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Abstract. Transaction frauds impose serious threats onto e-commerce. We present
CLUE, a novel deep-learning-based transaction fraud detection system we de-
sign and deploy at JD.com, one of the largest e-commerce platforms in China
with over 220 million active users. CLUE captures detailed information on users’
click actions using neural-network based embedding, and models sequences of
such clicks using the recurrent neural network. Furthermore, CLUE provides
application-specific design optimizations including imbalanced learning, real-
time detection, and incremental model update. Using real production data for
over eight months, we show that CLUE achieves over 3x improvement over the
existing fraud detection approaches.

Keywords: Fraud detection - Web mining - Recurrent neural network

1 Introduction

Retail e-commerce sales are still quickly expanding [10]. A large online e-commerce
website serves millions of users’ requests per day. Unfortunately, frauds in e-commerce
have been increasing with legitimate user traffic, putting both the financial and public
image of e-commerce at risk [5]. In 2015, Internet Crime Complaint Centre (IC3) has
received about 280,000 complaints, which directly led to the financial loss of over one
billion USD [16].

Two common forms of frauds in e-commerce websites are account hijacking and
card faking [12]: Fraudsters can steal a user’s account on the website to use her ac-
count balance, or use a stolen or fake credit card to register a new account. Either case
causes losses for both the website and its users. Thus, it is urgent to build effective fraud
detection systems to stop such behavior.

Researchers have proposed different approaches to detect fraud [2] using various
approaches from rule-based systems to machine learning models like decision tree, sup-
port vector machine (SVM), logistic regression, and neural network. All these models
use aggregated features, such as the total amount of items a user has viewed over the last
month, yet many frauds are only detectable by using individual actions instead of aggre-
gates. Also, as fraudulent behaviors change over time to avoid detection, simple features
or rules become obsolete quickly. Thus, it is essential for a fraud detection system to
1) capture users’ behaviors in a way that is as detailed as possible (knowns as feature
extraction); and 2) choose algorithms to detect the frauds from the vast amount of data.
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Fig. 1. Examples of legitimate and fraudulent user browsing behaviors.

The algorithm must tolerate the dynamics and noise over a long period of time. Previous
experience shows that machine learning algorithms outperform rule-based ones [2].

One of the most important piece of information for fraud detection is a user’s brows-
ing behavior, or the sequence of a user’s clicks within a session. Statistically, the be-
haviors of the fraudsters are different from legitimate users. Real users browse items
following a certain pattern (left column of Fig. 1). They are likely to browse a lot of
items similar to the one they have bought for research. In contrast, fraudsters behave
more uniformly (e.g. go directly to the items they want to buy, which are usually vir-
tual items, such as #1 on the right column), or randomly (e.g. browse unrelated items
before buying, such as #2 on the right column. Note that in this case, although every
item is from Apple, they are not related as they contain both PC products, cell phones,
and tablets). Thus, it is important to capture the sequence of each user’s clicks, while
automatically detect the abnormal behavior patterns.

We describe our experience with CLUE, a fraud detection system we have built and
deployed at JD.com. JD is one of the largest e-commerce platforms in China serving
millions of transactions per day, achieving an annual gross merchandise volume (GMV)
of nearly 100 billion USD. CLUE is part of a larger fraud detection system in the com-
pany. CLUE complements, instead of replacing, other risk management systems. Thus,
CLUE only focuses on users’ purchase sessions, while leaving the analysis on users’
registration, login, payment risk detections, and so on, to other existing systems.

CLUE uses two deep learning methods to capture the users’ behavior: Firstly, we
use Item2Vec [3], a technique similar to Word2Vec [2 1], to learn to embed the details of
each click (e.g. the item being browsed) into a compact vector representation; Secondly,



we use a recurrent neural network (RNN) to capture the sequence of clicks, revealing
the browsing behaviors on the time-domain.

