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Abstract—Chest radiography (chest X-ray) is a low-cost yet
effective and widely used medical imaging procedures. The
lacking of qualified radiologist seriously limits the applicability of
the technique. We explore the possibility of designing a computer-
aided diagnosis for chest X-rays using deep convolutional neural
networks. Using a real-world dataset of 16,000 chest X-rays with
natural language diagnosis reports, we can train a multi-class
classification model from images and preform accurate diagnosis,
without any prior domain knowledge.

I. INTRODUCTION

Chest radiography (chest X-ray) is a medical imaging
technology that is economical and easy to use. A chest X-
ray produces an image of the chest, lung, heart, airways and
blood vessels. Using a chest X-ray image, trained radiologist
can diagnose conditions such as pneumonia, pneumothorax,
interstitial lung disease, heart failure, bone fracture, hiatal
hernia and so on.

The big advantage of X-ray is the low cost and simplicity to
take. Photographing a chest X-ray is a non-invasive procedure
that only takes a few minutes and the result typically comes
out within half an hour. Modern digital radiography (DR) ma-
chines are quite affordable even in undeveloped regions. Thus,
chest X-ray is widely used for screening as well as diagnostics
of lung diseases such as lung nodules and interstitial lung
diseases.

A large hospital typically produces over 40,000 chest X-
rays per year just from outpatient. Moreover, chest X-ray is a
standard screening method in physical examinations that over
three hundred million people took in 2014 all over China. This
number is still increasing, resulting in hundreds of millions of
chest X-ray images per year.

Lacking qualified radiologists to review these X-rays is a
major challenge in China. Reviewing chest X-rays heavily
depends on the experience of radiologists since the image has
no spatial information and the overlap of different body parts
may hide diseased tissues. Also, many images are difficult
to read when the lesions are in low contrast or overlap with
large pulmonary vessels. Even worse, each chest X-ray takes
a trained radiologist several minutes to review and write
the report, and many radiologists have to work over-time,
increasing the misdiagnosis due to exhaustion.

As a result, the misdiagnosis of X-ray is high. It is re-
ported that about 20% to 50% of lung nodules are missed or
misdiagnosed on chest X-rays [1], while most of them can be

detected retrospectively or by a second reviewer. Inexperienced
radiologists are sometimes uncertain about their diagnosis, but
they may not have the opportunity to discuss with others.

The recent development of artificial intelligence (AI), com-
bining with the accumulating of a vast amount of medical
images, opens a new opportunity to build an Al based system,
aka. computer-aided diagnosis (CAD) system, to automatically
analyze such chest X-rays. CAD covers many medical prob-
lems, such as automatic vertebrae detection [2], automatic
coronary calcium scoring [3], lymph nodule (LN) detection
[4], [5] and interstitial lung disease (ILD) classification [5],
[6]. However, most recent CAD systems depends on the high
resolution magnetic resonance imaging (MRI) or computed
tomograph (CT) images, while ignoring the plain old X-rays
that are much more widely utilized.

From image analysis point of view, CAD for X-rays is more
challenging than MRIs or CTs. The layered images in MRIs
and CTs reveal more details, and produce images with higher
level of signal-to-noise ratio, making them easier to process.
As a practical problem, while there are many X-ray images,
there are very few X-ray datasets that are labeled as detailed
as the MRI or CT datasets [7]-[10].

Traditional CADs are based on hand-crafted image features,
and these features are then used to learn a binary or discrete
classifier. The performance of such methods heavily depends
on the extracted features, and it takes a long time for re-
searchers to come up with a good set of features, especially
for complicated images like the X-rays.

Deep convolutional neural network (CNN) has gained pop-
ularity given its excellent performance in different image
recognition challenges, such as image classification [11]-[14]
and semantic segmentation [15]-[18]. CNN is also applied in
many medical image processing tasks [19]-[24] recently, and
can reach the level of human radiologists [24].

