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Abstract. MOOCs provide irreplaceable opportunities of making high-
quality courses accessible to everybody. However, MOOCs are often crit-
icized for lacking sustainable business models, and academic research for
business strategies for MOOCs is also a blind spot currently, especially
for the B2B markets. As the primary B2B business model, SPOC services
can help the institutional users to improve their in-classroom teaching
outcomes, as well as bring considerable revenue to the MOOC platforms.
In this work, we formulate the economic model and pricing strategy for
SPOC services in a theoretical way and further present the future work
of applying our model in real markets.

1 Introduction

MOOCs bring an unprecedented revolution to the worldwide higher education
of producing high-quality online courses and make them accessible to everybody.
At the same time, universities can also adopt flipped classroom learning to im-
prove the teaching quality of the on-campus education by using SPOCs (i.e.
Small Private Online Courses) through various blended teaching and learning
methodologies. MOOC is an ecosystem involving efforts from many parties. The
MOOC platforms are the core of the ecosystem. Every MOOC platform is a mar-
ketplace where MOOC producers (usually universities) deliver their MOOCs and
corresponding education services to the users. The users in the MOOC ecosys-
tem consist of both Internet users and institutional users. From an industrial
perspective, the profitability and financial stability of the MOOC platforms be-
come a critical problem associated with the sustainable development of the entire
MOOC ecosystem.

As we know, the B2C (i.e., business-to-customer) services are the basic busi-
ness models for MOOC platforms of making money from the Internet users with
a freemium strategy: Where the basic materials of MOOCs are open and free
to all users, and the MOOC platforms also offer fee-based online value-added
services to the users including the Verified Certificates, Specializations, Online
Micro Masters, Advanced Placement (i.e. AP) courses and so forth. However,
for some MOOC platforms, both the completion rate (i.e., the percentage of the
users to pass the basic requirement of a course) and the paying rate (i.e., the
percentage of users to pay for value-added services such as verified certificates) is
not promising[1]. These MOOC platforms can hardly sustain by only providing



Fig. 1. Business model and market structure for the SPOC services.

value-added services to the Internet users. In China, some MOOC platforms (e.g.,
xuetangX, icourse163) make profits by providing B2B (i.e., business-to-business)
education services to institutional users (e.g., universities, professional training
institutions, etc) by sub-licensing MOOC contents and on-campus SPOC plat-
forms. In this work, we focus on the B2B services, which attract less attention
from both the industries and academics, but also play an important role in
the MOOC ecosystem, and sometimes bring more revenue to some early-stage
MOOC platforms than B2C services. In the B2B course sub-licensing market,
the MOOC platform is the seller in the market, and buyers are institutional users
with the demand of using the MOOC materials from the platform and deploy
them as SPOCs for purposes of blended learning.

In practice, the sub-licensing services always exist in the pattern of SPOC
services by allowing the institutional users to import MOOC materials from the
platform and use them as SPOCs with blended teaching and learning approaches.
To guarantee the quality of service, the SPOC services are dynamic and highly
customized, and a user’s demand is a bundle of education services including
MOOC contents, teaching assistant services, SaaS services, technical supports
and so forth. We illustrate the business model and market structure for the SPOC
services in Figure 1. On one hand, each institutional user pays for a bundle of
customized education services and the MOOC platform makes revenue from the
services. On the other hand, as the copyrights of the licensed MOOCs do not
belong to the platform, the MOOC platform should get sub-licensing approvals
from the MOOC producers and share revenue with them.



To the best of our knowledge, this is the first work to study the business
model and pricing strategy for the SPOC services with economic models. As
the users’ demands are dynamic, we design interactive business process and
dynamic pricing framework to analyze the SPOC services, and further present
the profit maximization strategy for the MOOC platform by formulating an
integer programming with resource capacity constraints.

In this work, we propose a theoretical model to analyze the business process
and pricing strategy for SPOC services, and also present ideas of applying our
model in the MOOC industry. The rest of the paper is organized as follows:
We first review related work in Section 2. We formulate the theoretical model
for the dynamic pricing framework and business process of the SPOC services in
Section 3. To solve the optimization problem, We present the theoretical analysis
to maximize the MOOC platform’s total profits through combinatorial auction
mechanisms in Section 4. We then give ideas of applying our model in practice
in Section 5. Finally, we present the directions of our future work and conclude
the paper in Section 6.

