| NFGen: Automatic Non-linear Function Evaluation

Code Generator for General-purpose MPC Platforms
—

Xiaoyu Fan, Kun Chen, Guosai Wang, Mingchun Zhuang, Yi Li and Wei Xu
ACM CCS 2022

@
HUA KONG
TSINGJIAO

% 4 %

NE Tsinghua University

General-purpose Multi-party Computation

® Secure multi-party computation
(MPC) offers a promising way to
achieve privacy-preserving
computation.

® Currently, several general-purpose
MPC platforms are proposed.

= High efficiency.
m Expressive programming front-end.

m Making the development of complex
applications possible.

oy LU TE o7 FR a0

General-purpose Multi-party Computation

. : B Logistic Regression,
= Secure multi-party computation Expressive Programming K-Means, Neural
(MPC) offers a promising way to FOTEENE Network etc.
achieve privacy-preserving | | o)
computation. : Basic SecureOPs : +%, =, e,

— Secret Sharing,
Oblivious Transfer,
Beaver’ s

_ multiplication etc.

® Currently, several general-purpose
MPC platforms are proposed.

Cryptographic Back-end

m High efficiency.

Basic Structure of General-purpose MPC platforms
m Expressive programming front-end.

E.g., Platforms surveyed in [HHNZ19], MP-

m Making the development of complex SPDZ[Kel20], ABY3[MR8]...
applications possible.

G TN 454 P,

Fixed-point Number and Non-linear Function Evaluation

® Fixed-point(FXP) vs. Floating-point(FLP) s Exponent Mantissa

|1 le—e(11)— | ~——— m(50)—— | (bits)

- FXP FLP(IEEE74) Floating-point Number (IEEE754)

Range [_zn—f—l, zn—f—l] [_226—1, 228—1]

s Integer part Fraction part

Smallest 2~ 21-2%7" |11 le— n—f—-1 >
Fixed-point Number

< f —_— | (bltS)

o) ||7|| : 2 APk

Fixed-point Number and Non-linear Function Evaluation

® Fixed-point(FXP) vs. Floating-point(FLP) s Exponent Mantissa

|1 le—e(11)— | ~——— m(50)—— | (bits)

- FXP FLP(IEEE74) Floating-point Number (IEEE754)

Range [—2nf~1 pn—f-1] [—226_1, 52671

Smallest 2-f 21-2¢71

| s Integer part Fraction part

f——| (bits)

v
A

|1 l+— n—f—1
Fixed-point Number

m Current non-linear function evaluation

eX —e™* m |.compute e* ande™

® Hand-crafted design a series of basic tanh(x) =
Ops like %,e',\ﬁ etc.

eX + e™* = 2 compute the division.

m Express complex functions as sequential
combinations of basic Ops. od .

G TN 454 P,

Pitfalls of Current Non-linear Function Evaluation

oy LU TE o7 FR a0

Pitfalls of Current Non-linear Function Evaluation

m Correctness & Precision

tanh(x)

Overflow Error Accumulation
lel3 le—-1
5.0+ . 4 A
25 . < ,- —TrUe
0

0-0— —-—— DE ' "SIZ m—es DE
—2.57 —— True a
—5.01 0 , : ;

—-40 -20 0 20 40 0 5 10 15
X X

o lel3 100' = #)

o tepl

£, ax=5.2e+13 L 0751 I ;222

[a)

g_) ean= 2€+12 QO 0.50 -E- step3

S 27 —o— step4

EU 0.25 - p

Lol H® . . . ~15 ~10 0

-40 -20 0 20 40 Relative Error (log1o) 7

Error Cases in Current MPC Platforms (DE: Direct Evaluation) rlrﬁ-nlw .

Pitfalls of Current Non-linear Function Evaluation

m Correctness & Precision ® Performance
Overfl E A lati . R
ECE e afs rTor AecHmAeren = Non-linear building blocks are far
= 2:5- ' ' % , — True expensive than +,X.
= o0l 2 —.- DE
< 0.0 ——- DE S 2
c :
T 25 e | & ® Generality
~5.01 - 04] , ,
—40 —20 0 20 40 0 5 10 15 = Not support hard-to-compute
X * functions like y(x, z), ®(x).
L e 1.00 - : =))/(!)’ ()
o] vi stepl ol
£, PMax=5.2e+13§ |, 075 B o2 = Portability
) ean= 2e+12 8 0.50 A == step3
'% . 0.25 M —o— step4 = Non-linear function design for one
Qo] __ -15 -10 0 platform is hard to transplant to
—40-20 0 20 40 Relative Error (log1p) others. 8
Error Cases in Current MPC Platforms (DE: Direct Evaluation) xanasal ; '
o) ||7||.. . 10lH .