CNN is a good fit for X-ray image analysis because it is
an end-to-end network and easy to train. Also, CNN does not
require any manual feature engineering - it only trains on the
raw images and the classification labels (in our case, it is the
diagnosis). Thus, as computer scientists without any radiology
or medical background, we can build these models. Of course,
the cost is the requirement of large amount of training data,
which we can manage to get for X-ray images.

In our work, we use a dataset of 16, 569 chest X-ray images
with their diagnosis reports to train a CNN model that can au-



tomatically generate these diagnoses on new images. Formally,
this problem is called an image classification problem, where
each disease is a class, and we want to classify each X-ray
image into one or more classes.

To do so, we first automatically analyze the natural language
report and extract the final diagnosis as disease labels. We
allow multiple disease labels for each image. Then we train
separate CNN models to perform three classification tasks: 1)
is the image normal? 2) does this image has disease label X?
and 3) what are all the disease labels of the image? For each
task, we use two kinds of state-of-the-art CNNs and compare
their accuracy results.

Our preliminary results shows that we can predict the
disease labels with 82% accuracy in normal vs. abnormal
task, and when we generate the top three most likely disease
labels, we can predict the right label with over 97% accuracy.
In multi-disease detection task, we achieve a mean average
precision of 0.829.

II. RELATED WORK

An artificial neural network (ANN) approach was applied
to the differential diagnosis of interstitial lung disease [25].
The artificial neural network was designed to distinguish
between nine types of interstitial lung diseases based on 20
clinical items and radiographic information. The radiologists’
performance in the differential diagnosis of interstitial lung
disease was improved from an area under curve (AUC) of
0.826 to 0.911 in ROC curves by using the ANN output [26].
This work requires radiologists to read the X-ray image, and
it takes a long time to extract the radiographic information.
Our model is an end-to-end network, and the input of the
network is the entire X-ray image without extra radiographic
information.

Most work of CAD in medical imaging is based on feature
extraction in a region-of-interest (ROI) in the image, such as
histogram of oriented gradients (HoG [27]) and scale-invariant
feature transform (SIFT [28]). These features are extracted
directly based on RGB information, and are relatively low-
level features and less expressive compared to convolutional
neural networks (CNN) based features [29], [30].

Researchers apply CNNs on medical images in different
imaging techniques recent years, such as magnetic resonance
imaging (MRI) [19], [20], computed tomography (CT) [5],
[21] and X-rays [22], [23]. Fine-tuning a pre-trained CNN
model gains great success in many medical imaging problems.
H.C. Shin et al. (2016) [5] fine-tune several ImageNet [31]
pre-trained CNN models to study two specific CAD problems,
thoraco-abdominal lymph node (LN) detection and interstitial
lung disease (ILD) classification. A. Esteva et al. (2017) [24]
also fine-tune an ImageNet pre-trained GoogLeNet [13] for
skin cancer classification, reaching a level of competence
comparable to dermatologists. We use a similar method to
fine tune the pre-trained CNNs.

Previous work in [22] uses the off-the-shelf CNN (pre-
trained CNN without fine-tuning) features combining with
hand-crafted features to detect the chest pathology in X-rays.
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Fig. 1. The illustration of (a) Convolution Layer and (b) Pooling Layer. The
output feature maps are computed by convolving filter kernels over the input
feature maps. In pooling layer, every 2 X 2 patch is down-sampling by max
operation.

They train an SVM of binary classification for each pathology
and obtains an area under curve (AUC) of 0.87 for health vs
pathology and 0.88-0.94 for different pathologies. H.C. Shin et
al. (2016) [23] train RNNs to generate the annotations of chest
X-rays, based on the fine-tuned CNN features. The fine-tuned
CNNss achieve an accuracy of 66.40% on a 17-disease dataset.
Our work does not require hand-crafted features either. Note
that as none of these datasets are open, it is not possible to
directly compare these accuracy results.

