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Abstract—Data science education is a new area in computer
science that has attracted increasing attention in recent years.
However, currently, data science educators lack good tools and
methodologies. In particular, they lack integrated tools through
which their students can acquire hands-on software engineering
experience. To address these problems, we designed and imple-
mented DataLab, a web-based tool for data science education
that integrates code, data and execution management into one
system. The goal of DataLab is to provide a hands-on online lab
environment to train students to have basic software engineering
thinking and habits while maintaining a focus on the core data
science contents. In this paper, we present the user-experience
design and system-level implementation of DataLab. Further, we
evaluate DataLab’s performance through an in-classroom use
case. Finally, using objective log-based learning behavior analysis
and a subjective survey, we demonstrate DataLab’s effectiveness.

I. INTRODUCTION

Recent years have witnessed the rapid growth of the big data
industry, and the labor market consistently shows a growing
demand for data scientists. According to a Glassdoor [20]
survey, data scientist became the best job in the US in 2016.
To meet this growing demand, many universities have initiated
data science courses covering data analytics, machine learning
and applied statistics. Additionally, Massive Open Online
Course (MOOC) platforms such as Coursera, edX and Udacity,
have also started to offer a number of online data science
courses, even including data science “specializations” or “nano
degrees” to meet the demand.

Unlike the scalable programming and software engineering
programs, current data science educators lack good tools and
methodologies. In particular, they lack the tools through which
their students can acquire hands-on experience, an essential
step in data science.

Many instructors formulate data science courses as
math or statistics courses that do not require any software
engineering tools. Thus, many students in the data science
program are domain experts without formal computer science
training; consequently, they often form bad coding habits.
For example, one common practice is to make redundant
copies of the datasets, which leads to confusion from
the meaningless copied file names such as data.csv,
data-version1.csv, data-final-version.csv,
data-last-version.csv. Obviously, such practices are

antithetical to software engineering principles. Our experience
shows that this practice has been a common source of bugs.

Other educators reuse traditional software development
tools in their data science courses, including various integrated
development environments (IDEs) and version control tools
such as Git. However, data scientists are not software engi-
neers. Students in such classes often get confused because
these tools are complex to set up and use without even
considering the problems stemming from different data sources
with multiple versions. The common result is that the students
spend much of their time learning these tools rather than
learning the data science content, the main goal of the course.

On the instructor side, maintaining scalable tools and
managing the entire learning experience is also a significant
commitment. Even worse, the methodology for evaluating
the learning outcome of a data science course has yet to
be established. Instructors want to collect as much learning
behavior data about the students as possible, but traditionally,
instructors see only the final assignment submission, rather
than the development process.

The following characteristics make a data science course
project significantly different from a traditional software en-
gineering project:

1) Data science requires managing both data and source
code together. In a typical data science project such as a
regression model, the students must manage the intermediate
datasets at each step while cleaning, labeling, performing other
preprocessing tasks, and model training and testing, and each
step usually involves managing a number of scripts.

2) Many data science tasks are primarily concerned with
tuning hyperparameters (the user-configurable parameters in a
machine learning model such as learning rate, initial values,
regularization values and so forth). As a common poor prac-
tice, students often hard-code these parameter values into their
analytics code as global constants, often creating large number
of code versions that differ by only a single constant. This
practice further confuses both the students and the instructors
tasked with reading their code.

3) Even a simple data science assignment requires a large
dataset (this has become especially true now that people have
started to focus on the so-called “big data” methods). It is
often necessary for the instructor or the students to set up and
maintain a moderate scale distributed platform such as Hadoop



or Spark and use many libraries to complete even a simple
project. Lacking system operation expertise, such requirements
raise the bar of teaching and learning data science and further
distract peoples attention from core data science education.

4) Data science projects often require collaboration between
students from different backgrounds; therefore, teamwork is an
important goal in data science education. Without a good tool
for sharing datasets and code, we often see students sending
code via email and through datasets copied to Dropbox,
leading to wasted time, and even worse, bad habits.

In this paper, we present our experiences with DataLab, a
new web-based tool for data science education that integrates
code, data and execution management into a single system.
The goal of DataLab is to provide a hands-on online lab
environment that serves to train students to acquire basic
software engineering thinking and habits while maintaining
their focus on the core data science content. DataLab also
reduces the setup and management overhead for instructors
and provides a scalable system that can support learning at a
large scale.

