Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

Exploring Business Models and Dynamic Pricing Frameworks for SPOC Services

Zhengyang Song, Yongzheng Jia, and Wei Xu

Tsinghua University

August 24, 2018

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Introduction

Problem Formulatior

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

1 Introduction

2 Problem Formulation

3 Offline Combinatorial Auction

- VCG Mechanism
- VVCA Mechanism

4 Online Combinatorial AuctioniBundle

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

5 Conclusion

MOOC platforms

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

Coursera: 3133 courses

- EdX: 2293 courses
- XuetangX: 1507 courses

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How do they generate revenue?

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

B2C (Business-to-Customer)

- Verified Certificates
- Specializations
- Online Micro Masters
- Advanced Placement

B2B (Business-to-Business)

sub-licensing MOOC contents

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

on-campus SPOC platforms

SPOC services

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

Why do we need an auction?

Introduction

Problem Formulatior

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

A Bundle of User's Demand

MOOC contents

- Teaching assistant services
- SaaS services
- Technical supports

However, resources are limited.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Notations

Introduction

Problem Formulation

- Offline Combinatorial Auction VCG Mechanism VVCA Mechanism
- Online Combinatorial Auction
- Conclusion
- References

- $[X]: set \{1, 2, ..., X\}$
- C: number of available courses
- N: number of users
- *K*: number of steps for negotiation
- $B_{n,k}$: the bundle of user *n* for step *k*
- $v_{n,k}$: the valuation of user *n* for his *k*-th bundle
- $s_{n,k,c}$: number of enrollments for course c in bundle $B_{n,k}$
- $w_{n,k,c}$: operational cost for course c in bundle $B_{n,k}$
- q_c : enrollment capacity of course c
- $x_{n,k} \in \{0,1\}$: whether bidder *n* wins his *k*-th bundle
- $p_{n,k}$: the price we charge for bidder *n*'s *k*-th bundle.

Auction Mechanism Design

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

Allocation Rule

$$x_{n,k} = \mathcal{A}(B_{n,k}, v_{n,k}, \mathcal{R}) = \begin{cases} 1 & \text{Accept} \\ & & \forall k \in [K], n \in [N] \\ 0 & \text{Reject} \end{cases}$$

Pricing Rule

$$p_{n,k} = \mathcal{P}(B_{n,k}, v_{n,k}, \mathcal{R})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem Formulation

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

maximize:
$$\sum_{n \in [N], k \in [K]} (p_{n,k} - d_{n,k} - \sum_{c \in [C]} \omega_{n,k,c}) \cdot x_{n,k}$$
(1)

s.t.

$$\sum_{k\in[K]} x_{n,k} \leq 1, \quad \forall n \in [N];$$
(2a)

$$\sum_{k \in [K]} \sum_{n \in [N]} s_{n,k,c} \cdot x_{n,k} \le q_c, \quad \forall c \in [C];$$
(2b)

 $x_{n,k} \in \{0,1\}, \quad \forall n \in [N], \forall k \in [K].$ (2c)

VCG Mechanism [PR03]

Allocation Rule:

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

 $\max \quad \sum_{n \in [N]} \sum_{k \in [K]} v_{n,k} x_{n,k}$

s.t. Constraints (2a) - (2c)

Payment Rule:

$$p_i = \sum_{j \neq i} \sum_{k \in [K]} v_{j,k} \tilde{x}_{j,k} - \sum_{j \neq i} \sum_{k \in [K]} v_{j,k} x_{j,k}$$

where

$$ilde{x}_{j,k} = rg\max_{x_{j,k}} \sum_{j
eq i} \sum_{k \in [\mathcal{K}]} v_{j,k} x_{j,k}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

Bidding

$$v_{A,\{P\}} = 5, \ v_{B,\{Q\}} = 1, \ v_{C,\{P,Q\}} = 16$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

n

Formulation

Allocation

s.t.