2 Related Work

SPOC (i.e., Small Private Online Course) refers to another version of a MOOC
(i.e., Massive Open Online Course) which localizes the instances of a MOOC
on campus through business-to-business contexts. The concept of the SPOC is
initiated in the University of California Berkeley by Armando Fox [2]. Soon af-
ter that, Chinese pioneers start to deploy the SPOC services and apply blended
learning methodologies on campus from 2013 [3]. To the best of our knowledge,
this work is the first to study the business model and dynamic pricing frame-
work with theoretical analysis for SPOC services. In [1], we analyze the flat-rate
pricing strategies for B2C markets with both theoretical models and data-driven
analysis. [4] presents the ideas of involving adaptive learning into the business
model design of MOOCs. There are also discussions on future trends of business
development of MOOCs from the industry. For instance, [5] shows the latest
experience of finding niche and business model for MOOC in 2016.

To analyze the business models for the B2B services, there have been lots of
research done in the area of resource allocation using auction models. One early
work dates back to [6], where they use the combinatorial auction to deal with
the problem of airport time slot allocation by utilizing the concept of shadow
price. Recent work such as [7], designs a heuristic greedy deterministic auction
as well as a randomized linear optimization based auction for allocating wireless
spectrum in secondary network. The authors in [8] present a discriminative sec-
ond price auction technique to motivate users in peer-to-peer video-on-demand
streaming applications. [9] presents a reverse auction framework to motivate the
smartphone users to join mobile crowdsourcing applications. The authors in [10]
show how we can deal with resource provisioning in cloud computing with an
online combinatorial auctions framework. These studies bring us inspirations of
applying various mechanisms to optimize the MOOC B2B market.



We further study the theoretical methodologies for auction mechanism de-
sign. [11] shows the strong links between combinatorial auction and Lagrangian-
based decomposition. The authors in [12] utilize mixed integer programming
to manage general combinatorial auction problems efficiently. [13] presents a
new family of preference elicitation algorithms to prevent bidders to bid on all
combinations. In another way, [14] shows how to use boosting to automatically
modifying existing mechanisms to increase expected revenue. [15] exhibits three
approximation algorithms for the allocation problem in combinatorial auctions
with different ratios under different assumptions. [16] dives deeper into the ques-
tion of whether polynomial-time truthful mechanisms for combinatorial auctions
are provably weaker in terms of approximation ratio than non-truthful ones. We
use some of the above-mentioned techniques to improve the performance of our
combinatorial auction model.

3 Modeling the SPOC services

In this section, we analyze the business model of the SPOC services by using
an auction-based pricing framework. In the auction-based market, each user
attaches a bid to her bundle that signifies her willingness to pay for the SPOC
services, and then the MOOC platform decides whether to accept this bundle. If
yes, the MOOC platform makes a contract with the user under a dynamic pricing
mechanism; if no, the business negotiation between the user and the platform
continues.

Then we formulate the B2B market with one MOOC platform as the seller
within a certain period (e.g. a semester, or a fiscal year). There is a total of
C courses with sub-licensing approvals which can be used as SPOCs. We use
[X] = {1, 2, . . . , X} to denote the set of X elements throughout the paper, and
therefore [C] = {1, 2, · · · , C} is the set of sub-licensing courses. For each course
c ∈ [C], the MOOC platform provides SaaS services, teaching assistant services,
technical support, and other education services. Due to the resource capacity
constraint (e.g., the limited number of TAs, or limited computational resources
of the SPOC platform) for each course, course c can support at most qc students
from all the SPOCs. There are N users in the market, and the business process is
a series of negotiations between the users and the platform. We assume that each
user-platform negotiation completes within K steps, otherwise the negotiation
fails. In the k-th step (k ∈ [K]) of the negotiation, the user n ∈ [N ] submits a bid
with a bundle Bn,k of SPOC services and her valuation vn,k (i.e., willingness to
pay) to the bundle. Each bundle Bn,k contains a vector of C integers indicating
the enrollments for the C courses, and we denote the number of enrollments for
the SPOC c in bundle Bn,k as sn,k,c. If the negotiation terminates in K ′ rounds
and K ′ < K, then let Bn,k = {0, 0, · · · , 0} and xn,k = 0 for all K ′ < k ≤ K. In
the following analysis, we first consider the offline setting, where we know the
information for all the bids of each user in advance, and we take all the data of
Bn,k as the input.



We further consider two types of cost to deploy and operate the SPOC ser-
vices: The capital cost is the expenditures to support the basic features of SPOCs
(e.g. the cost to build the customized SPOC platform), and we denote the cap-
ital cost for bundle Bn,k as dn,k, which is not associate with each SPOC; The
operational cost is the cost to operate and support each SPOC including the
TA’s labor cost, video traffics cost and so forth, and we denote the operational
cost for the course c in bundle Bn,k as ωn,k,c.

