

to Probability and Statistics, Chapter 14. Cengage Learning.

[36] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Frame-

work for Machine Learning. In ACM SIGSAC conference on computer and

communications security (CCS).

[37] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scal-

able Privacy-preserving Machine Learning. In IEEE Symposium on Security and

Privacy (S&P). IEEE.

[38] Sérgio Moro, Paulo Cortez, and Paulo Rita. 2014. A Data-driven Approach to

Predict the Success of Bank Telemarketing. Decision Support Systems (2014).

[39] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,

Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. SIRNN: A Math

Library for Secure RNN Inference. In IEEE Symposium on Security and Privacy

(S&P). IEEE.

[40] DMITRY SHKADAREVICH. 2021. Branch prediction Binary Classi-

fication Dataset. https://www.kaggle.com/datasets/dmitryshkadarevich/

branch-prediction. (2021).

[41] Sijun Tan, Brian Knott, Yuan Tian, and David JWu. 2021. CryptGPU: Fast Privacy-

preserving Machine Learning on the GPU. In IEEE Symposium on Security and

Privacy (S&P). IEEE.

[42] Lloyd N Trefethen. 2019. Approximation Theory and Approximation Practice,

Extended Edition. Society for Industrial and Applied Mathematics (SIAM).

A ANALYSIS OF ALGORITHM
A.1 Maximum SRD Analysis for Section 3
Weprove the upper-bound of the real maximum soft relative distance
between the piecewise polynomial 𝑝𝑚

𝑘
and the target Lipschitz

continuous 𝐹 (𝑥) over domain 𝑥 ∈ [𝑎,𝑏] in this section.

Theorem A.1 (Upper-bound of maximum soft relative dis-

tance between approximation and target function). By con-
straining the maximum soft relative distance (Eq 1) over sample set
x̂ = {𝑥1, …,𝑥𝑖 , …,𝑥𝑁 } as Eq 2, where the sampling interval 𝑟 = 𝑏−𝑎

𝑁
,

there exist constant 𝐶 , such that the piecewise polynomial 𝑝𝑚
𝑘

and
target Lipschitz continuous function 𝐹 (𝑥) satisfy:

max

𝑥 ∈[𝑎,𝑏]
|𝐹 (𝑥) − 𝑝𝑚

𝑘
(𝑥) |𝑑 ≤

{
𝐶 ·𝑟
|𝐹 (𝑥) | + 1, |𝐹 (𝑥) | > 0̂

𝐶 · 𝑟 + 𝜖 , |𝐹 (𝑥) | ≤ 0̂

Proof. As 𝐹 (𝑥) and piecewise polynomial 𝑝𝑚
𝑘
(𝑥) (refer to 𝑝 (𝑥)

in the following proof for simplicity) are both Lipschitz continuous,

there exist Lipschitz constants 𝐶𝐹 and 𝐶𝑝 that for any interval

[𝑥𝑖 ,𝑥𝑖+1], where 𝑥𝑖 and𝑥𝑖+1 ∈ x̂, |𝑥𝑖+1 − 𝑥𝑖 | = 𝑟 are successive

sample points, we have:

|𝐹 (𝑥) − 𝐹 (𝑥𝑖) | ≤ 𝐶𝐹 · |𝑥 − 𝑥𝑖 | ≤ 𝐶𝐹 · 𝑟 ,

|𝑝 (𝑥) − 𝑝 (𝑥𝑖) | ≤ 𝐶𝑝 · |𝑥 − 𝑥𝑖 | ≤ 𝐶𝑝 · 𝑟 ,

(5)

https://doi.org/10.1109/IEEESTD.2019.8766229
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://www.kaggle.com/datasets/dmitryshkadarevich/branch-prediction
https://www.kaggle.com/datasets/dmitryshkadarevich/branch-prediction

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

for ∀𝑥 ∈ [𝑥𝑖 ,𝑥𝑖+1].
As the accuracy constraint (Eq 2) satisfies on sample set x̂, we

have:

max

𝑥 ∈x̂
|𝐹 (𝑥) − 𝑝 (𝑥) |𝑑 ≤ 𝜖 . (6)

Thus, the absolute distance |𝐹 (𝑥)−𝑝 (𝑥) |,∀𝑥 ∈ [𝑥𝑖 ,𝑥𝑖+1] satisfies:
|𝐹 (𝑥) − 𝑝 (𝑥) |
= |𝐹 (𝑥) + 𝐹 (𝑥𝑖) − 𝐹 (𝑥𝑖) + 𝑝 (𝑥𝑖) − 𝑝 (𝑥𝑖) − 𝑝 (𝑥) |
≤ |𝐹 (𝑥) − 𝐹 (𝑥𝑖) | + |𝐹 (𝑥𝑖) − 𝑝 (𝑥𝑖) | + |𝑝 (𝑥𝑖) − 𝑝 (𝑥) |
≤ 𝐶𝐹 · 𝑟 +𝐶𝑝 · 𝑟 + |𝐹 (𝑥𝑖) − 𝑝 (𝑥𝑖) |

(7)