DataLab is tailored to meet the special needs of data
science education. Using a consistent, easy to follow user
interface, DataLab allows students to develop a sense of the
links among code, data, parameters and their revisions. The
interface combines a web-based IDE with version management
tools. We integrate the widely used Jupyter Notebook UI with
automatic system and environment configurations, allowing
students to begin core code development with a single click.

Guided by the version management mechanism, the students
can practice data analytics and software engineering skills
by iteratively updating code and hyperparameters, and can
continuously assess the changes in the results (e.g., accuracy).
The students can see and even revert to any version in their
code development histories. Using a leaderboard mechanism,
we encourage students to continuously improve their results by
interacting with different versions, further strengthening their
parameter-tuning skills. DataLab also enables collaborative
learning and group projects by allowing users to perform
supervised sharing of code and data.

Instructors can easily create a data science assignment by
uploading the datasets, an initial code template, and the grad-
ing policy. DataLab provides many instructor tools, including
tools for permission management, student code management
and results inspection, tools for learning analytics, and inte-
gration with MOOC platforms. Moreover, DataLab integrates
many popular data processing back-ends such as distributed
storage (Hadoop File Systems [14]) and execution frameworks
(e.g., Python, R and Spark [16]).

To verify the effectiveness of DataLab, we use DataLab
in a graduate-level introductory data science course with 81
students. We ask the students to finish their data science
projects online using DataLab. After the assignment project,
we receive 1, 979 different versions of students’ submissions.
We analyze the students’ behavior using the logs. The result
shows that DataLab can effectively keep students more active
and help them to get better learning outcome. We also conduct

a survey to get students’ subjective feelings of DataLab,
and receive positive feedback. Some students request to use
DataLab as the engineering tool of their future data science
research projects.

To verify the effectiveness of DataLab, we applied it to
a graduate-level introductory data science course with 81
students in which the students were asked to complete their
data science projects online using DataLab. After this as-
signment, we received 1, 979 different versions of students
submissions. We analyzed the students behavior using the logs.
The result shows that DataLab can effectively keep students
more engaged and help them to achieve a better learning
outcome. We also conducted a survey to obtain the students
subjective feelings about DataLab; we received quite positive
feedback. Some students even asked if they could use DataLab
as the engineering tool for their future data science research
projects.

The rest of the paper is organized as follows. We review
related work in Section II, describe the key features in user
experience design in Section III, and present the system
internal design and implementation in Section IV. Then,
Section V provides a case study of using DataLab with a
real in-classroom data science course. Finally, we conclude
the paper and introduce our future work in Section VI.

II. RELATED WORK

In recent years, discussions concerning data science edu-
cation have rippled out from the emergence of data science
courses and programs in universities, as well as from data sci-
ence MOOCs and online nano degrees. The authors of [30] re-
veal the practices of a data science program that offers courses
in both traditional and MOOC formats and describe how to
deliver both traditional lectures and programming laboratories
online. In [29], the authors experiences of offering data
analytics training programs to both on-campus students and to
their potential employers at local organizations are presented.
In [31], the authors discuss the creation and implementation
of a data science undergraduate degree program based on the
experiences of three universities. The authors of [32] show
share their experiences in combining data science education
with hackathons, encouraging students to solve challenging
data science problems to boost the learning outcome.

Data science education, like software engineering, relies
heavily on tools. However, there is little research on how to
design effective data science education tools. Existing data
science courses reuse the simple online IDEs and autograders
designed for lightweight code completion tasks, creating a
false sense that coding for data science is like introduc-
tory level programming. For instance, DataCamp [22] and
Codecademy [24] provide data science courses with step-
by-step tutorials and code completion tasks which can be
autograded instantly. Udacity [21] offers both data science
MOOCs and nano degrees and can autograde programming
assignments online, but the final projects can only be graded
manually. Kaggle [18] is a site for predictive modeling and
analytics competitions. Participants submit prediction files and



Kaggle automatically provides real-time scoring and ranking.
However, Kaggle lacks development tools for teaching.

