NFGen: Automatic Non-linear Function Evaluation Code Generator for General-purpose MPC Platforms

Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li and Wei Xu ACM CCS 2022

General-purpose Multi-party Computation

- Secure multi-party computation (MPC) offers a promising way to achieve privacy-preserving computation.
- Currently, several general-purpose
 MPC platforms are proposed.
 - High efficiency.
 - Expressive programming front-end.
 - Making the development of complex applications possible.

General-purpose Multi-party Computation

- Secure multi-party computation (MPC) offers a promising way to achieve privacy-preserving computation.
- Currently, several general-purpose
 MPC platforms are proposed.
 - High efficiency.
 - Expressive programming front-end.
 - Making the development of complex applications possible.

Basic Structure of General-purpose MPC platforms

E.g., Platforms surveyed in [HHNZ19], MP-SPDZ[Kel20], ABY3[MR18]...

Fixed-point Number and Non-linear Function Evaluation

Fixed-point(FXP) vs. Floating-point(FLP)

	FXP	FLP(IEEE74)		
Range	$[-2^{n-f-1}, 2^{n-f-1}]$	$[-2^{2^{e-1}}, 2^{2^{e-1}}]$		
Smallest	2^{-f}	$2^{1-2^{e-1}}$		

Fixed-point Number and Non-linear Function Evaluation

Fixed-point(FXP) vs. Floating-point(FLP)

	FXP	FLP(IEEE74)	
Range	$[-2^{n-f-1}, 2^{n-f-1}]$	$[-2^{2^{e-1}}, 2^{2^{e-1}}]$	
Smallest	2^{-f}	$2^{1-2^{e-1}}$	

- s Integer part Fraction part $| 1 | \longleftarrow n f 1 \longrightarrow | \longleftarrow f \longrightarrow | \text{ (bits)}$ Fixed-point Number
- Current non-linear function evaluation
 - Hand-crafted design a series of basic Ops like $\frac{1}{\cdot}$, e^{\cdot} , $\sqrt{\cdot}$ etc.
 - Express complex functions as sequential combinations of basic Ops.

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

I. compute e^x and e^{-x}

2. compute the division.

Pitfalls of Current Non-linear Function Evaluation

Pitfalls of Current Non-linear Function Evaluation

Correctness & Precision

Error Cases in Current MPC Platforms (DE: Direct Evaluation)

Pitfalls of Current Non-linear Function Evaluation

Correctness & Precision

Error Cases in Current MPC Platforms (DE: Direct Evaluation)

Performance

• Non-linear building blocks are far expensive than $+,\times$.

Generality

• Not support hard-to-compute functions like $\gamma(x, z)$, $\Phi(x)$.

Portability

 Non-linear function design for one platform is hard to transplant to others.


```
Secure Logistic Regression (require sigmoid)

(require (a, b): [-10, 10], (a, b): [-10, 10], (a, b): (a,
```


End-to-End Workflow of NFGen

Open source: https://github.com/Fannxy/NFGen

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - > Best-effort try-split until succeed.

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ -FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - > Best-effort try-split until succeed.

Try generate \hat{p}_k in [a, b]

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - > Best-effort try-split until succeed.

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - > Best-effort try-split until succeed.

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - Best-effort try-split until succeed.

I) Constrains $\bar{k} \leq k$, avoiding over/under-flow. 2) Fits $p_{\bar{k}}$ in FLP.

- 3) Converts FLP p_k to FXP $\hat{p}_{\bar{k}}$ with scaling factor.
- 4) Further reduces error using residual boosting.

in [*a*, *b*]

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ -FXP.
 - ➤ NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x)satisfying the accuracy requirement.
 - Best-effort try-split until succeed.

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - Best-effort try-split until succeed.

- Valid piece-wise polynomial \hat{p}_k^m
 - Each term in piece-wise polynomial \hat{p}_k^m can be represented by $\langle n, f \rangle$ -FXP.
 - NP-Complete Integer programming problem.
 - $\hat{p}_k^m(x)$ can approximate F(x) satisfying the accuracy requirement.
 - Best-effort try-split until succeed.

Workflow of Piece-wise Polynomial Construction

Severe problem: tiny coefficients in FXP harm the final accuracy.

- Severe problem: tiny coefficients in FXP harm the final accuracy.
- Scaling factor
 - Making use of more significant bits.

- Severe problem: tiny coefficients in FXP harm the final accuracy.
- Scaling factor
 - Making use of more significant bits.
 - E.g., computing 7^{th} term $(1.044 \times 10^{-11}) \times 100^7$

Scaling Factor

Left shift the coefficients as much as possible while avoid overflow.

Severe problem: tiny coefficients in FXP harm the final accuracy.

- Scaling factor
 - Making use of more significant bits.
 - E.g., computing 7^{th} term $(1.044 \times 10^{-11}) \times 100^7$

Left shift the coefficients as much as possible while avoid overflow.

- Residual Boosting
 - Lower-order polynomial tend to have larger coefficients.

Severe problem: tiny coefficients in FXP harm the final accuracy.

- Scaling factor
 - Making use of more significant bits.
 - E.g., computing 7^{th} term $(1.044 \times 10^{-11}) \times 100^7$

Left shift the coefficients as much as possible while avoid overflow.

- Residual Boosting
 - Lower-order polynomial tend to have larger coefficients.
 - Use a series of lower-order polynomials to fill the residuals.

