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ABSTRACT
Cooling problems are common in data centers and many of them
are hard to detect especially the hidden. �ese problems a�ect
overall system dependability, performance and power e�ciency.
We propose a novel method to detect the cooling problems. Us-
ing common monitoring data available in most data centers, such
as environmental temperature and hardware status, we build a
workload-independent cooling pro�le for each server. With the
cooling pro�les, we are able to detect two types of both transient
and lasting cooling failures. We detect transient failures by com-
paring the observed temperature with the model prediction, while
we detect lasting failures by comparing the cooling pro�les among
di�erent servers. We demonstrate the general applicability of our
detection methods in three production data centers with vastly
di�erent scale, server types and workload, and detect several real
cooling problems that have been hidden for months.
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1 INTRODUCTION
Cooling problems happen frequently in data centers. In the early
days, Jim Gray [1] and David Pa�erson [2] survey summarizes that
about 32% of the system errors are caused by hardware and cooling
problems. For example, if the CPU temperature continues to in-
crease, the catastrophic shutdown detectors will force processor to
halt [6]. Cooling failures at this severity is usually associated with
a critical situation in data centers and they o�en get immediate
a�ention. While these kinds of failures are more eventful, they
happen rarely and are easy to detect and �x.

Cooling problems do not necessarily lead to an observable event
of equipment overheating. People have designed layers of hard-
ware, so�ware and operation procedures to tolerate cooling prob-
lems to improve system dependability. As a result, many cooling
problems become quiet, but these hidden cooling failures can still
lead to performance, dependability or power e�ciency problems.
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For example, hard disks can operate at a relatively high tempera-
ture, but as [17] points out, the dependability of disks signi�cantly
degrade at a high temperature. Automatic fan control can speed up
the cooling fan to alleviate problem of a partially blocked server
air inlet. �is action prevents immediate server overheating, but
increases the power draw on the fan. Even worse, a common prac-
tice to avoid cooling problem is to reduce the room temperature
to ensure a safe margin, and the margin is usually set to tolerate
the equipment with the worst cooling performance. For example,
we try to reduce energy consumption by turning o� one air con-
ditioner. �en hidden cooling problems appears, one server with
Titan X GPU turn to be extremely hot and other two servers cannot
boot up, these servers fail because the GPU driver version does
not match the server’s kernel, so it cannot control the GPU fan
correctly, the other two have bad mother boards that fails when
temperature goes high.

�us, we believe it is essential to detect cooling problems, espe-
cially those hidden problems, in a robust, low overhead and fast
way, in addition to tolerate them by cooling more oppressively, and
it is the goal of this paper. We mainly focus on servers, the largest
type of heat generating devices in data centers, but our approach
is applicable to other types of equipments too.

Many factors contribute to an abnormal temperature of a server.
�ere are the three major categories, including the server’s own
hardware/so�ware, its environment and the workload [7]. �ere
are many reasons for each factor to go wrong. We see certain
corners in our data center that do not receive enough chilled air,
creating a bad environment for whichever server placed there.
Human mistakes may lead to some hard to detect errors. For
example, we see a situation that the human operator accidentally
le� a gap between �oor tiles, which let some chilled air leak out,
causing cooling problems for a few racks. We present more of such
real world problems in our evaluation section.

A lot of existing work focus on cooling air �ows in the data
centers [19],[20],[12]. However, air �ow is particularly di�cult
to model, especially in small scale data centers, as the limited
physical space causes lots of non-linear and fast changing behavior
in cooling air circulation [8]. Cooling provisioning at the design
time do not work well as administrators constantly adds/removes
equipments, making air�ow circulation even less predictable.

Instead of directly measuring the air�ow, we take a data driven
approach: we monitor the common metrics of a data center, such as
the server utilization, temperature of the server components, and
build a statistical model to predict each server’s cooling behavior
under any given workload and current thermal state. We call the
model cooling pro�le of the server. �e system learns the cooling
pro�le based on the servers’ cooling behavior on various workload
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levels, but a�er the server’s cooling pro�le was built, we can use it
to detect problems independent of its current workload. Workload-
independence is the key to our approach: it allows us to detect
hidden cooling issues even if there is no observable overheating.

�e key challenge of obtaining the cooling pro�le from a produc-
tion data center is that the servers are running di�erent workloads
and it would be too expensive to stop all production job to perform
a system identi�cation for thermal modeling. We take a data-driven
approach and collect monitoring data from servers under produc-
tion workload, which are very noisy, for a relatively long period of
time (a couple of days), and then we can build statistical model for
each individual server.