DataLab is inspired by and built on top of many existing
software engineering and data science tools, such as revi-
sion control systems, workflow tools, data management tools,
and data science packages. Source code version control and
management system have a long history, from CVS [26] to
SVN [27] to Git [25]. They are designed to handle modest-
sized files and thus not suitable for storing data.

Versioning has been a hot topic in database research re-
cently, particularly around subjects such as arrays [4] and
graphs [5]. These works implement elementary operations
for comparing differences between versions. Other temporal
database systems like [6], [7] provide querying versions with
linear chains but do not support other complicated structures
of data versions like tree-structured versions.

Some workflow tools like Chimera [8], Pegasus [9] and
Vistrails [10] adopt the concept of data workflow similar to
the workflow we use in DataLab. However, they all lack a
clean separation of raw data, metadata and versions of datasets.
Other tools such as Orchestra [11] and Fusion tables[12] use
the concept of data collaboration among users, but lack the
capability of data version control and management.

Some projects have focused on sharing data. The MIT
DataHub [13] [17] project supports dataset revision control,
but it does not manage the entire data analytics development
cycle. Thus, it is more of a database management tool than
a software engineering tool. The Harvard Dataverse [23] is a
data publishing and sharing platform but it lacks data version
control and analytics. Neither is suitable for use in data science
education.

III. KEY USER EXPERIENCE DESIGN

DataLab provides a complete set of features that support
integrating key software engineering ideas into data science
courses. We first provide an overview of a typical workow in
DataLab, from both the instructor perspective and the student
perspective.

A. Overview of the workflow in DataLab

The DataLab workow design centers around a powerful
code and data revision management system. Although DataLab
can be used for open-ended course projects, here we focus on
a typical homework-assignment workow. In an assignment,
the workow includes an instructor part and a student part.
We use a consistent UI to integrate both parts. We want to
make it easy for instructors to create, manage, grade and
reuse the assignments, and we want to let the students focus
on the core data science materials while imparting good
software engineering practices. Figure 1 provides an overview
of this workow, and the following subsections highlight the
key features in the workow.

B. Instructor: Creating an assignment

To create an assignment, the instructor needs to set up
three parts: the datasets used in the assignment, the initial
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Fig. 1: A typical workflow

code template, the instructions, and the grading policy. The
instructors can upload and import a dataset into DataLab
through a web UI or upload the data using common tools such
as FTP. The dataset can be stored on the local file system or
in a distributed file system (we currently support the Hadoop
File System (HDFS) [14]).

The instructor also uploads code templates or samples as
public code in the system, and associates this code with the
data. Thanks to the adoption of Jupyter-style notebooks, the
instructors can combine the code templates and instructions
into a single file. Initially, we provide numerous publicly
available data science code examples, so it is easy for a new
instructor to construct such code templates.

Finally, the instructor needs to write autograding scripts and
set up the autograder. For common tasks such as data mining,
we provide autograder code that can perform accuracy-based
autograding.

C. Student: Doing the assignment online

The DataLab interface for students contains mainly two
parts: 1) a version control system and 2) an online integrated
development environment (IDE).

a) Starting with the version control UI: Upon starting
a new assignment, each student receives a clone of the
assignment repository, including both code and data. DataLab
avoids copying the data as much as possible; instead, it uses
the internal data-versioning tool discussed in the next section.

The first UI a student sees after entering DataLab is a
summary page of data, source code and execution records,
each of which includes the ability to make explicit version
selections. Figure 2 shows the UI. We believe that letting
students see this “big picture” page with versions first (instead
of taking them directly into the code) serves to remind the
students of two things: 1) the connections between code and
data, and 2) version management of code and data. On this
page, the students can inspect different versions of their code
and data.