III. BACKGROUND

Convolutional neural network (CNN) is a type of feed-
forward neural network in machine learning. A convolutional
neural network is formed by a stack of layers [11], [12], or
a directed acyclic graph (DAG) of layers [13], [14]. A CNN
usually combines the following five types of layers.

Convolution layers are the main components of a CNN. The
layer consists of several filters (aka kernels) that we want to
learn during the training face. Figure 1(a) shows the structure
of a convolution layer. Formally, assuming I = {I1, I, ..., In}
is the input feature maps and K = {K;, Ko, ..., K)s} where
the size of K; is N x W x H. The output feature maps O =

{O1,...,0n} and O; = I ® K; is computed as:
N W H
Oiay = ZZ Z jats,y+t 0 g5t
j=1s=1t=1

We usually add an activation layer after the convolution
layer, increasing the non-linearity of the network. The ReLu
(rectified linear unit) function f(z) = max(0,z) is used
as a common practice by researchers [32]. Compared to
other activation functions, such as hyperbolic tangent function
f(x) = tanh(z) and sigmoid function f(x) = (1 +e~%)71,
ReLu function, in spite of the hard non-linearity and non-
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Fig. 2. The architecture of AlexNet. The network consists of 5 convolution
layers, 3 pooling layers and 3 fully-connected layers. The parameters in
convolution layers are the kernel size of the filters and the number of the
output feature maps.
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differentiability at zero, creates sparse representations with
true zeros and is suitable for naturally sparse data [33].

The pooling layer is another important concept of CNN,
and it performs a non-linear down-sampling operation (Fig-
ure 1(b)). Max-pooling is the most commonly used pooling
operation, and Average-pooling is also used according to the
tasks.

The last layer of the network is usually a fully-connected
layer. After several convolution and pooling layers, the net-
work is ended by one or more fully-connected layers. Neurons
in this layer have full connections with the previous layer.
There is no spatial information after a fully-connected layer.

The loss layer is used to train the neural network. Various
loss functions are used for different tasks. For example,
softmax loss function is used for classification problem, and
sigmoid cross entropy loss is used for predicting some inde-
pendent probabilities.

In addition to the above layers, some effective techniques,
such as batch normalization and dropout, are also used to
improve the performance of CNNs. Figure 2 provides an
example of CNN models called AlexNet. AlexNet takes a
227 x 227 RGB image as input, and produces a distribution
over the 1000 class labels. We use an advanced versions of
AlexNet, called VGG-Net [12], and another state-of-the-art
CNN model ResNet [14].

IV. METHODS
A. Dataset and pre-processing

We obtain a dataset with 16,569 chest X-ray images taken
on digital radiography (DR) machines in 2014 and 2015
from the fourth people’s hospital of shaanxi in China. The
hospital uses a modern Picture Archiving and Communication
System (PACS) to store the images as well as their associated
diagnosis reports. The images are in the Digital Imaging
and Communications in Medicine (DICOM [34]) format. The
diagnosis reports, aside from patient information (omitted
for patient privacy in this study), contains two sections:
the findings and diagnosis. All diagnosis reports are written
in Chinese. Each diagnosis report is confirmed by a peer
reviewer, which makes the report to be accurate. Figure 3
provides an example of the image with the report.

The findings sections in the reports describe the radiographic
information, while diagnosis sections provide the radiologist-
s’ diagnoses of the diseases. These sections are in natural
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Fig. 3. An example of chest X-rays in our dataset. The report is written in
Chinese and contains two parts of findings and diagnosis. The disease labels
are extracted from diagnosis, and we show the result in English.
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Fig. 4. Visualization of the clustering result. The font size is proportional to
its appearance frequency. Boxes indicate different clusters.

language. The hospital does not have a rigid coding system,
and there may be several different terminologies to describe a
single issue. There are also typos in these reports.

