Handling Uncertainty in Data Management Jian Li Tsinghua University, Beijing, China WAIM 2014, Macau

Tay Doint fonts used in EME

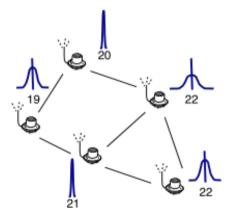
Uncertain Data

- Uncertain data is ubiquitous
 - Data Integration and Information Extraction
 - Sensor Networks; Information Networks

SSN	Name		SSN	Name	Prob
208-79-4209	John Williams	>	208-79-4209	John Williams	0.5
SSN	Name	7	208-79-4209	Michael Lewin	0.5
208-79-4209	Michael Lewin				

Data integration

Tuple uncertainty

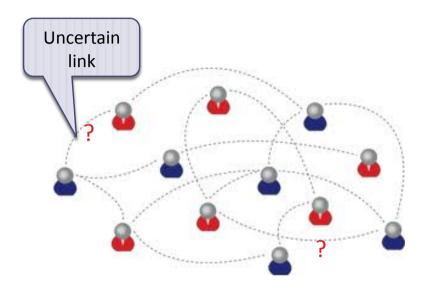


Sensor	network

Sensor ID	Temp.
1	Gauss(40,4)
2	Gauss(50,2)
3	Gauss(20,9)

Attribute uncertainty

Uncertain Data



Social network

Future data is destined to be uncertain

Uncertain Data

Decision making under uncertainty

- Many statistical/machine learning models (Graphical model etc.)
- Job Scheduling (uncertain job length)
- Online Ads assignment (uncertain intents)
- Kidney Exchange (probabilistic matching)
- Crowdsourcing (noisy answers)

Dealing with Uncertainty

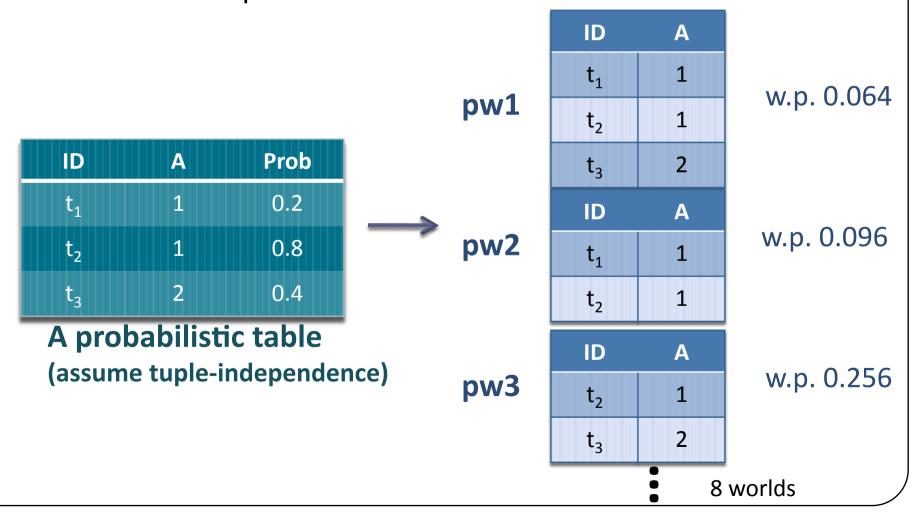
- There is an increasing need for analyzing and reasoning over such data
- Handling uncertainty is a very broad topic that spans multiple disciplines
 - Economics / Game Theory
 - Finance
 - Electrical Engineering
 - Probability Theory / Statistics
 - Psychology
 - Computer Science