Note that Figure 2 shows some special parameters and
configuration files. We encourage the instructors to extract
all the hyperparameters (e.g., the learning rate in a neural
network) that a mining algorithm uses into separate files. These
hyperparameters are easily accessible through an intuitive API



Fig. 2: Jupyter notebook interface of DataLab system

Fig. 3: Jupyter notebook integration in DataLab

in the student code. Although using this feature is not required,
adopting the use of a parameter file forces the students to
think separately about hyperparameter tuning vs. algorithm
implementation, which is a good habit when developing data
science code. As an extra benet, separating the hyperparame-
ters allows the system to record the students learning activities
more accurately. For example, it can determine whether a
student is modifying the code or simply tuning the parameters.
Collecting such data can further support data-driven education
studies, which is an important aspect of our future work.

b) Online development environment: Students can edit
code using an online IDE. Our online IDE is based on
Jupyter Notebook [19], an open source, web-based interactive
development environment that supports over 40 programming
languages. The cloned data and code are automatically loaded
into the online IDE with all proper libraries, environment
variables and working directories correctly set up. Figure 3
shows a typical Jupyter Notebook interface in DataLab.

The advantage of Jupyter Notebook is that it provides an
interactive programming environment that supports a combina-
tion of source code, texts, charts, figures and even multimedia
files. It is popular among data scientists, and we believe it
is the best format in which to provide instructions and code
templates for data science students because it allows them to
focus on the core data science code rather than on tedious
system, package and environment configuration problems.

Students can execute their code directly within the online

Fig. 4: An example screenshot of the leaderboard

editor UI. We modified the Jupyter backend to separate each
users private environment (e.g., data paths, privileges) to
ensure that students do not see each others work. We also
added an auto-save functionality that periodically saves the
students code to a hidden branch in our code versioning
system. This feature helps when unexpected failures of the
web server or the users browser occur. We use individual
resource containers [28] to implement a sandbox for running
each students code on a shared server. In this manner, we can
provide performance and security in a multi-user environment.
Of course, all these complex system configurations are trans-
parent to the students.

c) Creating code/data versions and autograding: When
a student is ready to submit a version of her code for
grading, she clicks the push button on the version interface,
at which point the system commits a new version containing
the submitted code and parameters. Then, the students can
optionally run the version, and a corresponding output dataset
is created. We also capture all the console log output, save the
log file and provide a link on the UI.

After DataLab completes a grading run, the system submits
the code, parameters, logs, and a pointer to the resulting
datasets to an instructor-dened autograder module for grading.
The autograder can choose to run the code on another (secret
test) dataset, or just to look at the current results. DataLab
provides several widely used autograders for data science. In
the case study in V, we use a grader based on the average
prediction accuracy on a test dataset. This grader also comes
with a global leaderboard that ranks the accuracy achieved
for the dataset. The leaderboard has proven to be an effective
way to encourage students to continue to update their efforts
in our case study. Figure 4 shows a screenshot of a sample
leaderboard. Optionally, the leaderboard can integrate with
MOOC platforms, and the results can be returned using a
RESTful API.

d) Version management tools: Version management is
not only a good software engineering habit that the data
science students need to learn about, but it also helps the
instructors to better understand the students’ learning process:
how they improve their code and tune the hyperparameters.

On the same summary page, the student can review different
versions of their code and the corresponding result datasets.



Fig. 5: Code versions

Figure 5 shows an example of these different versions.
Students can also compare the result datasets and the

code versions. If they believe their recent changes to the
code negatively impact the results (common in data science
projects), they can reset the code to the previous version with
a single click. DataLab ensures that the result data generated
by the previous code version is either stored or regenerated,
as we will discuss in the next section. Our experience shows
that the reset feature is popular among students.

e) Student experience summary: In summary, using the
version management tools and autograder as a guide, students
can iterate through the process above multiple times, updating
their code and hyperparameters to improve the results until
they are satisfied. During the process, they can view their
progress step-by-step, and the reset feature provides a safety
net in the event of a mistake. All these features encourage the
students to actively explore solutions for their assignments.

D. Instructor tools

In addition to the assignment creation discussed above,
DataLab also provides additional tools for instructors. While
we are still extending the instructor tools to provide more
functionality, there are four most important tools:

In addition to the assignment creation tool discussed above,
DataLab provides additional tools for instructors. We are still
extending the instructor tools to provide more functionality,
but the four most important tools are already in place:

1) Permission management. The instructor has full control
of students permissions to access/share/write/delete files to
meet the needs of different types of assignments (e.g., indi-
vidual vs. group, limited-scope vs. open-ended).

2) Resource management. The instructors can shutdown
students’ Jupyter or autograding processes if they use too many
computation resources without calling the system administra-
tor.

3) Inspection tools for student files. The instructor can
inspect code and data by acting as any student.