We use the cooling pro�les to detect two di�erent kinds of
cooling failures: transient failures and lasting failures.

It appears more straightforward to detect transient failures than
it actually is. Many available tools use a static temperature thresh-
old. It is hard to set the threshold accurately because it is workload-
dependent and some servers can get ho�er than others due to their
con�guration or environment. Lasting failures are even harder to
detect. Some servers have a poor cooling behavior to begin with
because of non-fatal hardware / so�ware bugs or poor locations
in the data center. Our cooling pro�le captures its bad behavior
as the server’s “normal” condition and compare a server’s cooling
pro�le with that of other servers. Speci�cally, we de�ne a distance
metric between any two cooling pro�les and apply machine learn-
ing algorithms such as clustering and anomaly detection to put
each server into groups based on their cooling pro�le. Servers with
unique cooling pro�le are suspects for having cooling problems.

Empirical experiments show that the detection is quite accurate.
Note that our detection is independent of the cause of the cooling
problem. Some non-circuit failures, such as server fans cover for
the misplaced server , is hard to �nd as there is no special sensors
for that. Our mechanism can successfully detect these problems.

To demonstrate the wide applicability of our approach, we per-
form experiments in three data centers with di�erent scales and
hardware/so�ware con�gurations details in 4.1.

We only use the common metrics such as workload and tem-
perature that are readily available. We show that for all three data
centers, we can not only quickly alert about transient failures, but
we can also �ndmany lasting failures that have remained unnoticed
for months in the production data center with advanced thermal
monitoring system.

In summary, we made the following contributions:

(1) We propose a novel model, the cooling pro�le to capture the
intrinsic cooling behavior of a server that is independent
of workload.

(2) We design a machine-learning based approach to detect
both transient and lasting cooling problems.

(3) We develop a data driven approach that allows us to build
the cooling pro�le without any disturbance to the produc-
tion data center.

(4) We applied our approach in three distinct data centers and
found many real world cooling problems.

�e remaining of the paper is organized as the following. Section
2 reviews the related work. We formulate the problem and provide
a general introduction on our approach, discusses the details of

our thermal modeling and anomaly detection methods in Section
3. In Section 4, we present our evaluation result, and �nally we
conclude in Section 5.

2 RELATEDWORK
Data center cooling is an important topic related to both system
dependability and energy e�ciency. For dependability, people have
studied correlations between equipment’s thermal environment
and component failures. For example, People have analyzed the
in�uence of temperature on disk failures [16][17], memory reliabil-
ity [18] and energy consumption [7]. People have also pointed out
the impact of thermal environment on the server performance [7].

Researchers have designed many approaches to improve data
center cooling. �ere are two major methods: optimizing the air
�ows in the data center and optimizing the job placement with in
the data center. While the air�ow modeling is mostly related to
thermal management only, the job placement and scheduling can
help both thermal control and data center power control.

2.1 Optimizing data center air�ows
Abnormal air �ow is the worst enemy for energy e�ciency. A
large portion of failures are related to the abnormal air �ows
[19],[12],[42],[43]. Bad air �ow pa�ern makes servers overheat, af-
fecting both performance and dependability. Researchers have used
Computational Fluid Dynamics (CFD) to model air �ow and heat
transfer [10, 11]. Researchers combine computational �uid dynam-
ics modeling and real-time data-driven prediction algorithms [13],
leveraging the accuracy of CFD and the real sensor measurements
to achieve high �delity temperature forecasting. Paper [14] presents
an sensor placement method to detect the thermal abnormal server
models the air�ow within a server to improve measurement accu-
racy. �ey are typically used to design or redesign large-scale data
centers.

2.2 �ermo aware job placement in a data
center

Job scheduling is a complex task in data centers. Schedulers need to
consider many factors, such as computation resources, networking
as well as power distribution. [27, 23, 28, 29] combine heat transfer
properties and workloads to provide thermal-aware scheduling
method for the distributed computing servers, to reduce the data
center operational costs while guaranteeing the service level. Peo-
ple have developed many thermal-aware workload management
mechanisms to save power [21, 22, 24, 25]. Paper [33] uses renew-
able energy such us solar-cell, and schedule more work during the
day when renewable energy is available.