Outline

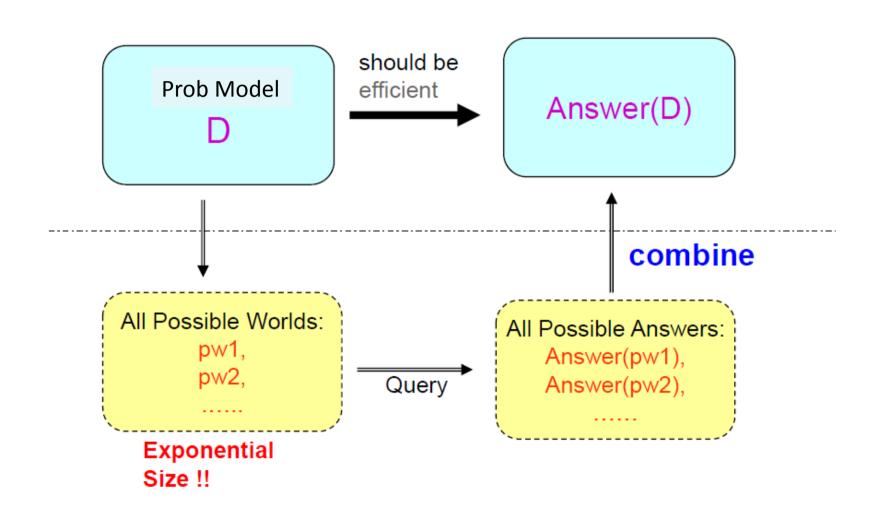
- Ignoring Uncertainty?
 - Examples
 - Possible world semantics
- Beyond Expectation— expected utility theory
 - St Peterburg Paradox
 - Consensus Answer
- Queries over Probabilistic Data
 - Top-k queries
 - Other queries
- Stochastic Optimization
 - Stochastic Matching
 - Stochastic Knapsack

Possible World Semantics

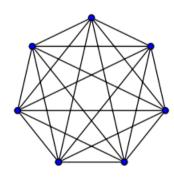
View a probabilistic database as probability distribution over the set of possible worlds

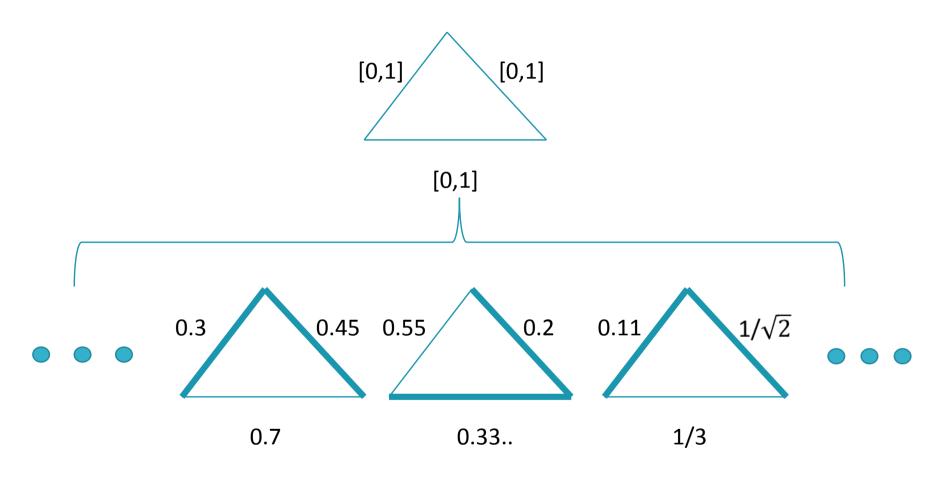


Possible World Semantics

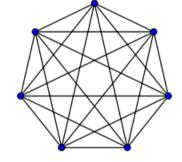


- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question: What is E[MST]?
 - MST: minimum spanning tree





- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question: What is E[MST]?
 - MST: minimum spanning tree



- Ignoring uncertainty ("replace by the expected values" heuristic)
 - each edge has a fixed length 0.5
 - This gives a WRONG answer 0.5(n-1)

- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]

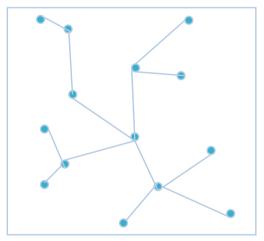
- Question: What is E[MST]?
- Ignoring uncertainty ("replace by the expected values" heuristic)
 - each edge has a fixed length 0.5
 - This gives a WRONG answer o.5(n-1)
- But the true answer is (as n goes to inf)

$$\zeta(3) = \sum_{i=1}^{\infty} 1/i^3 < 2$$

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]

A Similar Problem

• N points: i.i.d. uniform[0,1]×[0,1]

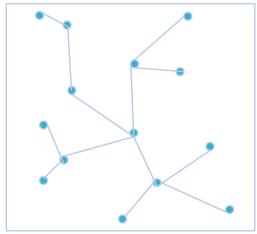


Question: What is E[MST]?