Residual Function Demonstration

Automatic Performance Profiler & Code Generation

- Piece-wise polynomial evaluation.
 - Secure: Obliviously organize secure +,× and >.
 - Performance: O(m) secure > and $O(km + k \log k)$ secure ×.
 - Which \hat{p}_k^m has better performance depends on the characters of specific MPC deployment.

Automatic Performance Profiler & Code Generation

- Piece-wise polynomial evaluation.
 - Secure: Obliviously organize secure +,× and >.
 - Performance: O(m) secure > and $O(km + k \log k)$ secure ×.
 - Which \hat{p}_k^m has better performance depends on the characters of specific MPC deployment.

MPC deploy (\mathcal{S})	×(ms)	X:>	Preference	
Rep2k(SPDZ)	2	1:4	More prefer less m	
RepF(SPDZ)	32	1:1		
Shamir(SPDZ)	81	1:1	Managara Land	
Ps-Rep2k(SPDZ)	851	1:1	More prefer less k .	
Ps-RepF(SPDZ)	84	1:1		
Rep2k(PrivPy)	I	1:11	Severely prefer less m .	

Performance Characteristic of Different MPC Deployments

- Train a deployment-specific profiler model f_S : $(k, m) \rightarrow \text{time(ms)}$ and select the most efficient one.
- Generate code into pre-defined code templet.

Evaluation: Improved Accuracy

Overview of 15 common-used functions

- Baseline: direct evaluation of MP-SPDZ library functions.
- NFGen: generated evaluation code.

Improved Accuracy Cases

29

Evaluation: Improved Accuracy

Overview of 15 common-used functions

Improved cases

library functions.

Baseline: direct evaluation of MP-SPDZ

NFGen: generated evaluation code.

Evaluation: Improved Efficiency

MPC Sys	Efficiency ratio(%), speedup(×)			Comm ratio(%), save(%)		
	Benefit	Mean	Max	Benefit	Mean	Max
Rep2k(SPDZ)	100%	16.7×	86.1×	93%	58%	93%
RepF(SPDZ)	100%	5.3×	16.0×	87%	41%	87%
Shamir(SPDZ)	100%	4.0×	10.9×	87%	30%	83%
Ps- Rep2k(SPDZ)	67%	1.8×	6.1×	67%	8%	84%
Ps-RepF(SPDZ)	87%	2.3×	7.6×	73%	27%	87%
Rep2k(PrivPy)	100%	8.6×	29.1×	93%	57%	90%

- NFGen achieves significant improvements.
 - 93% achieves benefit in all
 15 * 6 cases.
 - Average speedup 6.5×
 and maximum 86.1×.
 - Average communication save 39.3% and maximum 93%.

Improved Performance Overview

15 functions for each sys and all achieve the above accuracy requirements.

Evaluation: Improved Efficiency

MPC Sys	Efficiency ratio(%), speedup(×)			Comm ratio(%), save(%)		
	Benefit	Mean	Max	Benefit	Mean	Max
Rep2k(SPDZ)	100%	16.7×	86.1×	93%	58%	93%
RepF(SPDZ)	100%	5.3×	16.0×	87%	41%	87%
Shamir(SPDZ)	100%	4.0×	10.9×	87%	30%	83%
Ps- Rep2k(SPDZ)	67%	1.8×	6.1×	67%	8%	84%
Ps-RepF(SPDZ)	87%	2.3×	7.6×	73%	27%	87%
Rep2k(PrivPy)	100%	8.6×	29.1×	93%	57%	90%

- NFGen achieves significant improvements.
 - 93% achieves benefit in all
 15 * 6 cases.
 - Average speedup 6.5×
 and maximum 86.1×.
 - Average communication save 39.3% and maximum 93%.

Improved Performance Overview

15 functions for each sys and all achieve the above accuracy requirements.

Evaluation: Other Benefits

Support hard-to-compute functions

Target function	(k, m)	Fit time
$\gamma(x,z) = \int_0^x t^{z-1} e^t dt$	(6, 4)	l.ls
$\Gamma(x,z) = \int_{x}^{\infty} t^{z-1}e^{t} dt$	(6, 6)	l.ls
$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$	(4, 6)	0.8s
$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^x e^{\frac{t^2}{2}} dt$	(8, 6)	1.2s

Hard-to-compute Functions

Evaluation: Other Benefits

Support hard-to-compute functions

Target function	(k, m)	Fit time
$\gamma(x,z) = \int_0^x t^{z-1} e^t dt$	(6, 4)	l.ls
$\Gamma(x,z) = \int_{x}^{\infty} t^{z-1}e^{t} dt$	(6, 6)	l.ls
$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$	(4, 6)	0.8s
$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^x e^{\frac{t^2}{2}} dt$	(8, 6)	1.2s

Accelerate current applications

• Approximate sigmoid(x) and accelerate LR.

Hard-to-compute Functions

Conclusion

- NFGen is our attempt to offer a new way evaluating non-linear functions in MPC,
 - Improved performance from many perspectives (correctness, precision and efficiency).
 - Easy to use: NFGen automatically generate the evaluation code with a simple input config.
 - Support numerous hard-to-compute functions and different bit lengths, making MPC systems more general than before.
- As MPC offers a brand-new architecture, maybe we should explore new algorithm design logic instead of just follow the plaintext development.

Q&A

Thanks for your listening!