2.3 Data driven data center cooling and power
modeling

Researchers at Google have implemented neural networks to model
the power utilization e�ciency of their large-scale data centers
[30]. Using a statistical model, they can study the in�uence of
one or more controllable parameters on the power e�ciency. �e
data center thermal topology can also be derived by neural net-
work model [31]. �e thermal topology is useful in tasks such
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Figure 1: Architecture Of Our Approach

as enhancing hardware reliability, reducing cooling cost, shorten-
ing the reaction time of vital failures. �ese models all depend
on current workload and focus on the global states of the date
center. �e work [26] provides a comprehensive analysis on how
cooling infrastructures impact data center’s sustainability, cost and
dependability. �e authors present �ve real-world data center cool-
ing architectures and data to explore the environmental impact
and dependability metrics.

3 SYSTEM DESIGN
In this section, we provide a big picture of our design and overview
of system architecture. Fig. 1 illustrates the overview of our system
for cooling problem detection. �e system consists of �ve major
components and will be explained one by one in this section.

3.1 Design choices
Our goal is to perform fast and automatic detections on both tran-
sient and lasting cooling failures in data centers. �e detection is
on a local (server or rack) scale. We made the following two design
choices as the basis for various trade-o�s in our design.

1) We make our model �exible and robust to accommodate
existing workload and thermal data collected in the data centers,
instead of the other way around ( e.g. tracking air �ow ). In other
words, we want our model be generally applied to in di�erent types
of data centers.

2) Instead of using complex data and models to reason about the
root causes of the cooling problems, we focus on quickly and accu-
rately detection for the hidden cooling problems with a generally
applicable model. Our experience shows that unlike so�ware bugs,
for cooling problems, once the operators know where exactly to
look at, they can quickly determine the root cause.

3.2 Data Collection.
�e temperature readings of servers are the most crucial indicator
of the cooling condition. However aswe have discussed in Section 1,
we cannot only use a static threshold to distinguish normal from
abnormal.

�e key observation of this work is that server workload, espe-
cially the CPU utilization, strongly a�ects the temperature readings,
but the cooling failures is intrinsic to the server and its environment,
not the workload. In our data center, the normal CPU tempera-
ture can range from 38◦C to 56◦C under di�erent workload. In
other words, servers get hot anyways when the CPU utilization
increases, and what problematic is whether the temperature is
ge�ing too high or increasing too fast only because of a certain
workload. A naive approach is to model the workload directly, but

it does not work because modern cloud computing data centers
run heterogeneous workload which is not very predictable. For
example, one server with GPU, the CPU temperature situation
mainly depends on the GPU’s fan, with any workload the CPU
temperature maintains around 25 ◦C.

Some metrics, such as the CPU utilization, changes very quickly,
so the metrics may not be collected at the same time interval. In
order to build a consistent model, we �rst pre-process the data by
pu�ing them into the same time scale. We also smooth metrics like
CPU utilization using exponential moving average.

WEMA =




W1 =Wobsv (T ime = 1)
W2 = decay ∗Wobsv + (1 − decay ) ∗Wobsv−1 (T ime = 2)
W3 = decay2 ∗Wobsv + (1 − decay ) ∗ decay ∗Wobsv−1

+(1 − decay ) ∗Wobsv−2 (T ime ≥ 3)

WhereWobsv is the current CPU utilization,Wobsv−1 is the last
time CPU utilization, decay is the decay factor. Intuitively, the
moving average function includes a small amount of history data
into the model, while still let the most recent value to a�ect the
model outcome the most.

For data collection, we focus on using monitoring data already
available in di�erent DC (Data Center information will be shown
in Section 4.1) . DC-C already has a large scale monitoring infras-
tructure collecting 83 metrics every minute from the entire �eet on
workload. For the other two DCs we collect workload data from the
operating systems and the temperature data from the baseboard
management controller (BMC) through the standard Intelligent
Platform Management Interface (IPMI) [37] interface. �e period
for data collection varies from DC to DC too. We take a reading
from DC-A and DC-B every 5 seconds, while DC-C only report a
reading every 1 minute.

3.3 Cooling pro�les
A�er data collection, we de�ne a workload-independent cooling
pro�le. �e cooling pro�le is a model that predicts the next tem-
perature reading given the current temperature and the workload.
Both internal factors (e.g. power consumption, cpu frequency, fan
speed) and external factors ( e.g. environment temperature) con-
tribute to the cooling pro�le and it independent to the current task
and workload. More formally, we de�ne the cooling pro�le as a
function Φ from the domain (T0, W) to the range of the server
temperature T

Φ : (T0,W, ) → T (1)
where T0 represents the current temperature (e.g. CPU, inlet/outlet
temperature) and W represents the workload. �e output T is the
prediction CPU temperature. To capture the potential inaccuracy of
the prediction, we treat the output T as a random variable following
a speci�c probability distribution. For example, if we assume T
follows a Gaussian distribution, we can estimate that T should be
within the range of (µ − 3σ , µ + 3σ ) with high probability, where µ
and σ are the mean and the standard deviation of the distribution.