1) When |𝐹 (𝑥𝑖) | > 0̂, we have |𝐹 (𝑥𝑖) − 𝑝 (𝑥𝑖) | ≤ 𝜖 · |𝐹 (𝑥𝑖) | (Eq 1).
As |𝐹 (𝑥) −𝐹 (𝑥𝑖) | ≤ 𝐶𝐹 ·𝑟 holds (Eq 5), then |𝐹 (𝑥𝑖) | ≤ 𝐶𝐹 ·𝑟 + |𝐹 (𝑥) |,
thus from Eq 7, we have:

|𝐹 (𝑥) − 𝑝 (𝑥) | ≤ 𝐶𝐹 · 𝑟 +𝐶𝑝 · 𝑟 + 𝜖 · |𝐹 (𝑥𝑖) |
≤ 𝐶𝐹 · 𝑟 +𝐶𝑝 · 𝑟 + 𝜖 · (𝐶𝐹 · 𝑟 + |𝐹 (𝑥) |)
≤ (𝐶𝐹 +𝐶𝑝 + 𝜖 ·𝐶𝐹) · 𝑟 + 𝜖 · |𝐹 (𝑥) |,

Let 𝐶 = 𝐶𝐹 +𝐶𝑝 + 𝜖 ·𝐶𝐹 , when |𝐹 (𝑥) | > 0̂, we have:

|𝐹 (𝑥) − 𝑝 (𝑥) |𝑑 =
|𝐹 (𝑥) − 𝑝 (𝑥) |

𝐹 (𝑥) ≤ 𝐶 · 𝑟
|𝐹 (𝑥) | + 𝜖 , (8)

otherwise:

|𝐹 (𝑥) − 𝑝 (𝑥) |𝑑 = |𝐹 (𝑥) − 𝑝 (𝑥) | ≤ 𝐶 · 𝑟 . (9)

2) When |𝐹 (𝑥𝑖) | ≤ 0̂, we can bound the range of |𝐹 (𝑥) | as:
|𝐹 (𝑥) | ≤ 𝐶𝐹 · 𝑟 + |𝐹 (𝑥𝑖) |

≤ 𝐶𝐹 · 𝑟 + 0̂ < 𝐶𝐹 · 𝑟 + 𝜖 ,

and we have |𝐹 (𝑥𝑖) − 𝑝 (𝑥𝑖) | ≤ 𝜖 , combining with Eq 7:

|𝐹 (𝑥) − 𝑝 (𝑥) | ≤ 𝐶𝐹 · 𝑟 +𝐶𝑝 · 𝑟 + 𝜖 .

Let 𝐶 = 𝐶𝐹 +𝐶P , when |𝐹 (𝑥) | > 0̂, we have:

|𝐹 (𝑥) − 𝑝 (𝑥) |𝑑 =
|𝐹 (𝑥) − 𝑝 (𝑥) |
|𝐹 (𝑥) |

≤ (𝐶𝐹 +𝐶P) · 𝑟
|𝐹 (𝑥) | + 𝜖

|𝐹 (𝑥) |

≤ (𝐶𝐹 +𝐶P) · 𝑟
|𝐹 (𝑥) | + 𝜖

𝐶𝐹 · 𝑟 + 𝜖

≤ 𝐶 · 𝑟
|𝐹 (𝑥) | + 1,

(10)

otherwise:

|𝐹 (𝑥) − 𝑝 (𝑥) |𝑑 = |𝐹 (𝑥) − 𝑝 (𝑥) | ≤ 𝐶 · 𝑟 + 𝜖 . (11)

Combining Eq 8,9,10,11, we prove the result in Theorem A.1. □

A.2 Effectiveness of Simulated 𝑥 through
FLPsimFXP (Algorithm 4)

For all possible FLP encoded input 𝑥 ∈ R, the return value 𝑥 ′ =
FLPsimFXP(𝑥 ,𝑛, 𝑓) can be represented in ⟨𝑛, 𝑓 ⟩-FXP.
∀𝑥 ∈ R, if it returns in the first two steps of FLPsimFXP (Algo-

rithm 4), then it is obvious. Otherwise, it does not return in the first

two steps of FLPsimFXP, it satisfies that:

2
−𝑓 ≤ |𝑥 | ≤ 2

𝑛−𝑓 −1
(12)

As round2 (𝑥 , 𝑓) rounds-off all the bits beyond 𝑓 bit after decimal

point to 0, we have that: 𝑥 = round2 (𝑥 , 𝑓) · 2𝑓 is equivalent to an

integer as all bits after the decimal point is 0.

As |𝑥 | ≤ |𝑥 | · 2𝑓 , the range of |𝑥 | satisfies 0 ≤ |𝑥 | ≤ 2
𝑛−1

. Thus,

there exist an 𝑛-bit integer 𝑥 representing 𝑥 ′ where 𝑥 ′ = 𝑥 · 2−𝑓 ,
which is representable in ⟨𝑛, 𝑓 ⟩-FXP number format.

A.3 Complexity Analysis of OPPE
(Algorithm7)

Theorem A.2 (Complexity of OPPE Algorithm). The ×’s com-
plexity is 𝑂 (𝑘𝑚 + 𝑘 log𝑘) and >’s complexity is 𝑂 (𝑚).

Proof. In OPPE Algorithm7, there are totally𝑚 >’s, in Line1.