4) Learning statistics tools. We provide a user defined
dashboard with several pre-defined plugins for the instructors
to analyze the students’ activities on the platform. Figure 6
shows a sample screenshot summarizing the statistics students’
submission behavior.

Fig. 6: Statistic interface of instructors
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Fig. 7: System overview

IV. SYSTEM INTERNAL DESIGN

Figure 7 provides an overview of the system architecture.
Underlying the DataLab intuitive UI is a complex internal

infrastructure. The core of DataLab is a data management
system that integrates the code and data revision control. In
addition, we provide a secure and extensible code execution
environment based on virtual machine or container technology.
The underlying system provides a set of extensible APIs
that allow people to build different user interfaces, of which
the education-focus interface discussed previously is an im-
portant example. Furthermore, to support a large number of
students with a moderate amount of computational resources,
we extensively exploit the fact that most of the solutions to
the assignments are similar; consequently, DataLab includes
optimizations that reduce computation and storage overhead
using caching and data dependency controls. Figure 7 provides
an overview of the system architecture.

In this section, we describe the data management system,
the execution engine and the performance optimizations for
educational purposes.

A. Data management system

The data management system provides a coherent logical
view of versioned code, datasets and execution records (logs).
The design goals of the data management system include: 1)
efficiency: being able to scale to large datasets at low cost;
2) compatibility: supporting legacy data analytics frameworks



such as Python, R and Spark; 3) extensibility: supporting rich
APIs including version control and quick dataset filtering.

We first introduce the logical data model and then discuss
the scalable implementation and optimizations for the code
and data version management.

a) Logical data model: From a user’s point of view, the
DataLab data model provides an interface by which users can
make queries against different versions of the code (includ-
ing system environment configurations and hyperparameters),
semi-structured datasets and execution records.

All three types of data are linked through a consistent
version number, the Git commit ID of the code. In this model,
all data are associated with executing some source code that
has a unique commit ID.

Like many database systems, DataLab supports creating
logical views of a dataset. A user can create a (named) view by
either executing a query against the semi-structured datasets,
or by executing a user generated program. Logical views are
the first-class citizens, and the users can share and version
them just like a real dataset.

Logical views are essential for both instructors and students.
For example, instructors can easily select subsets of samples
from larger datasets to create different assignments, and stu-
dents can save, reuse and share their intermediate results (e.g.,
preprocessing results after data cleaning). The code is managed
with an extended version of GitLab [15] that also includes all
standard GitLab API support. The inclusion of the standard
API allows the students to (optionally) learn standard Git code
management practice.

Our extension to code revision is to separate the system
configurations and hyperparameters used in data mining algo-
rithms into two individual files: config and param. DataLab
understands the semantics of these files and provides API
callbacks to handle the versioning of these parameters. The
students code can access these parameters the same way as
it would access command line arguments. Forcing students to
specify the parameters in a configuration file not only helps the
students to acquire a good programming habit but also help
DataLab to distinguish the students parameter-tuning efforts
from code development efforts, allowing better evaluation of
the students learning outcomes.

Execution logs are also important parts of the logical data
and associated with the unique code commit ID. After re-
ceiving students submission request and executing their code,
DataLab automatically stores the commit ID, the commit time,
execution logs, etc. These logs are essential for students to
debug their programs and sometimes useful for autograding.
Internal to our system, the logs are important for maintaining
the data workow discussed in the next subsection.

The user permission system is also managed at the logical
data model level. By default, students can only see their own
changes, while the instructor can see all changes from all
students in the course. To avoid cheating, students cannot share
code or data with anyone. The instructor can override these
settings, allowing students to share the code globally or within
a specific group.

Fig. 8: An example DWF graph

b) Implementing the data versioning - Data work flow:
Naively, we need to maintain a number of versions for every
single dataset or logical view that students create. To manage
these datasets efficiently, we introduce data work flow (DWF)
to manage the logical relationships of all dataset versions.
Two datasets are connected by an edge if one dataset is
derived from the other. DWF is the core of DataLab’s version
management system.

In a DWF, a node represents a particular version of a dataset.
A directed edge connects two nodes if one dataset is derived
from the other. The labels on the edges show the code version
that is used to generate the dataset. Figure 8 provides an
example of the DWF. DataLab automatically constructs and
maintains DWF using the execution records as students submit
their experiments.