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

$$ax \quad 5 \cdot x_{A,\{P\}} + x_{B,\{Q\}} + 16 \cdot x_{C,\{P,Q\}}$$
(3)

$$x_{A,\{P\}} + x_{C,\{P,Q\}} \le 1$$
 (4a)

$$x_{B,\{Q\}} + x_{C,\{P,Q\}} \le 1$$
 (4b)

$$x_{A,\{P\}}, x_{B,\{Q\}}, x_{C,\{P,Q\}} \in \{0,1\}$$
 (4c)

$x_{A,\{P\}} = x_{B,\{Q\}} = 0, \ x_{C,\{P,Q\}} = 1$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Formulation without user C

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism s.t.

Online Combinatoria Auction

Conclusion

References

$$\begin{array}{c} \max \quad 5 \cdot x_{A,\{P\}} + x_{B,\{Q\}} \\ x_{A,\{P\}} \leq 1 \\ x_{B,\{Q\}} \leq 1 \\ x_{A,\{P\}}, \ x_{B,\{Q\}} \in \{0,1\} \end{array} \tag{6}$$

1 ...

Allocation without C

$$\tilde{x}_{A,\{P\}} = \tilde{x}_{B,\{Q\}} = 1$$

E

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

(E)

Introduction

Problem Formulatior

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

Reference

Pricing

$$P_{c} = (\tilde{x}_{A,\{P\}} \cdot v_{A,\{P\}} + \tilde{x}_{B,\{Q\}} \cdot v_{B,\{Q\}}) - (x_{A,\{P\}} \cdot v_{A,\{P\}} + x_{B,\{Q\}} \cdot v_{B,\{Q\}}) = (1 \cdot 5 + 1 \cdot 1) - (0 \cdot 5 + 0 \cdot 1) = 6$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Virtual Valuation Mechanism [LS04]

ntroduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism

Mechanism

Online Combinatoria Auction iBundle Conclusion

References

Allocation Rule:

$$\begin{array}{ll} \max & \sum_{n \in [N]} \sum_{k \in [K]} (\mu_n \mathsf{v}_{n,k} \mathsf{x}_{n,k} + \lambda_{n,k} \mathsf{x}_{n,k}) \\ \text{s.t.} & \textit{Constraints (2a) - (2c)} \end{array}$$

where μ are positive, $\lambda_{n,k}$ is for particular bidder n and bundle k.

For example, to ensure bidder *n* never gets bundle *k* for a price below p_0 , set $\lambda_{n,k} = -p_0$.

Virtual Valuation Mechanism

Payment Rule:

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism

VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

$$= \frac{1}{\mu_i} \left(\sum_{j \neq i} \sum_{k \in [K]} (\mu_j \mathbf{v}_{j,k} \tilde{\mathbf{x}}_{j,k} + \lambda_{j,k} \tilde{\mathbf{x}}_{j,k} - \mu_j \mathbf{v}_{j,k} \mathbf{x}_{j,k} - \lambda_{j,k} \mathbf{x}_{j,k}) \right)$$
$$- \frac{1}{\mu_i} \sum_{k \in [K]} \lambda_{i,k} \mathbf{x}_{i,k}$$

where

pi

$$\tilde{x}_{j,k} = \arg \max_{x_{j,k}} \left(\sum_{j \neq i} \sum_{k \in [K]} \mu_j v_{j,k} x_{j,k} + \lambda_{j,k} x_{j,k} \right)$$

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

Bidding

$$v_{A,\{P\}} = 5, \ v_{B,\{Q\}} = 1, \ v_{C,\{P,Q\}} = 16$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Formulation

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism

Online Combinatoria Auction

Mechanism

Conclusion

References

We assign the following λ, μ :

$$\mu_{C} = 0.5, \ \lambda_{B,\{Q\}} = 1$$

Now the integer programming would become:

$$\begin{array}{ll} \max & 5 \cdot x_{A,\{P\}} + x_{B,\{Q\}} + x_{B,\{Q\}} + 0.5 \cdot 16 \cdot x_{C,\{P,Q\}} \\ \text{s.t.} & Constraints \ (4a) - (4c) \end{array}$$

Allocation

$$x_{A,\{P\}} = x_{B,\{Q\}} = 0, \ x_{C,\{P,Q\}} = 1$$

・ロト ・聞ト ・ヨト ・ヨト

э.