In practice, there are three challenges in the fraud detection applications:

1) The number of fraudulent behaviors is far less than the legitimate ones [2,22],
resulting in a highly imbalanced dataset. To capture the degree of imbalance, we define
the risk ratio as the number of the portion of fraudulent transactions in all transactions.
The typical risk ratio in previous studies is as small as 0.1% [4]. We use a combination
of under-sampling legitimate sessions and thresholding [24] to solve the problem.

2) As the user browsing behaviors, both legitimate and fraudulent, change over time,
we observe significant concept drift phenomenon [2] (see Fig. 3(b)). To continuously
fine-tune our model, we have built a mechanism that automatically fine-tunes the model
with new data points incrementally.

3) There are tens of millions of user sessions per day. It is challenging to scale
the deep learning computation. Our training process is based on TensorFlow [ 1], using
graphics processing units (GPUs) and data parallelism to accelerate computation. The
serving module leverages TensorFlow Serving framework, providing real-time analysis
of millions of transactions per day.

In summary, our major contributions are

1. We propose a novel approach to capture detailed user behavior in purchasing ses-
sions for fraud detection in e-commerce websites. Using a RNN-based approach,
we can directly model user sessions using intuitive yet comprehensive features.

2. Although the session-modeling approach is general, we optimize it for the fraud
detection application scenario. Specifically, we optimize for highly imbalanced
datasets, as well as the concept drift problem caused by the ever-changing user
behaviors.

3. Last but not least, we have deployed CLUE on JD.com serving over 220 million
active users, achieving real-time detection of fraudulent transactions.

In the remainder of the paper, Sect. 2 introduces the data acquisition and feature
extraction methods of CLUE. The RNN model and system architecture are given in
Sect. 3 and 4. We evaluate its performance in Sect. 5. We review the related work in
Sect. 6 and conclude in Sect. 7.

2 Data and Feature Extraction

In this section, we describe the feature extraction process of turning raw click logs into
sequences representing user purchase sessions that we can feed into the deep learning
model.

2.1 Data Preprocessing

The inputs to CLUE are raw web server logs from standard log collection pipelines.
The server log includes standard fields like the requested URL, browser name, client
operating system, etc. We remove all requests to helper objects like css, js or image
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files, leaving only the request to the main web page. For this analysis, we remove all
personal identifiable information (PII) to protect users’ privacy.

The web server assigns a session ID on the first request of a user and maintains this
ID throughout the user session. Every log entry contains the session ID, and we use this
ID to sort the log into user sessions that CLUE takes as raw input.

Some sessions are associated with an order ID, an application specific field indicat-
ing the user’s purchase actions. We can easily match the corresponding session ID with
the order ID in the logs. In this work, we ignore all sessions that do not lead to an order,
and we are working on capturing the non-purchasing sessions as a future direction.

We label the fraudulent orders using the business department’s case database that
records all fraudulent case reports. An order is labeled as fraudulent if and only if it
appears as a complaint recorded in the case database. Of course, this labeling practice is
quite incomplete, but we will show that even the simple labeling can help us identifying
many fraudulent patterns.

2.2 Feature Extraction

Overview. The key feature that we capture is the sequence of a user’s browsing be-
havior. Specifically, we capture the behavior using a sequence that consists of a number
of clicks within the same session. As we only care about purchasing sessions, the final
action in a session is always a checkout click. Figure 2 illustrates four sample sessions.
Note that there are a different number of clicks per session, so we only use the last &k
clicks for each session. For short sessions with less than k clicks, we add empty clicks
after the checkout (practically, we pad non-existing sessions with zeros to make the ses-
sion sequences the same length). Our experience and [ 14] both indicate that the average
number of clicks per session on e-commerce websites is about 7. In CLUE, we use a
k = 50 that is more than enough to capture the entire sessions in most of the cases.

Two questions remain on how to perform fraud detection on these sequences: 1)
How we can encode the information on a single click in a compact representation while
keeping the information we need; and 2) How we represent the entire sequence (i.e.
one row in Fig. 2). Previous work uses aggregated features and ignores the actual “se-
quence”. The aggregation leads to information loss.



In this section, we focus on the first question. We leave the second question to
Sect. 3, as the RNN is an end-to-end model that includes both creating the sequence
feature and the classification.