• Answer:

A Similar Problem

• N points: i.i.d. uniform $[0,1] \times [0,1]$



- Question: What is **E[MST]**?
- Answer: $\theta(\sqrt{n})$ [Frieze, Karp, Steele, ...]

The problem is similar, but the answer is not similar.....

A more general computational problem considered in [Huang, L. ArXiv 2013]

 Similar phenomena can be found in many combinatorial optimization problems, such as matching, TSP (traveling salesman problem) etc.

A take away message:

Ignoring uncertainty (or simplistic replace-by-expectation heuristic) may not the right thing to do

Outline

- Ignoring Uncertainty?
 - Examples
 - Possible world semantics
- Beyond Expectation— expected utility theory
 - St Peterburg Paradox
 - Consensus Answer
- Queries over Probabilistic Data
 - Top-k queries
 - Other queries
- Stochastic Optimization
 - Stochastic Matching
 - Stochastic Knapsack

Aggregate Queries

Aggregate Query:

Item	Forecaster	Profit	P
Widget	Alice	\$-99K	0.99
Widget	Bob	\$100M	0.01
Whatsit	Alice	\$1M	1

Profit(Item;Forecaster,Profit;P)

SELECT SUM(PROFIT)
FROM PROFIT
WHERE ITEM='Widget'

ROFIT FROM PROFIT

ITEM='Widget' WHERE ITEM='Widget'

HAVING SUM(PROFIT) > 0.0

(a) Expectation Style

(b) HAVING Style

Answer: E[profit]=19.9K

Answer: Prob[profit>0]

=0.01

Expected value may not be sufficient!

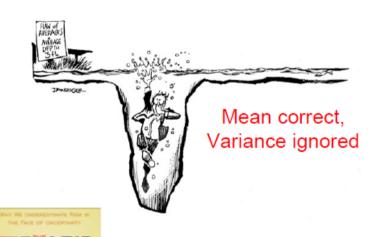
Example taken from The trichotomy of HAVING queries on a probabilistic database, Re, C. and Suciu, D., The VLDB Journal, 2009

Inadequacy of Expected Value

Be aware of risk!

Flaw of averages (weak form):

Flaw of averages (strong form):



Wrong value of mean: $f(E[X]) \neq E[f(X)]$

Inadequacy of Expected Value

- Inadequacy of expected value:
 - Unable to capture risk-averse or risk-prone behaviors
 - Action 1: \$100 VS Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5
 - Risk-averse players prefer Action 1
 - Risk-prone players prefer Action 2 (e.g., a gambler spends \$100 to play Double-or-Nothing)
 - St. Petersburg paradox
 - You pay x dollars to enter the game
 - Repeatedly toss a fair coin until a tail appears
 - payoff=2^k where k=#heads
 - How much should x be?
 - Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+....=
 - Few people would pay even \$25 [Martin '04]

Expected Utility Maximization Principle

A: The set of valid answers

 $w_{pw}(a)$: the cost of answer in pw

 $u: R \to R$: the utility function

Expected Utility Maximization Principle:

The most desirable answer a is the answer that max. the exp. utility, i.e.,

$$a = \max_{a' \in A} E_{pw} [\mu(w_{pw}(a'))]$$

Von Neumann and Morgenstern provides an *axiomitization* of the principle (known as von Neumann-Morgenstern expected utility theorem).