We implement these structures by adding a parent property
to the metadata of the newly generated dataset so that when
we process one dataset we can find the parent dataset. Addi-
tionally, we implement functions to compare the differences
between a dataset or programs and its parent or child dataset.
This feature helps students to easily see the consequences of
their code changes.

The DWF graph serves three purposes: 1) it is used to
allow the system to schedule the evaluations / re-evaluations
of certain datasets, 2) it allows students to manage their entire
experiment history, including knowing which version of the
dataset generates which result datasets, and 3) it is used
by the caching systems (discussed next) to improve cache
effectiveness.

DWF is similar to the concept of data dependency graph
that is common in many systems. For example, Spark uses
a directed acyclic graph to manage Resilient Distributed
Datasets (RDD) [2] while Dryad [3] uses a dependency graph
to organize individual partitions and stages in its distributed
computation. The purpose of DWF is different: we use it to
keep track of the execution history and corresponding database
versions instead of to track intermediate data.

c) Scalable physical data management: It is non-trivial
to implement the logical data model efficiently because we
must maintain all the existing versions in storage and manage
a large number of datasets. Here, we introduce the general



Fig. 9: Reconstruct data set from cached data sets

ideas of our physical data structures.
To manage datasets with a large variety of sizes, we separate

the storage of data from that of metadata. We store metadata
in a fast NoSQL database for rich query semantics, but store
the large data in a distributed file system to reduce storage
costs. We link the data and metadata with a system-generated
ID.

We store all the students code in a GitLab server, and we
use the GitLab API to communicate with it. All the execution
records, except for logs from the students program executions,
are imported back into the MongoDB as a special system table.
The execution engine framework is mapped to the students
project directories to simplify the path management for each
student.

We treat DWF maintenance as a separate background task.
While tracking all the execution records, we can construct the
DWF, which helps students to monitor data provenance and
understand their data better.

To preserve storage resources, we cannot physically keep all
the versions of all the data that students generate. Additionally,
if one student runs exactly the same code on the same dataset
multiple times (very likely in the exploration phase in an
assignment), we do not want to recompute and regenerate
the datasets multiple times. Thus, we introduce a caching
mechanism to manage datasets that we can derive anytime.
Specifically, using the parent versions and the generating
code version IDs in the DWF, we can recompute a dataset,
if the parent dataset is available, and the computation is
deterministic. In this case, the system will find the location of
the parent version. Given that the dataset generation process
is deterministic, we can reconstruct a dataset if it is missing.
Otherwise, we can safely reuse the dataset that already exists.

We realize that many data science computations involve
random factors that make the executions non-deterministic.
We allow the instructors to trade off the actual randomness
vs. the caching effectiveness by fixing the seed of the random
number generator. The randomness setting is transparent to the
students.

DataLab supports storing datasets in different distributed
storage backends. For example, we run our platform on a
private cloud and store the datasets in Hadoop File System

(HDFS) [14]. We also support key-value storage such as Ama-
zon S3 [33] for educational institutions using public clouds.
For metadata management, we use scalable NoSQL databases
(MongoDB [34] in the current implementation) instead of
traditional SQL database.

B. Backend features and execution environment

a) Support for multiple data science tools: Data science
projects always need many useful data science tools or pack-
ages. We support Python as our primary language given its
popularity in data science. Python also provides good Spark
and Hadoop[1] support, making it easy to handle large files
on distributed file systems. We pre-install these data science
tools as part of DataLab so that the students no longer need
to configure their own.

b) Scalability to large scale: To meet the demands of
multiple users editing online at the same time, we launch a
separate Jupyter Notebook server for each student so that they
do not conict with each other.

For deployment, we use a single machine as the web server
for students and the master node. We can scale the system
by adding more servers as slaves for distributed storage and
execution. For the sake of security between different students,
the system creates a Docker [28] container for each student so
that they cannot read and write data files outside the container
except through our APIs. Using the Docker container, we
can also limit the resources used by each student, in case
some buggy or malicious program is using up all the system
resources.