Encoding Common Fields of a Click. The standard fields in click logs are straightfor-
ward to encode in a feature vector. For example, we include numerical data fields like
dwell time (i.e. the time a user spends on a particular page) and page loading time. We
encode the fields with categorical types using one-hot encoding. These types include
the browser language, text encoding settings, client operating systems, device types and
so on. Specifically, for the source IP field, we first look up the IP address in an IP geo-
location database and encode the location data (to the city level) as categorical data.

Encoding the URL Information. The requested URL contains the most important
information in a click. The URL schema is complicated for a large website like ours.
We want to capture all detailed information, including which item the user is browsing,
from the URL.

We mainly focus on two types of the pages: category pages that list a number of
items of a category (e.g. toys), and item pages that show the detail of a single item. We
can identify the type of a page using simple URL patterns. For example, “list.jd.com/*”
and “item.jd.com/«+” indicate each type. As there are only dozens of merchandise cate-
gories, we encode the category using one-hot encoding.

The difficulty is with the items, as there are hundreds of millions of items on
JD.com. One-hot encoding will result in a sparse vector with hundreds of millions of
dimensions per click, making it hard to further group these clicks into a session. Even
worse, the one-hot encoding eliminates the correlations among separate items. For ex-
ample, an iPad with 128GB flash is certainly more similar to an iPad with 64GB flash,
than it is similar to a refrigerator. One-hot encoding ignores such similarities.

Thus we adapt the Item2Vec technique [3] to encode items. [tem2Vec is a variation
of Word2Vec [2 1], we regard each item as a “word”, while regarding each session as a
“sentence”. Same as Word2Vec training process, we can train the Item2Vec embedding
using historical user sessions containing different items. So the items that commonly
appear at the same positions of a user session are embedded into vectors with smaller
Euclidean distance. That is, the similarity of items are defined by user behavior, not the
syntactic similarity.

A practical question is how many dimensions we need for Item2Vec to capture the
large variety of items. Of course, we need more dimensions to encode more items. We
observe that the visit frequency follows a steep power-law distribution, as Fig. 3(a)
shows. If we choose to cover 90% of all the items in the click history, we only need
25 dimensions for Item2Vec, a significant saving on data size. Data size reduction is
essential as our RNN computation time highly depends on the input dimensions. We
embed all other 10% items that appear rarely as the same constant vector.

It is common that people constantly add new items to the website every day, and the
popularity of items change too. We take advantage of the feature of Item2Vec that can
embed a new item conditioning on the existing ones to update the encoding in an online
learning setting.

In summary, we embed a URL into three parts, the type, category and item, and
Table | provides some examples.
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Table 1. Some sample URL embeddings

URL Type Category Item Vector

www.jd.com 10 0 [0.0, 0.0, ...]

sale.jd.com/act/bWfOugALD6pC4T.html 15 0 [0.0,0.0, ...]

red.jd.com 12 0 [0.0, 0.0, ...]

search.jd.com/Search?keyword=Apple 2 0 [0.0, 0.0, ...]

list.jd.com/list. html?cat=670,671,674 3 6 [0.0, 0.0, ...]
item.jd.com/2538742.html 4 0 [-0.119, -0.077, - - -]

3 RNN Based Fraudulent Session Detection

Our detection is based on sequences of clicks in a session (as Fig. 2 shows). We feed
the clicks of the same session into the model in the time order, and we want to output a
risk score at the last click (always the checkout action) for each session, indicating how
suspicious the session is.

To do so, we need a model that can capture a sequence of actions. We find recurrent
neural network (RNN) a good fit. RNNs have been successfully applied in applica-
tions such as language translation and speech recognition [23]. A RNN has a recursive
structure across the time domain, thus it is able to “remember” the information in the
previous action and carry the “memory” into the current learning process. In the mean-
while, the parameters of a RNN are shared among different time slots, enabling it to
deal with sequential inputs with variable sizes. We feed each click to the corresponding
time slot of the RNN, and the RNN finally outputs the risk score. Figure 4 illustrates
the RNN structure and its input / output. In the following, we use “depth” and “width”
to denote the layer number and the number of hidden units per layer, respectively.