The platform need a decision algorithm A to decide whether to accept a bid
and a pricing mechanism P to maximize the total profit from all the users. We
use R to denote the current resource capacity which is a vector of C integers
indicating the remaining capacities for the C courses. The decision algorithm
A is a function of Bn,k, vn,k and R. We use the binary variable xn,k to denote
whether bundle Bn,k is accepted by the platform, so we have:

xn,k = A(Bn,k, vn,k,R) =


1 Accept

0 Reject
∀k ∈ [K], n ∈ [N ]

Let pn,k = P(Bn,k, vn,k,R) denote the price for bundle Bn,k, then we for-
mulate the profit maximization strategy for the platform by using an integer
programming as follows:

maximize:
∑

n∈[N ],k∈[K]

(pn,k − dn,k −
∑
c∈[C]

ωn,k,c) · xn,k (1)

s.t. ∑
k∈[K]

xn,k ≤ 1, ∀n ∈ [N ]; (2a)

∑
k∈[K]

∑
n∈[N ]

sn,k,c · xn,k ≤ qc, ∀c ∈ [C]; (2b)

xn,k ∈ {0, 1}, ∀n ∈ [N ], ∀k ∈ [K]. (2c)

The objective function (1) is the total profits gained by the MOOC platform.
Constraint (2a) means that each buyer wins at most one bundle of the SPOC
services and constraint (2b) is the resource capacity constraint, showing that the
total enrollments of each course are smaller than its capacity.

4 Combinatorial Auction Mechanisms

In this section, we present combinatorial auction mechanisms to solve the offline
problem to optimize the MOOC platform’s total profits, where we know all the
information for the bids of each user (i.e, Bn,k,∀n, ∀k) in advance.

To maximize the platform’s total profits from the bundled education services,
the combinatorial auction mechanisms are promising techniques to fit our set-
tings. In a typical one round combinatorial auction, there are n bidders, each



of them will bid for k bundles of items. Then the outcome (i.e., total profits
in our settings) of this auction (x, p) will be decided by a specific mechanism,
where xi,k is the allocation for bidder i and bundle k and pi,k is the price that
bidder i should pay for bundle k. In our setting, the courses and services repre-
sent the items to be sold in the general combinatorial auction setting, and each
institutional user bids for several bundles of services (i.e., at most k bundles).
Constraints come from the limits of teaching assistants, computing resources and
so on. In this work, We apply three combinatorial mechanisms: the VCG Mech-
anism, the Virtual Valuation Mechanism, and the Shadow Price Mechanism.

4.1 VCG Mechanism

We first apply the famous VCG mechanism [17] in our setting. VCG mechanism
employs an allocation rule to maximize the social warfare, i.e. the sum of all the
valuations of users who win the bidding bundles. The formulation of allocation
rule is as follows:

max
∑

n∈[N ]

∑
k∈[K]

vn,kxn,k

s.t. Constraints (2a) - (2c)

Then the payment pi for each bidder i by VCG mechanism is:

pi =
∑
j 6=i

∑
k∈[K]

vj,kx̃j,k −
∑
j 6=i

∑
k∈[K]

vj,kxj,k

where

x̃j,k = arg max
xj,k

∑
j 6=i

∑
k∈[K]

vj,kxj,k

The intuition of the above mechanism is that we set the price of the SPOC
services to one particular bidder as the decrease of all the other bidders’ gain
due to the participation of this bidder. Note that VCG auctions are generally
computational intractable, existing work such as [18] incorporate the use of VCG-
style pricing with exploited greedy allocation schemes.

4.2 Virtual Valuation Mechanism

VCG Mechanism may not be optimal in respect of the seller’s revenue. Inspired
by Myerson mechanism [19] for the optimal single item auction, and the authors
of VVCA (virtual valuation combinatorial auction) [14] further introduce two
kinds of virtual valuation forms to boost seller’s revenue in combinatorial auc-
tion. Instead of maximizing the sum of all the real valuations of users who won
the bidding bundle, the allocation is decided by maximizing the sum of all the



virtual valuations. Then the price is decided by calculating the decrease of other
bidders’ virtual gain due to the participation of this bidder.