Note that we capture within the function Φ all internal or ex-
ternal factors, other than the workload and temperature. As each
server has some uniqueness in its cooling capability and location
in the data center, Φ can be di�erent across di�erent servers. Also,
as Φ captures multiple factors a�ecting cooling, it is likely to be
non-linear. Our experiments con�rm the fact.

It is impractical in a production data center to stop all task on
servers to conduct experiment. We take a data driven approach
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Figure 2: Typical cooling pro�le.

to evaluate Φ for each server. We observe workload and corre-
sponding temperature readings from each server for a period of
time. Intuitively, if the server runs variable workload, over time
we will be able to observe the behavior of a server under di�erent
workload and at di�erent temperature. Or course the observations
are noisy and we tolerate the noise by taking more measurements.
�en we use the observed data to statistically determine Φ.

Each of the dimensions can vary a lot. �eoretically, to capture
the system cooling performance under all conditions, we need to
observe all possible situations, which is impractical in our se�ings
of collecting data under production workload, given the huge multi-
dimensional domain space. �us, we use a regression model to
�t a function to capture the entire domain. In another word, we
interpolate the missing spaces we have not seen in the observed
history.

We choose Gaussian Process Regression (GPR) to construct the
statistical model for the following two reasons.

Firstly, we observe that the server’s temperature (output of Φ)
follows Gaussian distribution, which �ts the assumptions of the
GPR model. �is is not a coincidence. Many factors contribute to
the server temperature. Considering these contributing factors ran-
dom variables (dependent or independent), by central limit theorem
the server temperature should have a normal distribution. �e data
we collected with high noise level, even with same environment
conditions, CPU temperature have low probability rising/reducing
by 1 ◦C. Depending on the initial value for our data sets, GPR can
converge these noise based on the gradient-based optimization and
repeat the optimization several times for di�erent initializations.

Secondly, GPR is a relatively simple model that captures the
non-linear relationship between T0, W and T. We can consider
a simple linear model to approximate the function, however, the
linear model signi�cantly reduces the model accuracy. Of course,
more complex non-linear models such as conditional random �elds
or neural networks can achieve similar performance. However, we
found that it is 20 times slower GPR model. �us, we believe GPR is
a good tradeo� between model accuracy and training performance.

Figure 2 shows a typical cooling pro�le built for a server in DC-B.
For clarity, we only plot three dimensions: the exponential moving
average workload, the previous temperature and the prediction
temperature. �e curve shows illustrates how fast the temperature

will rise at each given temperature and workload. Intuitively, the
more “�at” the curve is, the be�er cooling capacity a server has, as
the temperature of the server rises slower at di�erent workload.

3.4 Transient and lasting cooling failures
As we have discussed in Section 1, there are two kinds of cool-
ing problems, transient and lasting. We provide a more formal
de�nition of each kind based on our cooling pro�le de�nition.

�e transient failure can be a overheating or under-heating.
�ough overheating is more of a risk to the overall dependability,
it is also important to detect under-heating cases that o�en lead to
waste of energy. For example, when a over-working fan sucking in
too much chilled air, the overall cooling e�ciency of its neighbers
would su�er. To detect transient failures, we �nd situations in
which the observed temperature deviates from the predicted value
from the cooling pro�le. We raise an alert when the amount of
deviation is above a automatically determined threshold.

Given an observed temperature value of T0 and output of Φ of
T, we de�ne the anomaly score as

S = |Φ − Tobsv |/Tobsv (2)

Given a reasonably accuracy but not perfect cooling pro�le Φ,
S should be a small value in normal cases. S > threshold indi-
cates an anomaly. Assuming most of the times the server stays
normal (which is not true with a lasting failure), we can automati-
cally determine the threshold for each server, independent of its
workload.

Lasting failures are “bad” cooling pro�les. �at is, a function
Φ itself is a poor mapping, indicating that the server temperature
changes too fast too slow, or unstable in a bizarre ventilation pas-
sage. �ese problems can be detected once the cooling pro�les
are constructed. We use anomaly detection algorithm based on
clustering to dig out such abnormal cooling pro�les.