By collecting the logs created when students create and
manipulate data with our APIs, we can analyze students
behaviors to better understand the obstacles they face during
learning.

c) Supporting open-ended projects: DataLab also allows
students to share a particular version of their code and results
from data, making collaboration easy. With the instructors
permission, students can publish their code (including the
hyperparameters) so that others can import them directly as
supplemental code for their projects and see the results. The
sharing is efficient because no actual data copying occurs in
the system. In an open-ended project setting, we also allow
students to upload their own Jupyter Notebooks files into
DataLab to start their project.

Because Jupyter Notebook is open-source, we can easily
modify it to support multiple users and multiple backends.
To ensure performance isolation and security, when students
begin editing code, DataLab starts a separate Jupyter Notebook
server container for code execution.

C. Extensible APIs

The core of DataLab is designed as a general data science
software engineering tool meet different education and re-
search goals. We allow users to design different user interfaces
and workflows to serve different purposes. For example, the
education interface extends the core API to support auto-
grading and instructor-level permission management, while a



separate research UI focuses on managing scientific datasets.
The generality of the DataLab core significantly reduces the
development time required for each use case, lowering the
cost of developing customizations to meet other education
environments (e.g., in future work, we plan to build an
environment to teach programming to K-12 students using the
same system core). Table I shows the most important APIs.

V. EVALUATION IN A REAL CLASSROOM

In this section, we discuss a real use case of DataLab
in a class of 81 students. We let the students complete a
data science project and report the students’ learning behavior
based on analyzing the logs from DataLab. We also conduct a
survey to get the students’ subjective feelings about DataLab
and report the key findings here.

A. Methodology and Experiment Setup

We deploy DataLab in an in-classroom graduate data sci-
ence course with 81 students. The course targets first-year
graduate students and senior undergraduates with diverse
engineering backgrounds such as computer science, software
engineering, electronic engineering and automation. Because
this is an introductory course, most of the students do not
have much experience with data science or related fields. We
also invite another 20 volunteers who have taken the previous
iteration of the course to participate. All the students know
about and consent to participation in the study.

For the assignment, we adopt a classic Kaggle [18] com-
petition project: Titanic: Machine Learning from Disaster. The
dataset contains gender, age, cabin class, and other information
about the 2, 224 persons on board the Titanic. After splitting
the dataset into training data and testing data, we ask the
students to build a machine learning model to predict who
will survive in this disaster. There is a single metric for result
evaluation: the prediction accuracy. Four steps are required to
complete the project: data cleaning, feature selection, model
selection, and hyperparameter tuning.

We provide a fairly complete code template and the students
need to edit their code using our online IDE and complete the
steps to clean the data, select features and build a model. They
are able to run a small test within the IDE and see the results
interactively. After they are satised with the results, they first
need to create a new version by pushing the code; then, they
can request autograding on a separate testing set by submitting
the code. We do not limit how many times students submits
their code.

By tuning the hyperparameters stored in a separate param
file, such as adopting different features and different models,
the students iteratively improve/reduce the prediction accu-
racy in each version. To encourage the students to continue
improving their results, we post their accuracy results to a
leaderboard, creating a competitive setting.

For this small-scale assignment, the platform runs on 3
machines which each has 8 cores, 16 GB memory and 80
GB of hard disk storage. We use HDFS for data storage.

We first report the student behavior from analyzing the
DataLab logs. We show that with the help of data and code
versioning, students achieve much better prediction accuracy.
Then, we report findings from the student survey. We consider
the first part a more objective evaluation of how DataLab
affects students learning, while the second part shows the
subjective view from the students.

B. Learning Behavior through Log Analysis

We analyze users’ behavior logs to figure out how the
students learn data science techniques and iteratively improve
their algorithms. We show that DataLab can help them to learn
more efficiently.

The system receives a total of 1, 979 different versions of
code submissions, and the prediction accuracy from all valid
submissions (run to completion without crashing) ranges from
78% to 91.83%.

Figure 10 shows the box plot of the number of times each
student submits her assignments for autograding and accuracy
ranking. We find that the students push their code 37 times on
average with a median of 24 times. They submit an average
of 42 times with a median of 24 times. Given that this is
a simple assignment, we are surprised to see these many
submissions. We believe a combination of the easy-to-use UI
and the competition created from the leaderboard both help
the student to become more engaged.