Our Solution: NFGen (Non-linear Function Code Generator)

‘Function desc’: {
F: sigmoid
[a, b]: [—10,10],
0: £:107¢,1073

Secure Logistic
Regression

(require sigmoid) }

‘System desc’:{
(n, f): (96,48)
OPs: {+,>,X...}

., /|
tﬁ .

Our Solution: NFGen (Non-linear Function Code Generator)

Secure Logistic
Regression
(require sigmoid)

‘Function desc’: {
F: sigmoid
[a, b]: [—10,10],
0: £:107¢,1073
b
‘System desc’:{
(n, f): (96,48)
OPs: {+,>,X...}
b

Iterate k:
FitPiecewise (k, NFD):

Try Pk
Check ||4

atb| [a+b
2 L2 Split if fail
--------- =» Merge

Construct P

Our Solution: NFGen (Non-linear Function Code Generator)

1,
‘Function desc’: { Ilterate k: {7 62ms
F: sigmoid D : va: 150ms,
- SIg FitPiecewise (k, NFD): km-Profiler
Secure Logistic la, b]:[-10,10], @ b A Y PPD
Regression 0: £:107°,107 R 1ty P
(require sigmoid) b 23] [az2] Sheck la ‘
q g 'System desc’:{ 22— Qplit if fail
(n, f): (96,48) el Code Load
J } OPs: {+, >,X} _________ - Merge ﬁ Generator OPPE
) -———
- Select best plan templet
q?l — Construct P e—— | and generate: | e—

Our Solution: NFGen (Non-linear Function Code Generator)

Secure Logistic
Regression
(require sigmoid)

‘Function desc’: {

F: sigmoid
[a, b]: [—10,10],
0: £:107%,1073

b

‘System desc’:{

(n, f): (96,48)
OPs: {+,>,X...}

b

End-to-End Workflow of NFGen

lterate k:
FitPiecewise (k, NFD):
Try Pk
b Check ||4
Split if fail

Construct P

{Z: 62ms
Vx: 150ms,

km-Profiler,
.} PPD
I
\
Code Load
Generator | 5ppg
Select best plan | templet
and generate: | e—

@types.vectorize

def sigmoid(x):
breaks = [-1007.0, ...,10.0]
coeffA = [[0.0,... 0.0]]
scaler = [[1.0,... 1.0]]
m = len(coeffA),
k = len(coeffA[0])

comp = sfix.Array(m)
foriin range(m):
compli] = (x >= breaks[i])

return res

Code

12

Fixed-point Piece-wise Polynomials Construction

= Valid piece-wise polynomial p;"

= Each term in piece-wise polynomial
Dy can be represented by (n, f)-
FXP.

» NP-Complete Integer
programming problem.

= ;' (x) can approximate F(x)
satisfying the accuracy requirement.

> Best-effort try-split until succeed.

oy LU TE o7 FR a0

Fixed-point Piece-wise Polynomials Construction

= Valid piece-wise polynomial p;"

= Each term in piece-wise polynomial
Dy can be represented by (n, f)-
FXP.

Try generate Py,

in [a, b]

» NP-Complete Integer
programming problem.

= ;' (x) can approximate F(x)
satisfying the accuracy requirement.

> Best-effort try-split until succeed.

Workflow of Piece-wise Polynomial Construction I5

e [] v
% - I

& RN Al

Fixed-point Piece-wise Polynomials Construction

_— 1) Constrains k < k,
= Valid piece-wise polynomial ;" avoiding over/under-flow.
m Each term in piece-wise polynomial

Dy can be represented by (n, f)-
FXP.

Try generate Py,

in [a, b]

» NP-Complete Integer
programming problem. -

= ;' (x) can approximate F(x)
satisfying the accuracy requirement.

> Best-effort try-split until succeed.

Workflow of Piece-wise Polynomial Construction 16

P ——— []
® - AL

o) (T X lal™H

Fixed-point Piece-wise Polynomials Construction

= Valid piece-wise polynomial p;"

= Each term in piece-wise polynomial
Dy can be represented by (n, f)-
FXP.

Try generate Py,

in [a, b]

» NP-Complete Integer
programming problem.

_— 1) Constrains k < k,
avoiding over/under-flow.

2) Fits pg in FLP.

= ;' (x) can approximate F(x)
satisfying the accuracy requirement.
> Best-effort try-split until succeed.
Workflow of Piece-wise Polynomial Construction 17

|

IS

Fixed-point Piece-wise Polynomials Construction

= Valid piece-wise polynomial p;"

m Each term in piece-wise polynomial
Py can be represented by (n, f)- Try generate Py

FXP.

in [a, b]

» NP-Complete Integer
programming problem.