Thus the complexity of >’s is quite straightforward, which is𝑂 (𝑚).
For complexity of ×’s, which comes from three parts: 1) Line 3-6,

(2𝑘𝑚) plaintext-ciphertext ×’s; 2) Line 8, (2𝑘) ciphertext ×’s and 3)
Line 7, from CalculateKx function. In CalculateKx function, there

are totally (⌊log𝑘⌋ + 1) rounds of ×’s. In each 𝑖 round, there are

((𝑘 + 1) − 2
𝑖−1) ciphertext ×’s, 𝑖 = 1, …, ⌊log𝑘⌋ + 1. Suppose there

are totally 𝑛 ×’s in CalculateKx, we have

𝑛 =

𝑖= ⌊log𝑘 ⌋+1∑
𝑖=1

(𝑘 + 1 − 2
𝑖−1)

= (⌊log𝑘⌋ + 1) (𝑘 + 1) − 2
⌊log𝑘 ⌋+1 + 1

≈ (𝑘 + 1) log𝑘 − 𝑘 + 2

(13)

As the cost of plaintext-ciphertext × is equal or less than ciphertext-

ciphertext × in most MPC platforms, the complexity of ×’s is𝑂 ((𝑘+
1) log𝑘 − 𝑘 + 2 + 2𝑘 + 2𝑘𝑚) = 𝑂 (𝑘𝑙𝑜𝑔𝑘 + 𝑘𝑚). □

A.4 Obliviousness of OPPE (Algorithm 7)
An oblivious algorithm means that the execution path is indepen-

dent of the inputs. In multi-party computation, such property refers

to a deterministic and data-independent sequence of executing se-

cure operations, like secure oblivious sort algorithm [19] and secure
oblivious data access algorithm [24]. The obliviousness property

of the OPPE Algorithm 7 is quite straightforward as there are no

branches based on the inputs or any variables calculated directly

or indirectly from the inputs. Formally, we have

Theorem A.3 (Obliviousness of OPPE Algorithm 7). With
subroutinesADD,MUL andGTwork as black boxes evaluating secure
addition, multiplication and greater-than, the execution path of OPPE
Algorithm 7 is independent of the inputs.

Proof sketch. For any two representable input values (𝑥 ,
ˆ𝑥 ′), no

differences in the evaluation path will be introduced outsides the

subroutines (ADD,MUL and GT which work as black boxes).

B SECURITY ANALYSIS

We adopt the same definitions with Canetti’s work [9] in this

section. For completeness, we first introduce the security paradigm

for readers not familiar with this area, and then give the security

definitions and proof of NFGen’s protocols.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

B.1 Formal Security Definition
In the Real-Ideal proof paradigm introduced in [9], two processes

ideal and real are defined.
In the Ideal-process, we assume a trusted third party exists, who

receives the inputs from all parties, and evaluates the target function

𝑓 locally and distributes the designated results to each party; the

ideal 𝑡-limited adversary A∗ controls a set of at most 𝑡 corrupted

parties, learns their identities, inputs, internal states, received out-

puts and can modify their inputs to arbitrary value based on the

gathered information.

In the real-process, parties interact with each other according to

a protocol 𝜋 in the presence of a real 𝑡-limited adversary A, who

controls a set of at most 𝑡 corrupted parties in some adversarial

model (e.g., semi-honest / malicious, adaptive / non-adaptive). At

the end of the computation, the real adversary can let the corrupted

parties output some arbitrary value.

There are several adversarial models to use. For example, adap-
tive vs. non-adaptive. To model an adaptive adversary, people in-

troduce an environment identity Z that can see the inputs, internal

states and outputs of all the parties and interacts with the adver-

sary during the evaluation for both ideal and real-processes. On

the other hand, to model a non-adaptive adversary, the adversary

cannot interact withZ, nor can it change the member of corrupted

parties during the execution.

We define our security in the adaptive model (including both

semi-honest and malicious), which is a stronger security definition.

Let IDEAL𝑓 ,A∗ ,Z denote the distribution ensemble of all the parties

outputs under any valid security parameter, inputs and randomness

in the ideal-process; and let EXEC𝜋 ,A,Z denote the same distri-

bution ensemble in the real-process. In the real-ideal paradigm, 𝜋

securely evaluate function 𝑓 if it emulates the ideal-process in the

real-process under any effect of the real adversary A that can be

achieved by some ideal adversaryA∗. We formally define the secure
evaluation with the following Definition B.1:

Definition B.1 (Secure Evaluation). Let 𝑓 be an 𝑛-party function

and let 𝜋 be a protocol for 𝑛 parties. We say that protocol 𝜋 adap-

tively 𝑡-securely evaluates 𝑓 if for any adaptive 𝑡-limited real

adversary A and any environment Z, there exists an adaptive

ideal-process adversary A∗ whose running time is polynomial in

the running time of A, such that

𝐼𝐷𝐸𝐴𝐿𝑓 ,A∗ ,Z
𝑐/𝑠
≈ 𝐸𝑋𝐸𝐶𝜋 ,A,Z , (14)

where

𝑐/𝑠
≈ means two distribution ensembles computationally or

statistically indistinguishable (suitable for computational-limited

or unlimited adversary).

B.2 Security Property Proof of NFGen
In this section, we first briefly introduce the Canetti’s composition
theorem [9] and use it to prove the security preserving property of

NFGen. Note that the following definitions suit for both semi-honest

and malicious adversaries [9].

Secure composition. One commonly used method in developing

complex high-level secure protocols for some task is the modular

composition [9]. We firstly design the high-level protocol by assum-

ing that a series of simple sub-protocols can be carried out securely.

Then we design each secure sub-protocol meeting the security

guarantee and plug them as subroutines in the high-level protocol.

The composition theorem states that, if the high-level protocol can

securely evaluate (as defined in Definition B.1) its function with

ideal sub-protocols, then the security and functionality maintained

by replacing all the ideal sub-protocols into subroutines.

TheoremB.2 (secure composition theorem (Collary12 in [9])).