Fig. 4. Ilustration of the RNN with LSTM cells.

Off-the-shelf RNN has problems of gradient exploding and gradient vanishing [18].
This is because the training process (optimization) of a RNN model involves back-
propagation through time. Since a sequence can contain tens to hundreds of time slots,
the back-propagation can cause the gradient to become too small or too large. Thus
vanilla RNN does not work well on long-term dependency, a key requirement of fraud
detection tasks. The common solution to these two problems are gradient clip and vari-
ant RNN cells, and there are two important types of variant RNN cells, long short-term
memory (LSTM) and gated recurrent unit (GRU) [8,15]. The LSTM cells use “memory
units” to learn what information to memorize for long-term prediction. Similar to the
LSTM cell, the GRU has gating units controlling the information flow without sepa-
rate memory units. By default, we use LSTM in CLUE to characterize the long-term
dependency of the prediction on the previous clicks. In Sect. 5, we also compare the
performance of the GRU alternative.

3.1 Dealing with Imbalanced Datasets

One practical problem in fraud detection is the highly imbalanced dataset (as frauds are
rare comparing to normal sessions). There are two classes of approaches to deal with
the imbalanced data problem [13], either on data level or on model level. On the data
level, people use over-sampling or data synthesis to increase the minority class, or use
under-sampling to reduce the majority. On the model level, people use cost-sensitive
learning to impose a larger punishment on a misclassified minority class. In CLUE, we
employ both data and model level approaches.

On the data level, we under-sample the legitimate sessions by random skipping,
boosting the risk ratio to around 0.5%. We perform the under-sampling on both the
training and validation sets, so they have the same distribution of these two classes.
After under-sampling, the dataset contains 1.6 million sessions, among which 8,000 are
labeled as fraudulent. We use about 6% (about 100,000 sessions) of the dataset as the
validation set. We choose test sets, with the risk ratio of 0.1%, from the next continuous
time period (e.g. two weeks of data), which is outside of the 1.6 million sessions.

On the model level, we leverage the thresholding approach [24] to implement cost-
sensitive learning. By choosing the threshold from the range [0, 1], we can obtain an
application specific punishment level imposed on the model for misclassifying minority
classes (false negatives) vs. misclassifying the normal class (false positives).



3.2 Model Update

Figure 3(b) illustrates the fact that fraudulent behaviors changes over time (known as
the concept drift phenomenon). In this figure, we plot a heat map of the proportion of
fraudulent sessions for ten randomly-selected categories over a 12-month period. It is
clear that the fraud behavior changes over time. Many frauds occurred on categories
1-3 during the first four months, and they stopped on the fifth (probably because some
upgrades of the fraud detection system stopped them). Then the number of frauds rose
again on the tenth month on category 4. It is evident that frauds exhibits clear concept
drift phenomenon.

To solve the concept drift issue, there are two general approaches to updating our
model. The first approach is to train a new model using full data. However, with the
increase of data amount accumulated across time, the model update process can be
lengthy. Another approach is to use incremental data to fine-tune the current model.
Our experience shows that the incremental update works both efficiently and achieves
comparable accuracy as the full update.

In order to ensure the model quality, we run the updated model for the next couple
days with incoming sessions in a separate quality assurance module that runs inde-
pendently with the production system, to evaluate its performance (see Fig. 5). If we
observe better performance over the current model, we switch the updated model into
production.

4 System Architecture and Operation

We have deployed CLUE in real production, analyzing millions of transactions per day.
From an engineering point of view, we have the following design goals: 1) Scalability:
CLUE should scale with the growth of the number of transactions; 2) Real-time: we
need to detect suspicious sessions before the checkout completes in a synchronous way,
giving the business logic a chance to intercept potential frauds; and 3) Maintainability:
we must be able to keep the model up-to-date over time, while not adding too much
training overhead or model switching cost.