= ;' (x) can approximate F(x)
satisfying the accuracy requirement.

> Best-effort try-split until succeed.

gEm—

—

1) Constrains k < k,
avoiding over/under-flow.

2) Fits pg in FLP.

3) Converts FLP p, to FXP
P with scaling factor.

4) Further reduces error
using residual boosting.

Workflow of Piece-wise Polynomial Construction 18

IS

|

Fixed-point Piece-wise Polynomials Construction

= Valid piece-wise polynomial p;"

= Each term in piece-wise polynomial
Dy can be represented by (n, f)-
FXP.

Try generate Py,

in [a, b]

» NP-Complete Integer
programming problem. l

gEm—

1) Constrains k < k,
avoiding over/under-flow.

2) Fits pg in FLP.

3) Converts FLP p, to FXP
P with scaling factor.

4) Further reduces error

. , using residual boosting.
= ;' (x) can approximate F(x) & g
satisfying the accuracy requirement. Test P,
> Best-effort try-split until succeed. accuracy
Workflow of Piece-wise Polynomial Construction 19
jaununns

Fixed-point Piece-wise Polynomials Construction

_— 1) Constrains k < k,
= Valid piece-wise polynomial T’j}’(’n avoiding over/under-flow.

= Each term in piece-wise polynomial 2) Fits py in FLP.

Dy can be represented by (n, f)- '
FXF I |2 8] 3) Converts FLP p, to FXP

P with scaling factor.

Try generate Py,

» NP-Complete Integer

programming problem. l __4) Further reduces error
using residual boosting.

= ;' (x) can approximate F(x)

satisfying the accuracy requirement. 5 Pass
Test Py — Return valid py,
> Best-effort try-split until succeed. accuracy
Workflow of Piece-wise Polynomial Construction 20
juununnsf °

Fixed-point Piece-wise Polynomials Construction

_— 1) Constrains k < k,
= Valid piece-wise polynomial T’j}’(’n avoiding over/under-flow.

= Each term in piece-wise polynomial 2) Fits py in FLP.

Dy can be represented by (n, f)- '
FXF I |2 8] 3) Converts FLP p, to FXP

P with scaling factor.

Try generate Py,

» NP-Complete Integer Binary

programming problem. Fail spllts q l __4) Further reduces error
l'an using residual boosting.

= ;' (x) can approximate F(x) recurse.
satisfying the accuracy requirement. 5 Pass
— Test Py — Return valid py,
> Best-effort try-split until succeed. accuracy
Workflow of Piece-wise Polynomial Construction 21
junnnnnsf °

Two Ways to Improve the FXP Polynomial Accuracy

m Severe problem: tiny coefficients in FXP harm the final accuracy.

22

Two Ways to Improve the FXP Polynomial Accuracy

m Severe problem: tiny coefficients in FXP harm the final accuracy.

® Scaling factor

= Making use of more significant bits.

23

Two Ways to Improve the FXP Polynomial Accuracy

m Severe problem: tiny coefficients in FXP harm the final accuracy.

® Scaling factor

= Making use of more significant bits.
= E.g,computing 7t term (1.044x10711)x 1007

10 decimal !
Left Unused 1044} 00000000000000

14 — | «—— 14 —— |[(basel0)

0 1012 10435267233655
x 1007
0 1026 10435267233655
1 |«— 4 | 15 — |(basel0)
1
0 : 1044
:] x 1007
1
1

0
11

Scaling Factor

24

m |eft shift the coefficients as much as
possible while avoid overflow. i °

Two Ways to Improve the FXP Polynomial Accuracy

m Severe problem: tiny coefficients in FXP harm the final accuracy.

® Scaling factor m Residual Boosting
m Making use of more significant bits. = Lower-order polynomial tend to have
= Eg., computing 7t term (1.044x10~11)x 1007 |arger coefficients.
0 1012 10435267233655
x 1007
0 1026 10435267233655
[1 |«— 4 [15 ——— |[(basel0)
0 i 1044
0 10 decimal : : x 1007
Left Unused ! 1044'00000000000000
|1 |«— 14 L e 14 — |(basel0)

m |eft shift the coefficients as much as 25

possible while avoid overflow. i ’ ‘T el

Two Ways to Improve the FXP Polynomial Accuracy

m Severe problem: tiny coefficients in FXP harm the final accuracy.

® Scaling factor

m Making use of more significant bits.