Let 𝑡 < 𝑛, let 𝑚 ∈ 𝑁 and let 𝑓1, …, 𝑓𝑚 be 𝑛-party functions. Let 𝜋
be an n-party protocol that adaptively t-securely evaluates 𝑔 in the
(𝑓1, …, 𝑓𝑚)−hybrid model and assumes that no more than one ideal
evaluation call is made at each round. Let 𝜋1, …,𝜋𝑚 be n-party pro-
tocols that adaptively t-securely evaluate 𝑓1, …, 𝑓𝑚 . Then the protocol
𝜋𝜋1 ,…,𝜋𝑚 adaptively t-securely evaluates 𝑔.

The (𝑓1, …, 𝑓𝑚)−hybrid model means that the joint parties have

the access to call ideal functions 𝑓1, …, 𝑓𝑚 .

Security-preserving property of NFGen. The generated proto-

col of NFGen has the property that it guarantees the same security
property with three provided subroutines ADD,MUL and GT eval-

uating secure addition, multiplication and greater-than. Formally,

it has

Theorem B.3 (Security preserving property of NFGen). Let
𝑡 < 𝑛, and let 𝑓+, 𝑓×, 𝑓> be 𝑛-party functions evaluating addition, mul-
tiplication and greater-than. Let 𝜋+,𝜋×,𝜋> be n-party protocols that
t-securely evaluate 𝑓+, 𝑓×, 𝑓> . Then the protocol 𝜋𝜋+ ,𝜋× ,𝜋>

𝑂𝑃𝑃𝐸
generated

by NFGen t-securely evaluates 𝑝𝑚
𝑘
.

Proof sketch. Firstly, the protocol 𝜋𝑂𝑃𝑃𝐸 generated through

OPPEAlgorithm 7 can securely evaluate 𝑝𝑚
𝑘
in the (𝑓+, 𝑓×, 𝑓>)−hybrid

model. The protocol 𝜋𝑂𝑃𝑃𝐸 can be constructed by replacing sub-

routines ADD,MUL and GT with 𝑓+, 𝑓× and 𝑓> following OPPE

Algorithm 7. Since OPPE Algorithm 7 organizes each subroutine

ADD,MUL and GT sequentially without revealing any informa-

tion nor introducing any interactions among parties, any cheat-

ing behaviors will only happen inside the subroutines. As these

subroutines in 𝜋𝑂𝑃𝑃𝐸 are ideal functions 𝑓+, 𝑓× and 𝑓> , thus the

real-process distribution ensemble 𝐸𝑋𝐸𝐶
𝑓+ ,𝑓× ,𝑓>
𝜋𝑂𝑃𝑃𝐸 ,A,Z in the hybrid-

model is indistinguishable to the ideal-process distribution ensem-

ble 𝐼𝐷𝐸𝐴𝐿𝑝𝑚
𝑘

,A∗ ,Z . Then, by the composition theorem B.2, with

protocols 𝜋+,𝜋×,𝜋> that securely evaluate 𝑓+, 𝑓× and 𝑓> , 𝜋𝑂𝑃𝑃𝐸

can securely evaluate 𝑝𝑚
𝑘

by replacing each ideal function calls to

the corresponding protocols.

C NFGEN CODE EXAMPLES
In this section, we give a detailed code example to demonstrate the

workflow of NFGen, here the selected case is privacy-preserving LR

requiring sigmoid.
The NFD config is shown in Code 1, containing the function

expression(function), target domain [𝑎,𝑏](range), accuracy thresh-

old 𝜖 and 0̂(tol and zero_mask), number representaion ⟨𝑛, 𝑓 ⟩. In
this case, it also provide supported operations with profiled time

(time_dict) and generated performance model(profiler), these two

configurations can also be offered in a separated PPD file. Also, the

user can select or offer corresponding code templet(code_templet)

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

and set the output file path(config_file). Then the user can gener-

ate specific code by revoke generate_nonlinear_config as Code 3.

The generated code is shown in Code block 3, which can be directly

executed in MP-SPDZ environment.

1 import NFGen.CodeTemplet.templet as temp
import NFGen.PerformanceModel.time_ops as to
import sympy as sp

def sigmoid(x):
6 # mpc_exp: lambda x:sp.exp(x)

mpc_reci: lambda x:1/x, indicating cipher operator.
return 1 * mpc_reci(1 + mpc_exp(-x))

config_sigmoid = { # NFD Config
11 'function': sigmoid,

'range': (-8, 10),
'tol': 1e-3,
'n': 96,
'f': 48,

16 # soft zero.
'zero_mask': 1e-6,
Set the value out of range.
'default_values': (0, 1),
Supported operations.

21 'ops': ['mpc_exp', 'mpc_reci', 'mpc_log', 'mpc_sqrt'],
SPDZ code templet.
PrivPy templet use: temp.templet_privpy_cpp.
'code_templet': temp.templet_spdz,
Output file.

26 'config_file': './config_sigmoid.py',
PPD part
Time for basic ops(identify mpc_func operators).
'time_dict': to.basic_time['Rep3'],
Profiler model.

31 'profiler': '../PerformanceModel/Rep3_kmProfiler.pkl'
}

Code Listing 1: NFD & PPD config demo

from NFGen.main import generate_nonlinear_config

3 # Pass the config and generate code.
generate_nonlinear_config(config_sigmoid)

Code Listing 2: Code generation

1 @types.vectorize
def sigmoid(x):

"""Version2 of general non linear function.