4.1 Training - Serving Architecture

To meet the goals, we design the CLUE architecture with four tightly coupled compo-
nents, as Fig. 5 shows.

Data Input. We import raw access logs from the centralized log storage into an internal
session database within CLUE using standard ETL (i.e. Extract, Transform and Load)
tools. During the import process, we sort the logs into different sessions. Then we join
the sessions with the purchase database to filter out those sessions without an order ID.

Then we obtain the manual labels whether a session is fraudulent or not. We connect
to the case database at the business units storing all fraud transaction complaints. We
join with the case database (using the order ID) to label those known fraudulent ses-
sions. Note that the join needs to happen on demand right before the training process.
This is because the fraud case reports come in over time, and we always want to use
most recent reports as training labels.
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Model Training. We perform under-sampling to balance the fraudulent and normal
classes. Then the data preprocessing module performs all the feature extraction, includ-
ing the URL encoding. Note that the item embedding model is trained offline. We then
pass the preprocessed data to the TensorFlow-based deep learning module to train the
RNN model. Between the stages, the intermediate data are serialized to disk.

Online Serving. After training and model validation, we transfer the trained RNN
model to the TensorFlow Serving module for production serving. Requests containing
session data from the business department are preprocessed using the same feature ex-
traction module and then fed into the TensorFlow Serving system for prediction. Mean-
while, we persist the session data into the session database for further model updates.

Model Update. We perform periodic incremental updates to the model. It uses the latest
updated model as the initial parameter and fine-tunes it with the incremental session
data. Once the fine-tuned model is ready, and passes the model quality test as mentioned
above, it is passed to TensorFlow Serving for production deployment.

4.2 Implementation Details

For the RNN Training, we set the initial learning rate to 0.001 and let it exponentially
decay by 0.5 at every 5,000 iterations. We adopt Adam [17] for optimization with Ten-
sorFlow default configurations, by combining AdaGrad (Adaptive Gradient) [°] and
RMSProp, Adam speeds up the training process better than standard stochastic gradi-
ent decent (SGD). The training process terminates when the loss on the validation set
stops decreasing. The typical training duration is 12 hours (roughly 6-8 epochs).

We use TensorFlow as the deep learning framework [1] and leverage its built-in
RNN network. Because of the highly imbalanced dataset, we raise the batch size to
512.

We train our model using a server with two Nvidia Tesla K40m GPUs, each with
12GB memory. The server is equipped with an Intel Xeon E5-2640 (2.60GHz) CPU
and 128GB memory. To utilize both GPUs, we employ data parallelism.
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Fig. 6. Visualization of samples of item embeddings in three different categories.

The serving module contains tens of CPU-only servers, as we find CPUs are cost
efficient while providing a satisfactory prediction latency.

5 Performance Evaluation

We first show that our URL embedding scheme produces a proper embedding with a
short vector, and present our general detection performance on real production data.
Then we evaluate the effects of different design choices of CLUE, and their effects on
the model performance, such as different RNN structure, embeddings, and RNN cells.
We also compare the RNN-based detection method with other features and learning
methods. Finally, we evaluate the model update results.

5.1 URL Embedding Result

The performance of CLUE highly depends on the quality of features. The most impor-
tant feature is the embedding of items using Item2Vec. Item2Vec does the embedding
using the correlations of the items and the browsing behavior. To illustrate the effec-
tiveness of the embeddings, we randomly select about 2,000 items from three different
categories, i.e. automotive accessories, cell phones and accessories, and personal care.
In Fig. 6, we plot their embeddings (25 dimensions) in a two-dimensional space using
t-SNE [19]. We illustrate some sample item examples. We can see that many items are
similar not only because they are syntactically similar but also because they are often
browsed within the same session (e.g. the iPhone and Xiaomi Power Bank). Thus, we
believe Item2Vec does reveal the statistical correlations among different items from a
user browsing perspective.