Now we want to know whether more submissions help the
students to learn; otherwise, added submissions are just a waste
of time. First, Figure 14 shows the relationship between the
average prediction accuracy and the first 50 submissions of
a sample student. It shows that the student does continue to
improve accuracy results with more submissions. Sometimes
the accuracy is reduced, but she can soon improve it again.

Then we analyze the relationship between students’ ranking
on the leaderboard with their number of activities on the
platform. Figure 12 shows that students with a higher rank
(top 25% on the leaderboard) submit more often than those
with a lower rank (bottom 25% on the leader board). This
correlation indicates that more submissions do help students
to think more about the problem and find better solutions.

Many students check the historical branches that they sub-
mit, but not all of them use the reset function. Figure 11 shows
that students check their branches four times on average. There
is a large variation in the frequencies with which students use
the reset function, some students use it much more than others.

To show whether using reset and branches do help improve
students learn and train their techniques, we again compare
the behavior of the high rank group and the low rank group.
We find that more than 50% of the students with higher ranks
use the reset functions at least once. In comparison, in the low
rank group, less than 25% used the function. Figure 13 shows
the data.

C. Survey Results

We design and conduct a survey containing 18 questions to
collect their subjective opinions about DataLab, and we collect



Core APIs
name functionality input output
create create a project dataset name null
upload upload a dataset to a project file or directory name null
import import a dataset to the project file or directory name null
push create a new version of code and data project name commit ID
submit submit code to system and execute commit ID null

TABLE I: Core APIs
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all the 101 questionnaires from the 81 students enrolled in the
course and other 20 non-enrolled volunteers.

The survey has three parts: 1) Questions about the students’
coding experience, for example, what proportion of time do
they usually spend on debugging; 2) Questions about the
students’ opinions DataLab, such as whether DataLab can
helps them learn parameter tuning; and 3) Students suggestions
about ways that DataLab can be further improved.

We conduct the survey through a third-party online survey
website; each student can submit only one response. From the
survey results, we find that students usually spend 50% of time
on average on debugging in a project. They agree that editing
and managing code online is a much more convenient and
efficient way for code development. A large majority of these
students acknowledge that problems stemming from having to
manage many versions of code and data used to confuse them
when coding (Figure 15). Many acknowledge that they had
experienced bugs due to these confusing versions. Figure 16
shows how often the students face the problem of confusing
data versioning.

Most students also agree that DataLab is easy to use and can
improve the effectiveness and efficiency of managing code and
data versions for data science projects. For collaboration, the
students all agree that DataLab’s sharing features are helpful

for collaborating within a data science team (Figure 19).
After completing this assignment, students give a positive

rate on DataLab system, and 92 out of 101 students indicate
that they will continue to use DataLab for their future data
science projects.

Some students suggest that it will be better if old versions
can be removed, and some hope to use a more powerful online
IDE than Jupyter Notebook.

We do not allow students to upload their own data in this
assignment; however, after completing the assignment, a few
students reach out to us and ask for permission to perform their
own research on the DataLab platform, further demonstrating
the positive experiences with the system. Consequently, in fu-
ture work, we plan to add open-ended support for collaborative
projects.

VI. CONCLUSION AND FUTURE WORK

Having taught an introductory data science course for the
past three years, we are surprised to see how poorly data
science students manage their development process, especially
ad hoc naming for versioning, defining hyperparameters as
global variables, and the lengthy process of setting up an
environment to run simple tasks such as a word count.
As system builders, we build a tool to tackle the challenge
of introducing software engineering thinking into data science
education, making data science courses more understandable
and enjoyable. DataLab manages different versions of data,
code and execution records and helps students to improve
their development efficiency while maintaining a focus on the
core algorithms in data science. We build the entire system
on scalable frameworks, allowing DataLab scale to a large
number of students at low cost. In a real classroom study,
behavior analyses and survey results show that DataLab helps
to improve the effectiveness and efficiency of data science
education.

For our future work, we realize that there is no data-driven
methodology to evaluate the learning process of data science
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data versions?
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Fig. 20: Is DataLab helpful for learning
data analysis techniques?

techniques. We would like to develop such a technology using
the rich monitoring data that DataLab collects.
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