Args:
6 x (Sfixed): the input secret value.

Returns:
Sfixed: secret f(x).

"""

11 # In user-level mpc file:
probability trunction acceleration.
program.use_trunc_pr = True
program.use_split(3)

16 # Config of piece-wise polynomial
breaks = [-1009.0, -10.0, -7.5, -5.0, -2.5, -1.25, 0.0,

1.25, 10.0]
coeffA = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

[584022.5019194265, 284883.4701294364, 56450.73475537558,
21 5664.37093087678, 287.16193188632, 5.87319252822],

[1715838.8184591327, 1068788.52768671, 274863.81230151834,
36252.85955923422, 2439.47176809213, 66.71430835583],
[2506924.277852222, 1808567.6009333746, 551644.7862473574,
87996.36476823808, 7267.35497880345, 246.29936351578],

26 [2098737.027154335, 1041805.6678011644, -34419.2181203451,
-140100.88887670645, -37953.67734930042, -3405.3812230294],

[2097139.5017196543, 1054758.5017103767, 29315.2376400353,
-56099.88246721192, 0.0, 0.0],
[2097139.5017196543, 1054758.5017103783, -29315.2376400381,

31 -56099.88246721102, 0.0, 0.0],
[1857186.3089880324, 1582070.1166638373, -437353.1379880485,
60781.5325081042, -4203.393886761, 115.03921274796],
[1.0, 0.0, 0.0, 0.0, 0.0, 0.0]]

scaler = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
36 [2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,

2.3842e-07], [2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07], [2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07], [2.3842e-07, 2.3842e-07, 2.3842e-07,

41 2.3842e-07, 2.3842e-07, 2.3842e-07], [2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 1.0, 1.0],
[2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 1.0, 1.0],
[2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]

46

m = len(coeffA)
k = len(coeffA[0])
degree = k-1

51 # Compute the target mask.
comp = sfix.Array(m)
for i in range(m):

comp[i] = (x >= breaks[i])
cipher_index = bb.get_last_one(comp)

56

Calculate [1, x, x^2, ..., x^{k}].
pre_muls = floatingpoint.PreOpL(lambda a,b,_:

a * b, [x] * degree)

61 # Compute c_i*x^i*s_i.
poss_res = [0]*m
for i in range(m):

poss_res[i] = coeffA[i][0] * scaler[i][0]
for j in range(degree):

66 poss_res[i] += (coeffA[i][j+1]
* pre_muls[j] * scaler[i][j+1])

Get result with mask and all possible values.
return sfix.dot_product(cipher_index, poss_res)

71

Code Listing 3: Generated Code (MP-SPDZ)

bool SS4Runner::sigmoid(const size_type length,
TypeSet::FNumberArr *result,
const TypeSet::FNumberArr *num,
bool use_current_thread) {

5 check_runner_terminate_status(false);
TypeSet::FNUMT *result_x = result->get_x(), *result_x_ = result->
get_x_();

const size_type K = 9;
const size_type config_length = length * K;

10 TypeSet::FNumberArr coeff(config_length);
TypeSet::FNumberArr scaler(config_length);
TypeSet::FNumberArr x_items(config_length);

sigmoid_calculateCoeff (length, &coeff, &scaler, num); });
15 calculateKx(length, &x_items, num, K); });

mul<TypeSet::FNUMT>(config_length, &x_items, &x_items, &coeff);
mul<TypeSet::FNUMT>(config_length, &x_items, &x_items, &scaler);

20 double *ftmp2 = new double[length];
for (int i = 0; i < length; i++) ftmp2[i] = 0.0;

map2numv<double, TypeSet::FNUMT>(ftmp2, length, result);
for (size_type i = 0; i < length; i++) {

25 for (size_type j = 0; j < K; j++) {
result_x[i] += x_items.x[i * K + j];
result_x_[i] += x_items.x_[i * K + j];

}
}

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

30 delete[] ftmp2;
return true;

}

bool SS4Runner::sigmoid_calculateCoeff(const size_type length,
35 TypeSet::FNumberArr *coeff,

TypeSet::FNumberArr *scaler,
const TypeSet::FNumberArr *num) {
check_runner_terminate_status(false);
TypeSet::FNUMT *num_x = num->get_x(), *num_x_ = num->get_x_();

40

const size_type M = 7;
const size_type K = 9;
const double Breaks[M] = {-1009.0, -10.0, -5.0, -1.25, 0.0, 1.25,

10.0};
const double CoeffA[M * K] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 2736794.311829414, 2166127.0649512047,
779033.1999940014, 165208.365427917, 22462.75021140543,
1994.81274157933, 112.49785815234, 3.6702035068, 0.05287661137,
2060712.4699856702, 909977.1725834787, -224423.69609669817,
-287140.3378066692, -103632.73876614487, -20259.29529210076,
-2311.60919005347, -144.85798280994, -3.84685342155,
2097139.5017196543, 1054758.5017103767, 29315.2376400353,
-56099.88246721192, 0.0, 0.0, 0.0, 0.0, 0.0,
2097139.5017196543, 1054758.5017103783, -29315.2376400381,
-56099.88246721102, 0.0, 0.0, 0.0, 0.0, 0.0,
2020005.5083353834, 1217129.597655899, -113822.68074184433,
-88781.97063835277, 35521.12204303316, -6139.86216019294,
574.93708725425, -28.4375893287, 0.58380827441, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