5.2 Performance on Real Production Data

The best performance is achieved by an RNN model with 4 layers and 64 units per layer
with LSTM cells. It is the configuration we use in production. We evaluate other RNN
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Fig.7. Visualization of normal and fraudulent browsing behaviors using t-SNE.

structures in Sect. 5.3. Compared with traditional machine learning approaches (see
Fig. 8(b)), CLUE achieves over 3x improvement over the existing system. Integrating
CLUE with existing risk management systems for eight months in production, we have
observed that CLUE has brought a significant improvement of the system performance.

Visualization of the Features Captured by RNN. We would like to provide some
intuition of what kind of features are captured by the RNN. To do so, we remove the
last softmax layer in the RNN, take the output 64-dimensional vector from the previ-
ous layer (a.k.a. a representation learned by the RNN), and project the vector onto a
two-dimensional space using t-SNE [19]. As Fig. 7 illustrates, each dot represents a
user session and we color the dots using the ground truth. Interestingly, we observe a
clear clustering / separation between normal and fraudulent user behaviors. Examining
the data manually, we find different regions represent different browsing patterns. The
most frequent patterns within various regions are given on the right side. Therefore, the
features learned by the RNN characterize different types of browsing behaviors.

5.3 Effects of Different RNN Structures

Our model outputs a numerical probability of a session being fraudulent. We use a
threshold 7" to provide a tradeoff between precision and recall [24]. Varying T between
[0, 1], we can get the precision of our model corresponding to a particular recall. Figure
8(a) shows the performance of RNNs with different widths using the Precision-Recall
(P-R) curve. Throughout the evaluation, we use 4 layers for the RNN model.

The previous study points out that wider neural networks usually provide better
memorization abilities, while deeper ones are good at generalization [7]. We want to
evaluate the width and depth of the RNN structure to the fraud detection performance.
We use a-3 RNN to denote a RNN structure with « layers and 8 hidden units per layer.

Table 2 provides the fraud detection precision with 30% recall, using different v and
5. We see that given a fixed width, the performance improves with the depth increases.
However, once the depth becomes too large, overfitting occurs. We find a 4-64 RNN
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Fig. 8. Experiment results.

performs the best, outperforming wider models such as 4-128 and 4-256. We believe
the reason is that, given the relatively small number of fraudulent sample, the 4-128
RNN model begins to overfit. Also, we can see that the generalization ability of a model
seems more important than its memorization ability in our application.

5.4 Compare with Traditional Methods

We show that CLUE performs much better than traditional features and learning meth-
ods including logistic regression, naive Bayes, SVM, and random forest. Furthermore,
we have investigated the performance of fully connected neural networks (FC-NNs). To
leverage these methods, we need to leverage traditional feature engineering approaches
by combining the time-dependent browsing history data into a fixed length vector. We
follow many related researches and use bag of words, i.e., count the number of page
views of different types of URLs in a session, and summarize the total dwell time of
these URLSs into the feature vector. Note that with bag-of-word, we cannot leverage the



Table 2. Precision of different RNN structures under the recall of 30%

#Layer / #Unit 32 64 128 256
1 19.3% 23.1% 24.3% 25.1%
2 23.4% 23.6% 26.1% 27.2%
3 24.7% 24.6% 29.0% 27.8%
4 24.8% 33.8% 26.4% 20.8%

category and item embedding approaches as introduced in Section 2, but we only use
one-hot encoding for these data. We plot the results in Fig. 8(b).

FC-NN performs better than other traditional machine learning methods, indicat-
ing that with abundant data, deep learning is not only straightforward to apply but also
performs better. Meanwhile, with more detailed feature extraction and time-dependent
learning, RNNs perform better than FC-NNs. Therefore, we can infer that our perfor-
mance improvement comes from two aspects: 1) By using more training data, deep
learning (FC-NN) outperforms traditional machine learning approaches; 2) RNN fur-
ther improves the results over FC-NN as it captures both sequence information, and it
allows us to use detailed category and item embeddings in the model.

5.5 Effects of Key Design Choices

Here we evaluate the effectiveness of various choices in CLUE’s feature extraction and
learning.