Introduction

Problem Formulatior

Offline Combinatorial Auction VCG Mechanism

Mechanism Online

Combinator Auction

iBundle

Conclusion

References

Formulation Without C

Without the presence of C, we have:

max $5 \cdot x_{A,\{P\}} + x_{B,\{Q\}} + x_{B,\{Q\}}$ s.t. Constraints (6a) - (6c)

Allocation without C

$$\tilde{x}_{A,\{P\}} = \tilde{x}_{B,\{Q\}} = 1$$

Pricing

р

Introduction

Problem Formulatior

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatori Auction iBundle

Conclusion

References

$$\begin{aligned} \dot{T}_{C} &= \frac{1}{\mu_{C}} \left(\tilde{x}_{A,\{P\}} \cdot v_{A,\{P\}} + \tilde{x}_{B,\{Q\}} \cdot v_{B,\{Q\}} + \lambda_{B,\{Q\}} \tilde{x}_{B,\{Q\}} \cdot v_{B,\{Q\}} \right) \\ &- \frac{1}{\mu_{C}} \left(x_{A,\{P\}} \cdot v_{A,\{P\}} + x_{B,\{Q\}} \cdot v_{B,\{Q\}} \lambda_{B,\{Q\}} x_{B,\{Q\}} \cdot v_{B,\{Q\}} \right) \\ &= \frac{1}{0.5} (1 \cdot 5 + 1 \cdot 1 + 1 \cdot 1) - \frac{1}{0.5} (0 \cdot 5 + 0 \cdot 1 + 1 \cdot 0 \cdot 1) \\ &= 14 \end{aligned}$$

Thus the revenue of VVCA mechanism would be 14, which is much higher than the revenue of VCG mechanism, i.e., 6.

Business Process in MOOC Industry

Algorithm 1: Negotiation between user *n* and the platform

Introduction

Problem Formulation

```
Offline
Combinatoria
Auction
VCG Mechanis
VVCA
Mechanism
Online
```

Online Combinatorial Auction iBundle

Conclusion

References

1 Initialization: Set t = 1 and flag = 0. Suppose the current status of resource capacity is \mathcal{R} .

2 while $t \leq T$ do

- (a) User *n* submits his bids $(B_{n,k}, v_{n,k})$ to the platform.
 - (b) The platform calculates $x_{n,k}$ and $p_{n,k}$, and sends the response message to the user.
- (c) If accepted, then the negotiation succeeds, update \mathcal{R} , set flag = 1, and break. Else (i.e. rejected) the negotiation continues with t = t + 1.

6 end

3

4

5

7 If flag = 0, then the negotiation fails.

iBundle [PU00]

- Introduction
- Problem Formulation
- Offline Combinatorial Auction VCG Mechanism VVCA Mechanism
- Online Combinatoria Auction
- iBundle
- Conclusion
- References

- maintain ask prices and provisional allocation
- bid is competitive if it is not lower than ask price
- bidder is competitive if he has at least one competitive bids

Algorithm

- for each round, bidders submit bids on bundles
- provisional allocation computed to maximize seller's revenue
- terminate if each competitive bidder receives a bundle in the provisional allocation
- o.w., *ask prices* are increased by a preset parameter, feedbacks are provided to bidders
- on termination, *provisional allocation* becomes the final allocation, the bidders pay their final bid prices.

Conclusion

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

What we have done

- Model formulation for SPOC services
- Mechanisms for Offline combinatorial auction
- Mechanisms for Online combinatorial auction

Future Work

Compare different mechanisms by simulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Real Data Analysis of SPOC Services

Reference

Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction iBundle

Conclusion

References

[LS04] Anton Likhodedov and Tuomas Sandholm. Methods for boosting revenue in combinatorial auctions. In AAAI, pages 232–237, 2004.

[PR03] Aleksandar Pekeč and Michael H Rothkopf. Combinatorial auction design. *Management Science*, 49(11):1485–1503, 2003.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[PU00] David C Parkes and Lyle H Ungar. Iterative combinatorial auctions: Theory and practice. *AAAI/IAAI*, 7481, 2000. Introduction

Problem Formulation

Offline Combinatorial Auction VCG Mechanism VVCA Mechanism

Online Combinatoria Auction

Conclusion

References

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