While it is hard to statically decide whether a cooling pro�le
is normal or not, as there are many servers in a data center, we
determine if a server has a normal cooling pro�le by comparing
it to its peer servers. We �rstly de�ne a distance metric cooling
pro�le distance between two cooling pro�les, and then describe
how to use anomaly detection algorithm to �nd abnormal cooling
pro�les based on the cooling pro�le similarity metric.

To compare the cooling pro�le of di�erent servers, we discretely
sample the values ofΦ on a selected range in each dimension, which
forms a high dimensional vector. We normalize all temperature
values by subtracting the mean temperature of the particular server
to provide a comparison that focus on the shape of the cooling
pro�le instead of its absolute value.

For example, if the input domain of Φ has two dimensions x , y,
and we assume discretely 2 and 3 values in a range of x and y, and
the mean value of server temperatures of a certain server s is T ,
then the high dimensional vector ωs we get from the server is

ωs = (Φ(x0,y0) −T ,Φ(x0,y1) −T ,Φ(x0,y2) −T ,

Φ(x1,y0) −T ,Φ(x1,y1) −T ,Φ(x1,y2) −T )
T (3)

We de�ne the cooling pro�le distance between two servers s1
and s2 as

S (s1, s2) = ‖ωs1 − ωs2 ‖2 (4)
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which is the L2-Norm or the Euclidean distance between ωs1 and
ωs2 . �e smaller the cooling pro�le distance is, the more similar
the two cooling pro�les are. With cooling pro�le distance we can
do anomaly detection and k-means algorithm. Using standard
anomaly detection and k-means techniques we can identify cool-
ing pro�les that do not conform to all expected others. With the
distance metric, we can compare all cooling pro�les pair-wise and
similar distance metric clustering to one group in Fig. 5 & Fig. 6
and �nd outlier cooling pro�les that are di�erent from the others.
We notify the system operators about these abnormal servers.

4 PRELIMINARY EVALUATION
4.1 Experiment setup
We performed evaluation in three di�erent data centers with three
di�erent types of machines.

DC-A hosts about two hundred commodity 2U rack servers run-
ning Openstack based cloud computing environment. We collected
data from 180 servers in di�erent racks. It contains four rows of
racks, six per row. Each rack only hosts 7-10 servers with other
network switches, using a capacity about 4 KW per rack. �e room
has two air conditioner (AC) units which uses under-�oor chilled
air cooling.

DC-B is a similar sized machine room. It hosts four racks of
Open Compute Project (OCP) [15] servers. We used one of the racks
for our experiment. �e rack contains 42 servers. Each rack has a
total power of about 10KW. �e room has a single air conditioner
that chills the room using overhead cooling.

DC-C hosts over a hundred thousand servers serving real pro-
duction jobs for a large-scale Internet service company. �e build-
ing has an area of over a hundred thousand square meters, and has
a total power capacity of 6 ∼ 8 MW. We do not have information
on the actual �oor plans or cooling designs from the data center.

4.2 Accuracy of cooling pro�les and false
alarm assessment

As we mentioned, the cooling model is non-linear. To con�rm the
hypothesis, we compare our Gaussian Process Regression based
cooling pro�le with three other algorithms. We collected raw
data from 90+ servers in DC-A over 4 days, and used the data for
training and testing. We applied 10-fold cross validation method,
Table 1 shows the average accuracy and runtime of 4 algorithm in
comparison. , we consider Gaussian process regression is a good
trade o� between accuracy and running-time in our cooling pro�le
model.

As for false alarm assessment part, we implement cooling pro�le
as an online failures detection and feed current data every 3 second,
task uses around 3% CPU utilization. Each model monitoring their
server for 24 hours and shows about 2.8% prediction error. Some
errors come from abrupt drop or raise in CPU utilization, Others are
frommissing collected data when CPU utilization is extremely high.
As we will show in next experiment, the model detects transient
failures in 10 second, so we consider three continuous prediction
error as alarm, and the average alarms are 2.1 per day.

Algorithms Accuracy Time
Linear Regression 90.12% 5 Sec

Support Vector Machines 79.84% 2 Min
Gaussian Process Regression 95.24% 35 Min
Conditional Random Field 94.64% 13 Hours

Table 1: Algorithms comparison

Figure 3: Transient cooling failure on our own servers. We
seal the inlet and the outlet of one server at around 150s.