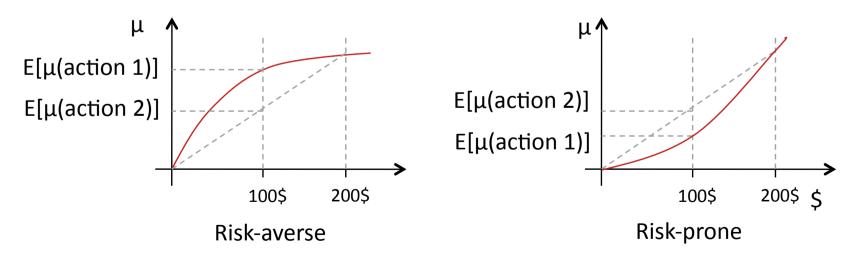
Expected Utility Maximization Principle

 $u: R \to R$: The utility function: profit-> utility

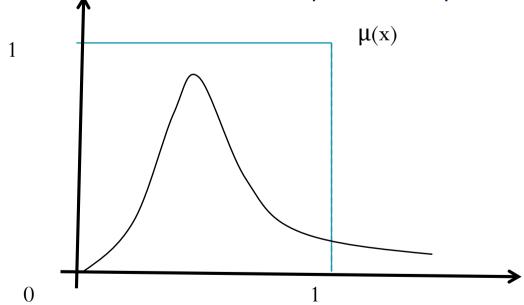
Expected Utility Maximization Principle: the decision maker should choose the action that maximizes the **expected utility**

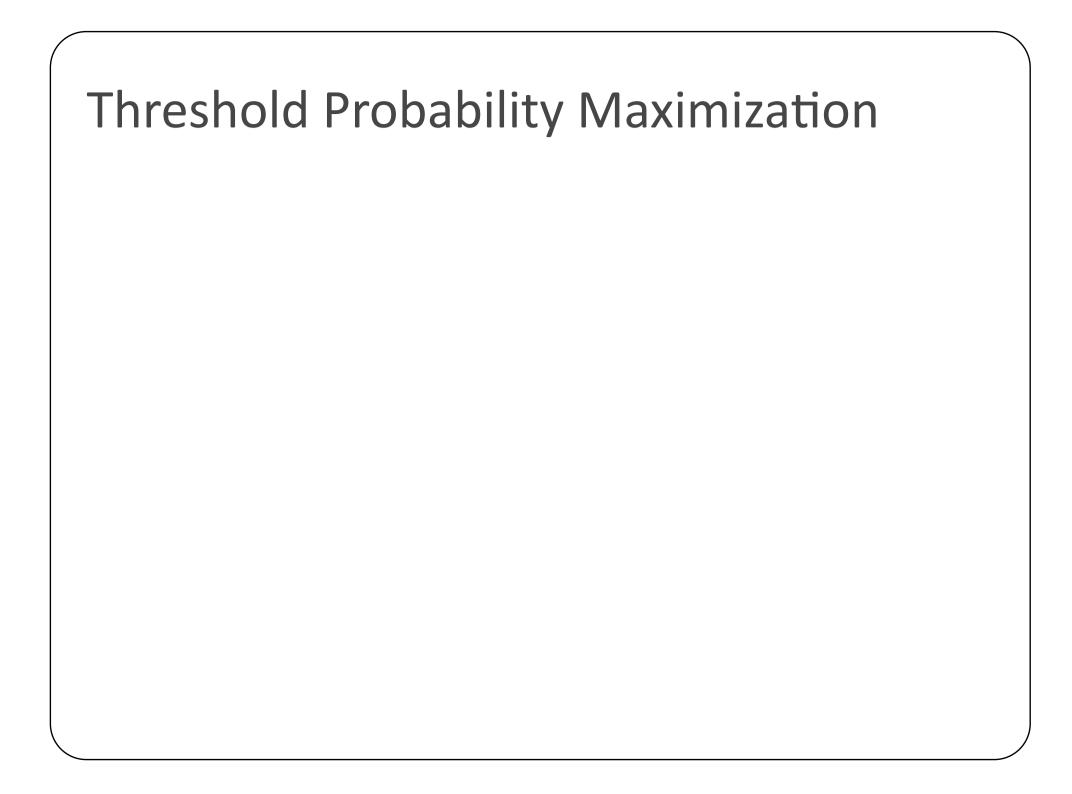
Action 1: \$100

Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5



- If μ is a threshold function, maximizing $E[\mu(cost)]$ is equivalent to maximizing Pr[w(cost)<1]
 - *minimizing overflow prob.* [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99]
 - chance-constrained stochastic optimization problem [Swamy. SODA'11]





- Stochastic shortest path: find an s-t path P such that Pr
 [w(P)<1] is maximized
 - First assume Gaussian distributions (with different parameters)