45 const double Scaler[M * K] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 1.0, 1.0, 1.0, 1.0, 1.0,
2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 1.0, 1.0, 1.0,
1.0, 1.0, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07, 2.3842e-07,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

// 1. Calculate the corresponding index
// a) Expand num and breaks to outter_comparision.
const size_type expand_length = length * M;

50 TypeSet::FNumberArr findex_arr(expand_length);
outter_gt<double, TypeSet::FNUMT>(Breaks, num, expand_length, &
findex_arr);

// b) Compute the target mask
for (size_type i = 0; i < length; i++) {

memcpy(ctmp + i * M, findex_arr + i*M+1, sizeof(TypeSet::
FNUMT) * (M - 1));

55 }
sub<TypeSet::FNUMT>(expand_length, &findex_arr, &findex_arr, &
ctmp);

// 2. Fetch out target coeff and scaler.
const size_type config_length = length * K;
TypeSet::FNumberArr coeff(config_length);

60 TypeSet::FNumberArr scaler(config_length);

size_type shape1[2] = {length, M};
size_type shape2[2] = {M, K};
inner_product<TypeSet::FNUMT, double>(

&coeff, shape1, shape2, &findex_arr, CoeffA);
65 inner_product<TypeSet::FNUMT, double>(

&scaler, shape1, shape2, &findex_arr, Scaler);

return true;
}

70

Code Listing 4: Generated Code (PrivPy C++ Code)

1 @pp.local_import("numpy", "np")
def sigmoid(x):

import pnumpy as pnp

def _calculate_kx(x, k):
6 items = pnp.transpose(pnp.tile(x, (k, 1)))

items[:, 0] = pp.sfixed(1)

shift = 1
while shift < k:

11 items[:, shift:] *= items[:, :len(items[0])-shift]
shift *= 2

return items

def _fetch_index(x, breaks):
16 if isinstance(x, pp.FixedArr):

x = pnp.transpose(pnp.tile(x, (len(breaks), 1)))
breaks = np.tile(breaks, (len(x), 1))

cipher_comp = x >= breaks
21 cipher_index = pnp.util.get_last_one(cipher_comp)

return cipher_index

same breaks, coeffA and scaler with other generated code.
26

breaks = np.array(breaks)
coeffA = np.array(coeffA)
scalerA = np.array(scaler)

31 k = int(len(coeffA[0]))
cipher_index = _fetch_index(x, breaks)
coeff = pnp.dot(cipher_index, coeffA)
scaler = pnp.dot(cipher_index, scalerA)
x_items = _calculate_kx(x, k)

36 tmp_res = x_items * coeff
res = pnp.sum(tmp_res * scaler, axis=1)
return res

Code Listing 5: Generated Code (PrivPy Python Code)

D FULL MICRO-BENCHMARK RESULTS

NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Table 10: Micro-benchmark for probability distribution functions

𝐹 (𝑥) S ✓ (𝑘 ,𝑚) 𝑇Fit
Communication(MB) Efficiency(Ms)

Base NFGen Save Base NFGen SpeedUp

Normal_dis(𝑥) = 𝑒
− 𝑥

2

2√
2𝜋

𝑥 ∈ [−10,+10], 𝐹 (𝑥) ∈ [0.0, 0.4]
Non-linear buildling-blocks: 1

A × (8, 12) 5.2 420 295 30% 67 24 2.8×
B × (8, 12) 3.6 3 2 45% 4906 156 31.5×
C × (8, 12) 3.6 7 5 27% 5029 970 5.2×
D × (8, 12) 3.6 24 23 5% 6588 1846 3.6×
E × (5, 22) 3.6 257 481 -87% 89740 166328 0.5×
F × (8, 12) 3.6 249 301 -21% 14908 14861 1.0×

Cauchy_dis(𝑥) = 1

𝜋 (1+𝑥2)
𝑥 ∈ [−40,+40], 𝐹 (𝑥) ∈ [0.0, 0.3]
Non-linear buildling-blocks: 1

A ✓ (10, 10) 4.4 202 295 -50% 82 26 3.2×
B ✓ NA 3.6 1 1 0% 69 71 1.0×
C ✓ NA 3.6 2 2 0% 405 403 1.0×
D ✓ NA 3.6 8 8 0% 698 689 1.0×
E ✓ NA 3.6 50 50 0% 15496 15677 1.0×
F ✓ NA 3.6 47 47 0% 2248 2243 1.0×

Gamma_dis(𝑥) = 𝑥𝛾−1𝑒−𝑥
Γ (𝛾)

𝛾 = 0.5, 𝑥 ∈ [0.0, 50], 𝐹 (𝑥) ∈ [0.0, 0.4]
Non-linear buildling-blocks: 2

A × (7, 19) 5.9 793 393 50% 137 30 4.6×
B × (7, 21) 4.3 3 2 26% 4624 216 21.4×
C × (5, 27) 4.3 6 8 -30% 5008 1443 3.5×
D × (5, 27) 4.3 23 33 -45% 7206 2695 2.7×
E × (5, 27) 4.3 255 527 -106% 89018 179739 0.5×
F × (5, 27) 4.3 247 402 -63% 14308 19226 0.7×

Chi_square_dis(𝑥) = 𝑒
−𝑥
2 𝑥

𝜈
2
−1

2

𝜈
2 Γ (𝜈

2
)