= Eg,computing 7t term (1.044x10711)x 1007

0 1012 10435267233655
x 1007
0 1026 10435267233655
|1 |«— 4 \ 15 —— |(basel0)
1
0 : 1044
! ' X 1007
10 decimal 1 :
0 Left Unused 1 1044 ;00000000000000
1 '
|1 |[«—— 14 — | «—— 14 — |(basel0)

m |eft shift the coefficients as much as
possible while avoid overflow.

m Residual Boosting

® | ower-order polynomial tend to have
larger coefficients.

m Use a series of
lower-order
polynomials to
fill the residuals.

|

Function value
N w £ (6] o)) ~ o) [(e)

26

Automatic Performance Profiler & Code Generation

m Piece-wise polynomial evaluation.

= Secure: Obliviously organize secure
+,X and >.

m Performance: O(m) secure > and
O(km + klogk) secure X.

= Which p;* has better performance
depends on the characters of
specific MPC deployment.

27

oy LU TE o7 FR a0

Automatic Performance Profiler & Code Generation

= Piece-wise polynomial evaluation. RN i

. . Rep2k(SPDZ 2

= Secure: Obliviously organize secure P2K(5PDZ) More prefer less m
+,X and >. RepF(SPDZ) 32 11
Shamir(SPDZ) 8l I:1

= Performance: O (m) secure > and More prefer less k.

0(km + klog k) secure X Ps-Rep2k(SPDZ) 85I H
Ps-RepF(SPDZ) 84 I

= Which p;* has better performance
depends on the characters of
specific MPC deployment.

Rep2k(PrivPy) | 11 Severely prefer less m.

Performance Characteristic of Different MPC Deployments

= Train a deployment-specific profiler model fs: (k, m) — time(ms) and
select the most efficient one.

m Generate code into pre-defined code templet. ’

[y ||7|| : 2 A k.

Evaluation: Improved Accuracy

m Overview of |5 common-used functions

—v— tanh-=— soft_plus—— sigmoid—+*— elu—

Baseline

selu gelu

NFGen

soft_sign—#— isru

bs

Lo & L em=m=d 1.0
0.8 0.8+
w 0.6 0.6
[m)]
© 0.4 0.4+
Error Threshold
0.2' (10—3) 02'
0.0 = . ‘ ' . 1 0.0{ o—e—co—s—a—=
-10 -5 0 5 10 15 -12 -10 -8 -6 -4
Relative Error (logio space) Relative Error (logio space)
—%— normal —=— cauchy —— gamma —*— chi_square exp log
Baseline NFGen
1.0 B L 1Lof T
0.8 0.8
w 0.6 0.6
o A
O 0.4 0.4
0.2 el Error Th265h0|d 0.2
0~
0.0 [E . . : : . 0.0-|nﬂﬂ ——G—F=a—a— .
-10 -5 0 5 -14 -12 -10 -8 -6 -4

Relative Error (logio space)

Overall CDF of Relative Errors

Relative Error (logip space)

m Baseline: direct evaluation of MP-SPDZ
library functions.

®= NFGen: generated evaluation code.

" |mproved cases

tanh(x)

Relative Error
N

1 = True

Overflow

-

DE
—+ NFGen

_40 =20 0 20 40
X

Improved Accuracy Cases

Pyl L

Ilirror Accumulation

le
ATTH
%I 2 —=- NFGen
%) —
& DE
0_ T T
0 5 10 15
X
1.0 s
stepl
w step2
0 0.5 step3
© step4
NFGen
0-0 N T T T
-15 -10 -5 0

Relative Error (logio)

29

Evaluation: Improved Accuracy

m Overview of |5 common-used functions

—v— tanh-=— soft_plus—— sigmoid—+*— elu—

1.0{ @7
0.8 4
w 0.6
[m)]
© 0.4
0.2
0.0

Baseline

selu

gelu
NFGen

soft_sign—#— isru

7 e =1

Error Threshold
(1073)

1.0+
0.8+
0.6
0.4
0.2
0.0+

-10 -5 0 5 10 15

-12

-10 -8 -6 -4

Relative Error (logio space) Relative Error (logio space)
—%— normal —=— cauchy —— gamma —*— chi_square exp log bs
Baseline NFGen
1.0 R s 1.0 Hﬁ]]
0.81 0.8+
w 0.6 0.6
o T
O 0.4 0.4+
02 7 Smalinalnalna ErrOF Threshold 02 4 -
0—3
0.01E . . :) . 0.0-|I]ﬂ]] ——G—F=a—a— .
-10 -5 0 5 -14 -12 -10 -8 -6 -4

Relative Error (logio space)

Overall CDF of Relative Errors

Relative Error (logip space)

m Baseline: direct evaluation of MP-SPDZ
library functions.