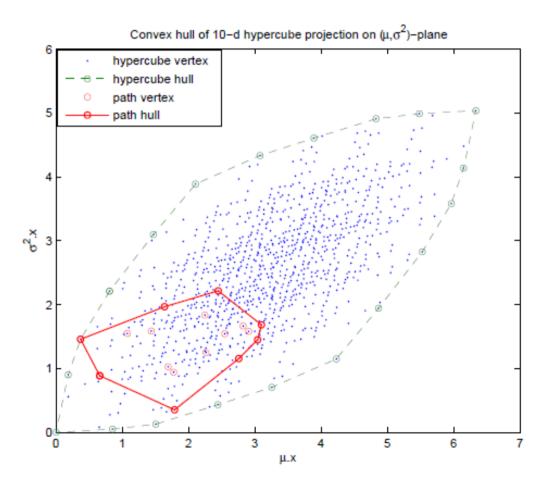
in [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Nikolova. APPROX'10]

- Stochastic shortest path: find an s-t path P such that Pr[w(P)<t] is maximized
 - First assume Gaussian distributions (with different parameters)
 - Note that $N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

$$\Pr\left(\sum_{i\in\pi}X_i\leq t\right)=\Pr\left(\frac{\sum X_i-\sum \mu_i}{\sqrt{\sum\sigma_i^2}}\leq \frac{t-\sum \mu_i}{\sqrt{\sum\sigma_i^2}}\right)=\Phi\left(\frac{t-\sum \mu_i}{\sqrt{\sum\sigma_i^2}}\right),$$
 So, we want to
$$\max_{\pi}\frac{t-\sum_{i\in\pi}\mu_i}{\sqrt{\sum_{i\in\pi}\sigma_i^2}}.$$
 Standard Gaussian CDF

Objective:

$$\max_{\pi} \frac{t - \sum_{i \in \pi} \mu_i}{\sqrt{\sum_{i \in \pi} \sigma_i^2}}.$$



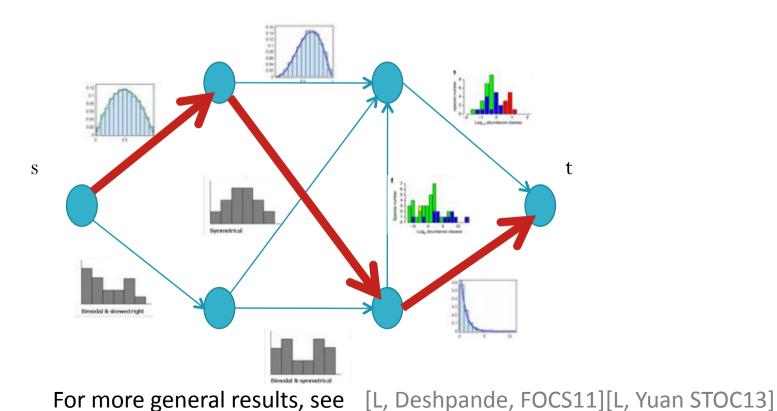
Ob: The obj is **quasi-convex**; the optimal solution must be a boundary point on the path hull

ALGO: enumerate the boundary points

- Time (worst case): $O(n^{\log n})$
- (Smoothed): polynomial
- Approximation with ϵ error: polynomial

For more general distributions, we can get the same result via more sophisticated techniques

(characteristic functions, Poisson Approximation)



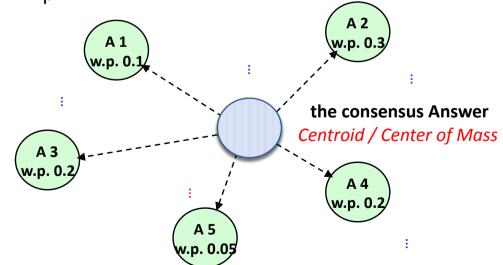
Consensus Answer

Consensus Answer:

- Think of each possible answers as a point in the space.
- Suppose d() is a distance metric between answers.
- Consensus Answer is a single deterministic answer

$$\tau = \arg\min_{\tau' \in \{\mathbb{E}[d(\tau', \tau_{pw})]\}}$$

where τ_{pw} is the answer for the possible world pw



Can be viewed as a version of the expected utility maximization principle! (utility= - distance)