𝑣 = 4, 𝑥 ∈ [0.0, 50], 𝐹 (𝑥) ∈ [0.0, 0.2]
Non-linear buildling-blocks: 2

A ✓ (8, 5) 2.4 419 168 60% 62 19 3.3×
B ✓ (8, 5) 1.5 3 1 75% 4846 72 67.4×
C ✓ (7, 6) 1.5 7 3 57% 5074 538 9.4×
D ✓ (7, 6) 1.5 24 13 46% 6496 1016 6.4×
E ✓ (5, 10) 1.5 257 224 13% 89594 77908 1.2×
F ✓ (7, 6) 1.5 249 140 44% 14452 6904 2.4×

Exp_dis(𝑥) = 𝑒−𝑥

𝑥 ∈ [10
−5

, 10], 𝐹 (𝑥) ∈ [0.0, 1.0]
Non-linear buildling-blocks: 2

A ✓ (9, 3) 2.9 420 184 60% 67 21 3.1×
B ✓ (6, 5) 1.5 3 1 79% 225 63 3.6×
C ✓ (6, 5) 1.5 6 2 61% 1495 418 3.6×
D ✓ (6, 5) 1.5 22 10 53% 2449 821 3.0×
E ✓ (6, 5) 1.5 238 132 45% 83416 46803 1.8×
F ✓ (6, 5) 1.5 231 100 57% 11527 4872 2.1×

Log_dis(𝑥) = 𝑒−((ln𝑥)
2/2𝜎2)

𝑥𝜎
√

2𝜋

𝜎 = 1.0, 𝑥 ∈ [10
−4

, 20], 𝐹 (𝑥) ∈ [0.0, 0.7]
Non-linear buildling-blocks: 3

A × (10, 10) 4.3 2039 295 90% 456 25 18.5×
B ✓ (8, 12) 3.5 8 2 80% 486 149 3.3×
C ✓ (8, 12) 3.5 12 6 49% 3088 1043 3.0×
D ✓ (8, 12) 3.5 37 26 29% 4665 2026 2.3×
E ✓ (6, 17) 3.5 449 433 4% 142087 151929 0.9×
F ✓ (8, 12) 3.5 431 330 23% 22545 16212 1.4×

Bs_dis(𝑥)1) =
(√

𝑥+
√

1

𝑥
2𝛾𝑥

)
𝜙

(√
𝑥−

√
1

𝑥
𝛾

)
𝛾 = 0.5, 𝑥 ∈ [10

−6
, 30], 𝐹 (𝑥) ∈ [0.0, 0.2]

Non-linear buildling-blocks: 3

A × (10, 8) 4.0 2815 263 90% 630 22 29.1×
B × (7, 11) 3.2 13 1 89% 11463 133 86.1×
C × (5, 16) 3.2 23 5 79% 14631 915 16.0×
D × (5, 16) 3.2 65 22 66% 19167 1763 10.9×
E × (5, 16) 3.2 741 352 53% 239549 122325 2.0×
F × (5, 16) 3.2 718 268 63% 42157 13136 3.2×

*𝑇Fit means the time for 𝑝𝑚
𝑘

fitting, we generate candidate
ˆP with 𝑘 ranging from [3, 10]. The second column (✓) means whether

baseline function achieves the same accuracy threshold (𝜖 = 10
−3

with 0̂ = 10
−6
).

1) Bs_dis means Birnbaum-Saunders(Fatigue Life) probability distribution [5].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li, and Wei Xu

Table 11: Micro-benchmark for activation functions

𝐹 (𝑥) S ✓ (𝑘 ,𝑚) 𝑇Fit
Communication(MB) Efficiency(Ms)

Base NFGen Save Base NFGen SpeedUp

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1

1+𝑒−𝑥

𝑥 ∈ [−50,+50], 𝐹 (𝑥) ∈ [0.0, 1.0]
Non-linear buildling-blocks: 2

A × (10, 8) 4.3 618 263 60% 147 23 6.3×
B ✓ (7, 10) 3.5 1 1 -5% 137 124 1.1×
C ✓ (5, 14) 3.5 4 4 -5% 1155 802 1.4×
D ✓ (5, 14) 3.5 18 19 -8% 1863 1525 1.2×
E ✓ (5, 14) 3.5 212 308 -45% 75949 106857 0.7×
F ✓ (5, 14) 3.5 207 234 -13% 9732 11224 0.9×

𝑡𝑎𝑛ℎ (𝑥) = 𝑒𝑥 −𝑒−𝑥
𝑒𝑥 +𝑒−𝑥

𝑥 ∈ [−50,+50], 𝐹 (𝑥) ∈ [−1.0, 1.0]
Non-linear buildling-blocks: 3

A × (9, 8) 4.5 1876 216 90% 335 21 15.7×
B × (5, 9) 3.2 13 1 92% 800 80 10.0×
C × (5, 9) 3.2 19 3 83% 5901 597 9.9×
D × (5, 9) 3.2 64 14 78% 8882 1115 8.0×
E × (5, 9) 3.2 996 197 80% 337530 68550 4.9×
F × (5, 9) 3.2 966 150 84% 45486 7309 6.2×

soft_plus(𝑥) = log(1 + 𝑒𝑥)
𝑥 ∈ [−20, 50], 𝐹 (𝑥) ∈ [0.0, 49.9]
Non-linear buildling-blocks: 2

A × (10, 7) 3.6 1127 248 80% 221 23 9.5×
B × (8, 9) 2.6 5 1 78% 384 110 3.5×
C × (6, 11) 2.6 8 4 49% 2847 797 3.6×
D × (6, 11) 2.6 27 19 29% 4054 1475 2.7×
E × (4, 19) 2.6 318 343 -8% 105809 116529 0.9×
F × (6, 11) 2.6 307 220 28% 15739 10780 1.5×