Thus, the first task is to convert these languages into
accurate class labels. For pre-processing, we split the diagnosis
into clauses, and we try to cluster similar clauses, which is
highly likely to indicate similar diseases.

We define the similarity of the clauses based on their edit
distance [35]. The edit distance is defined by the minimum
number of operations (insertion, deletion, and substitution)
to transform one clause into into the other. We find that
in Chinese language, short edit distance is a pretty good
indicator of semantically similar diagnosis. To compute the
edit distance, we first remove the digits (i.e. variables) in
sentences, and then use a dynamic programming algorithm
to compute the distance.

Since it is hard to use a vector to represent a clause, we ap-
ply k-medoids algorithm [36] to perform the clustering on the
clauses. K-medoids is related to the k-means [37] algorithm,
and chooses the points in the dataset as the clustering centers.
Figure 4 shows a visualization of the clustering result.

Given over 16 thousands of images, we have 10 diseases
with 100 or more positive examples. Thus, we select the top
ten largest clusters, covering 97% of all images, and assign
a disease label for each, while ignoring the other smaller
clusters. As we obtain more image samples, we will expand
to more diseases as a future work. Table I shows the statistics
of these clusters. The “single” column indicate that the label



TABLE I
ToP TEN MOST FREQUENT DISEASE LABELS

Disease Label = Total  Single  Single Percent

normal 8397 8397 100%

increased lung marking 6087 2927 48%
aortosclerosis 3930 743 19%

increased heart shadow 1159 88 8%
pleural thickening 630 120 19%
pulmonary interstitial hyperplasia 507 70 14%
costophrenic angle blunting 273 53 19%
pleural effusion 168 58 35%
emphysema 159 17 11%

bronchitis 144 77 53%

is the sole diagnosis of the image. For example, about 48%
of the images (or 2,927 images) are marked “increased lung
marking” as the only disease, while the other 52% are also
labeled with two or more diseases including “increased lung
marking”. Figure 5 provides an example of each normal and
single disease images.

B. CNN-based classification model

Given CNN'’s layered structure, we can use a network to
perform multiple tasks by changing its last layers. Specifically,
we perform three tasks with the CNN: 1) classifying normal
vs. abnormal images; 2) classifying images with a single
disease; and 3) classifying multi-disease cases.

Although we are using over ten thousand images, the data
size is still orders of magnitude smaller than normal image
classification training data, such as the ImageNet. Thus, we
use pre-trained models as a starting point, like many existing
projects do [5], [24]. We obtain our pre-trained models on
ImageNet from the Caffe Model Zoo [38]. Starting with
these pre-trained models, we use the X-ray images as extra
input, while training the model with the same set of training
hyper-parameters such as the batch size, learning rate, and
momentum.

We compare two state-of-the-art CNN models: VGG-16
(VGG-Net [12] with 16 layers) and ResNet-101 (residual
network [14] with 101 layers). VGG-16 is a deeper version of
AlexNet. It uses very small 3 x 3 size kernels in all convolution
layers to reduce the number of parameters. ResNet-101 has a
depth of up to 101 layers, much deeper than any other network.
The key idea behind ResNet is addressing the vanishing
gradient problem [39], [40] by computing the residual of a
mapping instead of the mapping itself.

We rescale all images to a size of 256 x 256 since a
classification CNN must take a fix-sized input because of the
fully-connected layers.

Task 1: Classifying normal vs. abnormal images.

For this most basic task, we ignore the disease labels and
consider all cases except for those marked as normal to be
a single class. There are 8,397 normal cases, and 8,172
abnormal cases.

We randomly partition the dataset into training, validation
and testing sets with 80%/10%/10%, and train the model on

the training set, and use the resulting model to predict the
binary classification result on the validation set.

Task 2: Multi class classification on images with single
disease labels

As each image may indicate multiple diseases, we want the
CNN model to predict the probability for each disease label.
Thus, we modify the network, making the last layer of the
CNN models to contain 10 neurons. Each neuron produces a
probability distribution for a single disease label.