Category and Item Embeddings. To show that category and item data are essential
features for fraud detection, we perform the following experiment by removing these
features from our click data representation. Figure 8(c) shows that the detection ac-
curacy is significantly lower without such information. Clearly, fraudulent users are
different from normal users not because they are performing different clicks, but the
real difference is which item they click on and in what order.

Using GRU as RNN Cell. Except for the LSTM, GRU is also an important RNN cell
type that deals with the issues in vanilla RNN. Here we investigate the performance
of RNNs with GRU cells. In Fig. 8(d), we compare the performance of different RNN
cells. We find the LSTM shows better performance.

5.6 Model Update

As we discuss in Sect. 3.2, the fraud patterns change significantly over time. Thus, it is
necessary to show that our method can adapt to these pattern changes by incrementally
fine-tuning the RNN model.

To show the model update effectiveness using historical data, we consider a four
consecutive equal-length time periods P, ..., Ps. The proportion of the number of
sessions contained in these periods is roughly 2:2:1:1:1. We perform two sets of exper-
iments, and both show the effectiveness of our model update methods.
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Fig. 9. The precision of the models trained with incremental and full data for the (a) next time
period and (b) last time period, the recall is fixed to be 30%.

First, we evaluate the performance of using history up to P, to predict P, ;. We
compare the performance of three update strategies: incremental update, full update
(i.e. retrain the model from scratch using all history before the testing period) and no
update. We use data from P, to train the initial model. Then we compute the preci-
sion (setting the recall to 30%) for the following four time periods using these three
strategies. Figure 9(a) presents the results. We can see that incremental update achieves
similar performance as the full model update, while the no update strategy performs
the worst. It is also interesting that P» actually works worse than P; and beyond. We
believe it is because the training data from P; is too few to produce a reasonable model.

Second, we show the performance of using different amounts of training data to pre-
dict the last time period, P5. From Fig. 9(b), we can see that using either the full model
update or incremental update, adding more data significantly improves the prediction
results. It is not only because we are adding more data, but also because we use training
data that are closer to time Ps, and thus tends to have more similar distributions.

6 Related Work

Fraud Detection. Researchers have investigated fraud detection for a long time. Ex-
isting work focuses on credit card [11,20], insurance [25], advertisement [27,30], and
online banking [6] fraud detections. The fraud detection approaches used in these work
include rule-based, graph-based, traditional machine learning, convolutional neural net-
work (CNN) approaches [2,11,28]. They have two drawbacks: 1) These models have
difficulties in dealing with time-dependent sequence data; and 2) The model can only
take aggregated features (like a count), which directly leads to the loss of the detailed
information about individual operations. Our system extracts user browsing histories
with detailed feature encodings, and it is able to deal with high-dimensional complex
time-dependent data using RNN.

Recurrent Neural Networks. Out of the natural language domain, researchers have
RNNs to model user behaviors in similar web server logs, especially in session-based



recommendation tasks [14,26,29]. To our knowledge, our work is the first application
of the RNN-based model in fraud detection. Fraud detection is more challenging in that
1) there are too many items to consider, and thus we cannot use the one-hot encoding
in these works; and 2) the frauds are so rare, causing a highly imbalanced dataset.

7 Conclusion and Future Work

Frauds are intrinsically difficult to analyze, as they are engineered to avoid detection.
Luckily, we are able to observe millions of transactions per day, and thus accumulate
enough fraud samples to train an extremely detailed RNN model that captures not only
the detailed click information but also the exact sequences. With proper handling of
imbalanced learning, concept drift, and real-time serving problems, we show that our
features and model, seemingly detailed and expensive to compute, actually scale to sup-
port the transaction volumes we have, while providing an accuracy never achieved by
traditional methods based on aggregate features. Moreover, our approach is straightfor-
ward, without too much ad hoc feature engineering, showing another benefit of using
RNN.

As future work, we can further improve the performance of CLUE by building a
richer history of a user, including non-purchasing sessions. We are also improving the
item embedding by adding the image, title, and description of an item into the feature.
Finally, we are going to apply the RNN-based representation of sessions into other tasks
like recommendation or merchandising.
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