®= NFGen: generated evaluation code.

" |mproved cases
Overflow

— —
1 = True
== DE
— =+ NFGen

X
o lel3
O 1l
=
w4
~ ---- DE
5 2
© —-— NFGen
Cl)o_ ______
m T T T T T
-40 =20 0 20 40
X

Improved Accuracy Cases

Pyl L

Ilirror Accumulation

le
4TTR
%l 2 —=- NFGen
%) —
& DE
0 l T T
0 5 10 15
X
1.01 @
stepl
w step2
0 0.5 step3
© step4d
NFGen
0-0 T T T T
-15 -10 =5 0

Relative Error (logio)

30

Evaluation: Improved Efficiency

MPC Sys | Efficiency ratio(%), Comm ratio(%), save(%) = NFGen achieves significant
speedup(X) improvements.

Benefit M M Benefit M M : o
B > N > = 93% achieves benefit in all
Rep2k(SPDZ) 100% 167x 86.Ix 93% 58% 93% 15 * 6 cases.
RepF(SPDZ) 100% 5.3X 16.0x 87% 41% 87%
= Average speedup 6.5X
Shamir(SPDZ) 100% 4.0x 10.9% 87% 30% 83% .
and maximum 86.1 X.
Ps- 67% .8x 6.1% 67% 8% 84% o
Rep2k(SPDZ) = Average communication
Ps-RepF(SPDZ) 87% 2.3x 7.6X 73% 27% 87% save 39.3% and maximum
Rep2k(PrivPy) 100% 8.6x 29.1x 93% 57% 90% 93%.
Improved Performance Overview 3

|5 functions for each sys and all achieve the above accuracy requirements.

& INTTTINT 5 . - . P,

Evaluation: Improved Efficiency

Efficiency ratio(%), Comm ratio(%), save(%) = NFGen achieves significant
MPC Sys | SPeedupt) improvements.

Benefit Mean Ma Benefit Mean Max . ..
! X = 93% achieves benefit in all
Rep2k(SPDZ) 100% 167x 86.1x 93% 58% 93% 15 % 6 cases
RepF(SPDZ) 100% 5.3x 16.0x 87% 41% 87%
_ = Average speedup 6.5X
Shamir(SPDZ) 100% 4.0x 10.9x 87% 30% 83% .
and maximum 86.1 X.
Ps- 67% 18x 61x 67% 8% 84% o
Rep2k(SPDZ) u Average communication
Ps-RepF(SPDZ) 87% 2.3 7.6x 73% 27% 87% save 39.3% and maximum
Rep2k(PrivPy) 100% 8.6x 29.1x 93% 57% 90% 93%.
Improved Performance Overview 39

|5 functions for each sys and all achieve the above accuracy requirements.

& INTTTINT 5 . - . P,

Evaluation: Other Benefits

m Support hard-to-compute functions

y(x,z) = joxtz‘letdt (6,4) l.ls
[(x,z) = j Ootz‘letdt (6, 6) .1s
X
erf(x) = %ﬁ j xe-tz dt (4, 6) 0.8s
0
, [* 2
d(x) = \/T_njo ez dt (8, 6) |.2s

Hard-to-compute Functions

o) ||7|| : 2 APk

Evaluation: Other Benefits

m Support hard-to-compute functions m Accelerate current applications

= Approximate sigmoid(x) and
Target function (k, m) Fit time

accelerate LR.
X
y(x, z) =j tZ let dt (6,4) l.1s
0 _ LO7 == True
o) y1 t % —A— SecureML
I'(x,2z) =j tZ et dt (6, 6) l.1s S 05 PETS18
X E | = NFGen
X @
erf(x) = 2 j e t’ dt 4,6 0.8 > =
) == . (4,6) > oo 5 t0 35 oo 25 50 75 100
, 2 Sigmoid Approximations *
Cb(x) = \/TTT]O ez dt (8, 6) |.2s

Hard-to-compute Functions

° = :
il Pl
> o | l s .

Conclusion

= NFGen is our attempt to offer a new way evaluating non-linear functions in MPC,
= |Improved performance from many perspectives (correctness, precision and efficiency).

m Easy to use: NFGen automatically generate the evaluation code with a simple input
config.

= Support numerous hard-to-compute functions and different bit lengths, making MPC
systems more general than before.

m As MPC offers a brand-new architecture, maybe we should explore new algorithm
design logic instead of just follow the plaintext development.

35

oy LU TE o7 FR a0

Q&A

Thanks for your listening!

36