To reduce the noise when training the CNN for each disease,
we use only the images with a single label as training and
validation sets. We have 12,564 such images (Single column
of Table I). Except for the emphysema case, we have at least
50 images for each disease type. Thus we do have enough
data to perform training, validation and testing for each label.
Although we have 159 emphysema cases, they rarely present
themselves as the single disease. Thus, we only use 5 cases
for both validation and testing, while using all other 12 for
training.

A big challenge here is the unbalanced datasets. For exam-
ple 67.9% of single labels cases are normal, while we only
have less than 1% of the images for diseases like emphysema.
For model training, we need to balance the number of samples
for each class, especially to boost the number of sample for the
small classes. To do so, we adopt a common data augmentation
technique in CNN [11]. We randomly crop 224 x 224 image
patches from the 256 x 256 images and use each patch as a
training sample. There are possibly (256 —224 +1)? = 1,089
patches for each image, and thus we can increase the number
of samples for small classes. In our experiments, we boost the
small classes so each class has a minimal of 380 samples, or
3% of all images. We also sample the normal cases, lowering
its percentage in the training set to 21.9%.

Task 3: Classifying images with multiple disease labels
There are 3,879 images with multiple disease labels. We
find that the models trained on single disease cases are
still useful in this case. We use the model to compute the
probability of all labels, sort the probability in descending
order and use all labels with probability above a threshold.

V. EXPERIMENTS

We perform our experiments on a Ubuntu server with 8
Titan X GPUs using the Caffe [41] framework. We perform
all evaluation on the testing set (10%) of all the images, as
described above. We present our evaluation results in this
section.

A. Evaluation Metrics

We use the following metrics to evaluate the algorithm
performance. First, we report the sensitivity and specificity
of the detection, widely used in medical literature. We also
introduce a metric called top-3 sensitivity following the widely
used top-5 error ratio [42] in computer vision research. In fop-
3 sensitivity metric, a case is considered true positive if the
true disease label is among the top three labels with the highest
probability.
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Fig. 6. The results of the confusion matrix and the ROC curve.

B. Task 1: Binary Classification on Normal vs. Abnormal

In this experiment, we use a testing set with 1,656 images,
out of which 52.0% are normal and 48.0% are abnormal. In
this case, we only use the VGG-16 network. We train the
network with 800 iterations, using 60 images per iteration with
a training set size of 13,257 images.

Figure 6(b) shows the confusion matrix and the ROC curve
on the testing set. The accuracy in confusion matrix is 82.2%,
and we achieve an AUC (i.e. area under curve) of 0.88 in the
ROC curve.

C. Task 2: Single Disease Classification

During the test phase, following the method in AlexNet [11],
the network makes the prediction by extracting five 224 x 224
patches, including the four corners and the center patch, and
averaging the predictions on the five patches. Since we crop
224 x 224 patches for data augmentation in training set, the
patch is more accurate than the entire image for the network.
In the following experiments, the results are all obtained from
the 5-patch testing method.

increased heart pleural effusion emphysema pulmonary interstitial
shadow hyperplasia

Fig. 5. Examples of chest X-rays for each disease.

pleural thickening

Table II summarizes the algorithm performance of each
disease label. We can see that the algorithm performs well
in some large cases, such as the normal and the aortosclero-
sis cases. ResNet generally performs better than VGG. The
network performs well on most of the cases for the top-3
sensitivity cases. That is, the model is able to recognize the
correct disease in the top three labels, reaching over 90%
accuracy in many cases (where a random guess only gets about
3/10 chance to be correct). As a CAD system, suggesting the
three most likely labels can be very valuable in practice.