4.3 Detecting transient failures
In this section, we present our results detecting transient cooling
failures. We �rst conducted a few fault injection experiments as mi-
cro benchmarks on how fast we can detect such a transient failure.
�en we present a couple of real cooling failures we discovered in
DC-A.

Fault injection experiments.Figure 3 summarizes that fault
injection experiment results. At around the 60-th second we seal
the inlet and the outlet and the our cooling pro�le rate goes above
the realtime CPU temperature, At around the 100-th second we
release the block of the inlet and the outlet and the the realtime
CPU temperature gets back to the range of the 99% con�dence. We
want to emphasis that it is abnormal not because the prediction
is higher but because the observed values are outside of the 99%
con�dence internal. �e latency is within 10 seconds.

�is is because in normal conditions, cooling pro�le did not
collect data we seal vent before. Our algorithm puts the inlet/outlet
temperature coe�cients a very high position and anomaly CPU
temperature raise the fan speed so the actual temperature lower
than the prediction.

4.4 Detecting lasting problems
We build cooling pro�les for the 42 servers in DC-B shown in �g-
ure 4 and 5, according to the cooling pro�les from each server ,
�gure 4 shows 42 servers‘ CPU temperature median value under
cooling pro�le prediction and these servers contain in one rack,
with the two obvious in�exions we determine K=3 when we use
k-means clustering algorithm. Basically all the racks in DC-A and
DC-B have been clustered to three parts depend on the in�exions.
�gure 5 shows K-means algorithm cluster all the servers into red
yellow blue three groups and the black lines are the Euclidean
distance between server to server. Each group has a unique tem-
perature range and similar cooling pro�le but the red spot (marked
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Figure 4: Servers’ CPU temperature median value under
cooling pro�le prediction shows two in�exions.

Figure 5: �e anomaly detection cluster 42 servers in DC-B

with the arrow) are not similar with their neighbors matches the
position of the rack. We checked the server and discovered that
this server was the only one without the “shroud cover”. A�er we
place a wind hood into it, the cooling pro�le is no longer abnormal.
In this case we didn’t use the anomaly detection because with only
one rack small sample, the server with missing “shroud cover” is
similar to the poor cooling pro�le servers (the red groups) so the
anomaly detection didn’t get any outlier.

Fig. 6 shows the identi�ed abnormal cooling pro�les (red spots)
from the normal ones (blue spots) in DC-C. Our anomaly detection
algorithm identi�ed 38 outliers, but the reason of these servers
under poor pro�les are not clear. In order to identify more infor-
mation of these 38 outliers, with the same reason as last section
we mentioned, k-means algorithm automatically cluster the red
spots into two (several) groups. �e �rst cooling pro�le plo�ed
in �gure 6(A) gives the normal cooling pro�le. From �gure 6(B)
we can see that even with low CPU utilization, the server CPU
temperature still reaches 46◦C, which means that this group of
servers have poor cooling pro�les at the very beginning. A�er in-
forming the data center administrator, they took a closer inspection

Figure 6: We used anomaly detection algorithm calculated
over 1600 servers and found out two di�erent kinds of de-
sign failures.

and revealed that their new design power supply modules are too
close to these servers, which leads to thermal issues. Figure 6(C)
shows an extreme case where the temperature gets unstable at
moderate CPU utilization but with the low CPU utilization the
temperature becomes normal. We suspect these server hardware
have quality problems. It need to be noted that his situation does
not mean the server cannot operate normally, but will a�ect the
overall computing capacity.

5 CONCLUSIONS
Hidden cooling issues can still cause potential performance, energy
e�ciency or dependability problems and hard to detect. With our
workload independent cooling pro�le model, we can capture the
intrinsic cooling capability of each individual server. We can not
only use the cooling pro�le to detect transient failure and also
detect servers with lasting cooling problems. We eliminate the
need for system identi�cation by taking data-driven approach and
only use readily available metrics while the data center is running
production workload. We validate the general applicability of
our approach using three data centers with vastly di�erent scale,
workload and server types.

As future work, we will expand the cooling pro�le approach
to other non-server equipment, such as network devices whose
workload is hard to measure. We would also like to use the server
cooling pro�les to improve job scheduling in the data center, mini-
mizing the amount of cooling required to conserve energy. Last
but not least, we want to build a data center planning tool so that
people can place be�er heat-tolerant or lower power devices to the
places with relatively poor thermal conditions.
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