𝑒𝑙𝑢 (𝑥) =
{
𝑥 𝑥 > 0

𝛼 ∗ (𝑒𝑥 − 1) 𝑥 ≤ 0

𝛼 = 1.0, 𝑥 ∈ [−50, 20], 𝐹 (𝑥) ∈ [−1.0, 19.9]
Non-linear buildling-blocks: 2

A × (7, 4) 1.7 440 153 70% 82 20 4.0×
B × (4, 7) 0.9 3 1 78% 241 66 3.7×
C × (4, 7) 0.9 6 2 64% 1590 390 4.1×
D × (4, 7) 0.9 22 9 57% 2540 757 3.4×
E × (4, 7) 0.9 246 127 48% 85950 43302 2.0×
F × (4, 7) 0.9 238 96 60% 11900 4783 2.5×

𝑠𝑒𝑙𝑢 (𝑥) = 𝜆

{
𝑥 if 𝑥 > 0

𝛼𝑒𝑥 − 𝛼 if 𝑥 ≤ 0

[25]

𝛼 = 1.6732632 and 𝜆 = 1.05007010

𝑥 ∈ [−50, 20], 𝐹 (𝑥) ∈ [−1.8, 20.9]
Non-linear buildling-blocks: 2

A × (7, 4) 2.5 440 153 70% 85 19 4.5×
B × (7, 4) 1.3 3 1 82% 247 53 4.7×
C × (4, 8) 1.3 6 2 60% 1664 426 3.9×
D × (4, 8) 1.3 22 10 54% 2578 860 3.0×
E × (4, 8) 1.3 250 146 42% 86658 49364 1.8×
F × (4, 8) 1.3 243 111 54% 11968 5402 2.2×

𝑔𝑒𝑙𝑢 (𝑥) = 0.5𝑥

(
1 + tanh

(√
2

𝜋
(𝑥 + 𝛼 𝑥3)

))
𝛼 = 0.04472 𝑥 ∈ [−20, 20], 𝐹 (𝑥) ∈ [−0.0, 20.0]

Non-linear buildling-blocks: 3

A × (8, 6) 1.1 267 200 30% 41 21 2.0×
B × (4, 9) 0.6 13 1 93% 800 75 10.7×
C × (4, 9) 0.6 19 3 87% 6007 522 11.5×
D × (4, 9) 0.6 65 11 83% 9058 936 9.7×
E × (4, 9) 0.6 1009 164 84% 344271 56269 6.1×
F × (4, 9) 0.6 978 124 87% 46253 6109 7.6×

soft_sign(𝑥) = 𝑥
1+|𝑥 |

𝑥 ∈ [−50, 50], 𝐹 (𝑥) ∈ [−1.0, 1.0]
Non-linear buildling-blocks: 2

A × (8, 8) 1.9 518 231 60% 131 21 6.1×
B ✓ NA 1.3 1 1 0% 79 78 1.0×
C ✓ NA 1.3 2 2 0% 451 437 1.0×
D ✓ NA 1.3 8 8 0% 741 753 1.0×
E ✓ NA 1.3 52 52 0% 15507 15520 1.0×
F ✓ NA 1.3 49 49 0% 2315 2373 1.0×

𝑖𝑠𝑟𝑢 (𝑥) = 𝑥√
1+𝑥2

𝑥 ∈ [−50, 50], 𝐹 (𝑥) ∈ [−1.0, 1.0]
Non-linear buildling-blocks: 2

A × (6, 8) 4.4 576 203 60% 157 21 7.4×
B ✓ (6, 8) 3.4 3 1 66% 209 96 2.2×
C ✓ (4, 13) 3.4 5 3 0% 1430 699 2.0×
D ✓ (4, 13) 3.4 15 15 0% 2088 1246 1.7×
E ✓ NA 3.4 145 145 0% 44751 45257 1.0×
F ✓ NA 3.4 140 140 0% 7336 7399 1.0×

*𝑇Fit means the time for 𝑝𝑚
𝑘

fitting, we generate candidate
ˆP with 𝑘 ranging from [3, 10]. The second column (✓) means whether baseline

function achieves the same accuracy threshold (𝜖 = 10
−3

with 0̂ = 10
−6
).

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 General-purpose MPC Platforms
	2.2 Non-linear Functions in MPC Platforms

	3 Overview
	4 Non-linear approximation
	4.1 Fitting Piecewise Polynomials
	4.2 Fitting Polynomial for One Piece
	4.3 The Runtime Evaluation Algorithm OPPE

	5 Security Analysis
	6 Implementation
	6.1 Profiler and Performance Prediction
	6.2 OPPE Code Generation

	7 Evaluation
	7.1 Experiment Setup
	7.2 Performance
	7.3 Accuracy
	7.4 Applied in Real Algorithms
	7.5 Effectiveness of Design Choices

	8 Conclusion and Future Work
	References
	A Analysis of Algorithm
	A.1 Maximum SRD Analysis for Section 3
	A.2 Effectiveness of Simulated through FLPsimFXP (Algorithm 4)
	A.3 Complexity Analysis of OPPE (Algorithm7)
	A.4 Obliviousness of OPPE (Algorithm 7)

	B Security Analysis
	B.1 Formal Security Definition
	B.2 Security Property Proof of NFGen

	C NFGen Code Examples
	D Full Micro-benchmark Results