However, neither network performs well on the following
cases, increased heart shadow, pleural thickening, emphysema
and bronchitis. We believe the reasons are: 1) For increased
heart shadow, our data augmentation method of cropping
patches influences its detection, as the patches may not include
the entire lung; 2) Pleural thickening usually appears with
the symptom of costophrenic angle blunting in chest X-rays
[43], and thus almost half of the cases of pleural thickening
are misclassified into costophrenic angle blunting; and 3)
Bronchitis is hard to diagnose from chest X-rays even for a
human radiologist, as its diagnosis often depends on the full
medical history [44].

D. Task 3: Multiple Disease Detection

In multi-disease detection cases, we use the images with at
least two disease labels to test the models and see if the model
can correctly predict all the disease labels.

For evaluation, we use the average precision (AP) [45] to
evaluate the performance. The AP metric is based on the
prediction list. Assume an X-ray image has m disease labels,
and the rank for the disease labels in the prediction list are



TABLE II
SINGLE DISEASE CLASSIFICATION RESULTS

VGG-16 ResNet-101
Disease Label  Specificity ~ Sensitivity =~ Top-3 Sensitivity ~ Specificity =~ Sensitivity =~ Top-3 Sensitivity
normal 71.5% 78.5% 99.7% 70.5% 80.4% 99.5%
increased lung marking 79.4% 59.6% 100% 86.3% 43.2% 99.6%
aortosclerosis 97.0% 37.5% 92.4% 90.4% 61.1% 99.3%
increased heart shadow 99.8% 12.5% 50.0% 99.4% 25.0% 62.5%
pleural thickening 99.8% 16.7% 25.0% 99.6% 41.7% 58.3%
pulmonary interstitial hyperplasia 98.7% 57.1% 57.1% 99.9% 28.6% 42.9%
costophrenic angle blunting 99.9% 40.0% 60.0% 100% 60.0% 80.0%
pleural effusion 100% 60.0% 80.0% 99.9% 60.0% 100%
emphysema 99.8% 20.0% 20.0% 99.8% 20.0% 40.0%
bronchitis 99.6% 14.3% 28.6% 99.7% 28.6% 42.9%

0.2% l1creased heart shadow

Fig. 7. An example of X-rays with multiple disease labels, and the disease
labels could be found in Figure 3. The rank of the disease labels are 1, 2 and
4 in the list, so the average precision (AP) is (1/1+2/243/4)/3 = 0.9167.

1
——ResNet-101
——VGG-16
0.8
0.6
L
[m]
Q
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1
Average Precision
Fig. 8. The cumulative distribution functions.

71,72, ..., Tm, Where 71 < ... < r,,. Then the average precision
(AP) of this case is computed as AP = (1/m) >, (i/r;).
Figure 7 provides a concrete example of how the MAP met-
ric is calculated. The human labels on the image are increased
lung marking, aortosclerosis and increased heart shadow (the

order does not matter). The model generates four labels with
non-zero probability, as the figure shows. Then the AP for this
image is calculated as (1/1+2/2+ 3/4)/3 = 0.9167.

Figure 8 presents a cumulative distribution function (CDF)
of the AP metric across all images with at least two disease
labels for both VGG and ResNet. As the previous experiments,
ResNet performs better than VGG. The average AP value
across these images is 0.829, meaning that the model can
predict most of the disease labels in the dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated our preliminary study on
using CNN to train model for diagnosing diseases from chest
X-ray images. We did this work from a purely computer
science perspective: we train our model with no prior domain
knowledge, but solely based on over 16,000 images with
natural language diagnose reports. We have to deal with the
highly unbalanced data problem using re-sampling method.
We also fine-tune a pre-trained model to accelerate the training
process. Using real world test dataset, we show that our
method achieves very good accuracy.

As future work, we will use a larger dataset for training,
especially adding positive examples of the relatively rare
diseases. We will also incorporate the medical history into
the model, better simulating how a human radiologist reads
these images. Last but not least, we will use CNN to analyze
multiple images types (X-ray, CT, MRI) from the same patient,
linking their diagnostics.
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