VVCA mechanisms is parameterized by a bunch of preset parameters µs
and λs, corresponding to the bidder weighting technique and allocation boost-
ing technique respectively: the former assign priorities to bidders with higher
valuations, while the latter assign priorities to a specific bundle for a bidder.
The allocation is computed by solving:

max
∑

n∈[N ]

∑
k∈[K]

(µnvn,kxn,k + λn,kxn,k)

s.t. Constraints (2a) - (2c)

where µ are positive real numbers. The payment rule is

pi =
1

µi

∑
j 6=i

∑
k∈[K]

(µjvj,kx̃j,k + λj,kx̃j,k − µjvj,kxj,k − λj,kxj,k)−
∑

k∈[K]

λi,kxi,k


where

x̃j,k = arg max
xj,k

∑
j 6=i

∑
k∈[K]

µjvj,kxj,k + λj,kxj,k


The intuition is that we substitute the valuations in VCG to virtual val-

uations here. Then we determine the parameters λ and µ by using numerical
methods such as hill-climbing to maximize the seller’s expected revenue.

4.3 Shadow Price Mechanism

The main idea of the Shadow Price Mechanism [6] is to determine a shadow
price for each available resource using the optimal Lagrangian multiplier of the
primal integer program, and determine the bid rejection prices (DR) and bid
acceptance prices (DA) using two pseudo-dual programs.

min
∑

x∗
n,k=0

yn,k

s.t.
∑
c

wcsn,k,c ≤ vn,k ∀x∗n,k = 1

yn,k ≥ vn,k −
∑
c

wcsn,k,c ∀x∗n,k = 0

yn,k ≥ 0 ∀x∗n,k = 0

wc ≥ 0



Here x∗n,k is the optimal solution to the primal integer program, and the set of
lower bound prices is w∗c , and we denote the exceeding price of a rejected bundle
comparing to the market price as yn,k.

min
∑

x∗
n,k=1

y′n,k

s.t.
∑
c

ucsn,k,c ≥ vn,k ∀x∗n,k = 0

y′n,k ≥
∑
c

ucsn,k,c − vn,k ∀x∗n,k = 1

y′n,k ≥ 0 ∀x∗n,k = 1

uc ≥ 0

Here the set of upper bound prices is u∗c , and we also denote the exceeding price
of a rejected bundle comparing to the market price as y′n,k.

Then the allocation rule has the following properties: (i) if a bid is greater
than the sum of its component values in the set {u∗}, then it is accepted. (ii)
if a bid is less than the sum of its component values in the set {w∗}, then it is
rejected. (iii) all bids between are determined by considering the primal integer
program regardless of the shadow prices.

The pricing strategy is to set the price for any bidder whose bundle k is
accepted in the solution of the primal problem to the sum of the shadow prices
for the resources in the package.

4.4 Examples

Now we give an example to show why VVCA mechanism can generate higher
revenue than VCG mechanism. Consider the following scenario, there are three
bidders {A,B,C} and two items {P,Q}, the valuation of bidders to bundles are
listed below:

vA,{P} = 5, vB,{Q} = 1, vC,{P,Q} = 16

Then with VCG mechanism, the allocations are decided by solving the following
integer programming:

max 5 · xA,{P} + xB,{Q} + 16 · xC,{P,Q} (3)

s.t.
xA,{P} + xC,{P,Q} ≤ 1 (4a)

xB,{Q} + xC,{P,Q} ≤ 1 (4b)

xA,{P}, xB,{Q}, xC,{P,Q} ∈ {0, 1} (4c)

A simple enumeration of the feasible solutions gives the optimal solution

xA,{P} = xB,{Q} = 0, xC,{P,Q} = 1



So the final allocation would be give item {P,Q} to C. Now we compute what
price would C pay. Without the presence of C, we have the integer programming:

max 5 · xA,{P} + xB,{Q} (5)

s.t.

xA,{P} ≤ 1 (6a)

xB,{Q} ≤ 1 (6b)

xA,{P}, xB,{Q} ∈ {0, 1} (6c)

The optimal solution would be

x̃A,{P} = x̃B,{Q} = 1

So the price C needs to pay is the decrease of social ware-fare due to the
presence of himself, which is

Pc =
(
x̃A,{P} · vA,{P} + x̃B,{Q} · vB,{Q}

)
−
(
xA,{P} · vA,{P} + xB,{Q} · vB,{Q}

)
= (1 · 5 + 1 · 1)− (0 · 5 + 0 · 1)

= 6

Thus the revenue of VCG mechanism would be 6. Then we show how VVCA
would boost the revenue of above VCG mechanism. The main idea is to use
virtual valuations to bring down the difference of valuations between strong
bidders and weak bidders, thus creating an artificial competition to extract more
revenue from strong bidders. We assign the following λ, µ:

µC = 0.5, λB,{Q} = 1

Now the integer programming would become:

max 5 · xA,{P} + xB,{Q} + xB,{Q} + 0.5 · 16 · xC,{P,Q}

s.t. Constraints (4a) - (4c)

Without the presence of C, we have:

max 5 · xA,{P} + xB,{Q} + xB,{Q}

s.t. Constraints (6a) - (6c)

The optimal solution would still be

xA,{P} = xB,{Q} = 0, xC,{P,Q} = 1

x̃A,{P} = x̃B,{Q} = 1



The difference lies in the price that C would pay:

p′C =
1

µC

(
x̃A,{P} · vA,{P} + x̃B,{Q} · vB,{Q} + λB,{Q}x̃B,{Q} · vB,{Q}

)
− 1

µC

(
xA,{P} · vA,{P} + xB,{Q} · vB,{Q}λB,{Q}xB,{Q} · vB,{Q}

)
=

1

0.5
(1 · 5 + 1 · 1 + 1 · 1 · 1)− 1

0.5
(0 · 5 + 0 · 1 + 1 · 0 · 1)

= 14

Thus the revenue of VVCA mechanism would be 14, which is much higher than
the revenue of VCG mechanism, i.e., 6.

5 Business Process in the MOOC Industry

In the previous discussion, we only consider the offline setting for the com-
binatorial auction in only one round. In practice, the business process of the
user-platform negotiation is online, indicating that the platform must give quick
(or even instant) response to the user when she submits a bid. Moreover, the re-
sponse message to the user is interactive, including not only the result of whether
the bid is accepted or not, but also the reasons of why the bid is rejected, or even
suggestions on the combinations of Bn,k and vn,k. For instance, a bid may be
rejected due to the low valuation, or unmet resource capacities for some SPOCs.
When the user receives the message, she will adjust her bid by reducing the
demand or increasing the valuation to the bundle in the next step of negotia-
tion. We further present Algorithm 1 to demonstrate the business process of the
user-platform negotiation in a systematic way.

To solve the online setting of the problem, we apply the iterative combina-
torial auctions in [20], and further use the iBundle mechanism [21] for detailed
analysis.

iBundle maintains ask prices on bundles, which is the lowest price at which
a bundle may be sold, and also the provisional allocation, which is the possible
allocation for the current bids. The process goes through multiple rounds, in
each round a bidder can submit bids on bundles, where at most one bid will
be chosen. A bid is called competitive if it is at or above the current ask price.
A bidder is called competitive if at least one of his bids is competitive. Then a
winner-determination algorithm computes the provisional allocation to maximize
the seller’s revenue. iBundle terminates when each competitive bidder receives a
bundle in the provisional allocation. Otherwise, prices are increased by a preset
parameter ε above the bid price on all bundles that receive a bid from some losing
bidder in the current round and the allocation and new prices are provided as
feedback to bidders. On termination, the provisional allocation becomes the final
allocation, and the bidders pay their final bid prices.



Algorithm 1: Negotiation between user n and the platform

1 Initialization: Set t = 1 and flag = 0. Suppose the current status of resource
capacity is R.

2 while t ≤ T do
3 (a) User n submits his bids (Bn,k, vn,k) to the platform.
4 (b) The platform calculates xn,k and pn,k, and sends the response message

to the user.
5 (c) If accepted, then the negotiation succeeds, update R, set flag = 1, and

break. Else (i.e. rejected) the negotiation continues with t = t + 1.
6 end
7 If flag = 0, then the negotiation fails.

6 Conclusion Remarks

In this work, we focus on analyzing the business model and pricing strategy for
the SPOC services, and maximize the MOOC platform’s total profits by using
combinatorial auctions. We present formulations and solutions for both the one-
round offline scenario, and also the iterative multi-round scenario. We present
several mechanisms for the allocation rules and pricing strategies.

Working in the MOOC industry for the past four years, we have gained
valuable marketing experience of selling MOOC and SPOC services. For the B2C
services, we can directly get sales data from the online purchasing records and use
data-driven approaches to better analyze the real market. For the SPOC services,
we successfully deploy the services to 125 real institutional users, including 90
universities, 20 corporations, 7 high schools and 8 government organizations.
Even though there are no automatic ways to collect sales data for SPOC services,
we can use the Customer Relationship Management (i.e. CRM) system to keep
track of the marketing data and the business process. It is also practical to
conduct surveys to the key users to better understand the buyers’ behavior. We
will apply these methodologies in the MOOC industry to improve the marketing
performance of the models in our future work.
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