Consensus answers for queries over probabilistic databases, Li, J. and Deshpande, A., PODS, 2009

Outline

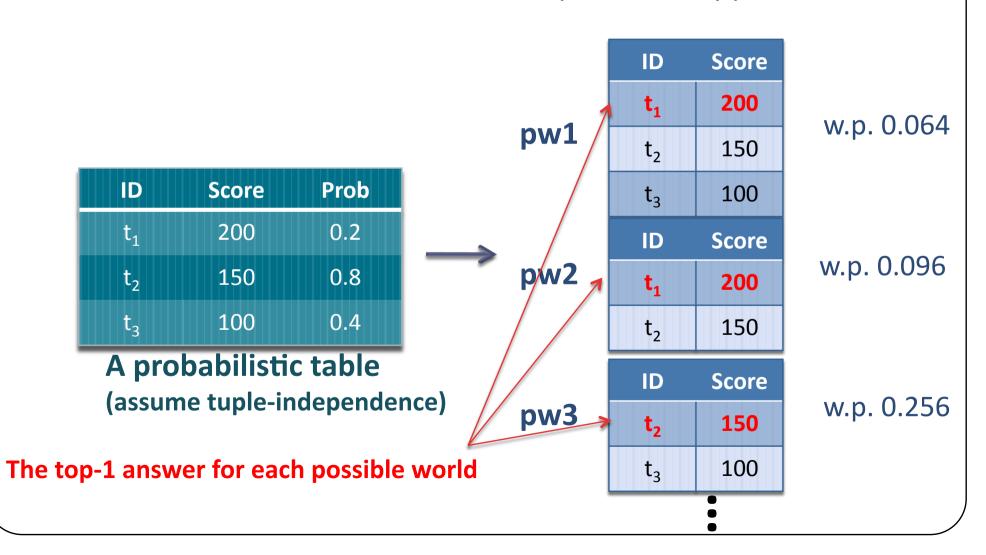
- Ignoring Uncertainty?
 - Examples
 - Possible world semantics
- Beyond Expectation— expected utility theory
 - St Peterburg Paradox
 - Consensus Answer
- Queries over Probabilistic Data
 - Top-k queries
 - Other queries
- Stochastic Optimization
 - Stochastic Matching
 - Stochastic Knapsack

Ranking over Probabilistic Data

- Our goal: support "ranking" or "top-k" query processing
 - Deciding which apartments to inquire about
 - Selecting a set of sensors to "probe"
 - Choosing a set of stocks to invest in
 - ...
- How? Choose tuples with large scores? Or tuples with higher probabilities?
 - A complex trade-off

Top-k Query Processing

Score values are used to rank the tuples in every pw.



Top-k Queries: Many Prior Proposals

- Return k tuples t with the highest score(t)Pr(t) [exp. score]
- Returns the most probable top k-answer [U-top-k]
 [Soliman et al. ICDE'07]
- At rank i, return tuple with max. prob. of being at rank i [U-rank-k]

[Soliman et al. ICDE'07]

- Return k tuples t with the largest $Pr(r(t) \le k)$ values [PT-k/GT-k] [Hua et al. SIGMOD'08] [Zhang et al. EDBT'08]
- Return k tuples t with smallest expected rank: $\sum_{pw} Pr(pw) r_{pw}(t)$ [Cormode et al. ICDE'09]
- Return k tuples t with expected score of best available tuple [k-selection] [Liu et al. DASFAA'10]

Top-k Queries: Many Proposals

- Probabilistic Threshold (PT-k/GT-k) [Hua et al. SIGMOD'08] [Zhang et al. EDBT'08]
 - Return k tuples t with the largest $Pr(r(t) \le k)$ values

ID	Score	Prob	
t ₁	200	0.2	
t ₂	150	0.8	
t ₃	100	0.4	

Possible worlds	Prob	_	K=2	
t ₁ , t ₂ ,t ₃	0.064		ID	Prob(r(t)≤2)
t ₁ ,t ₂	0.096		t ₁	0.2
t ₁ , t ₃	0.016	7	t ₂	0.8
t ₂ ,t ₃	0.256	7	t ₃	0.336
t ₁	0.024			_
t ₂	0.384		Rank	$xing: t_2, t_3, t_1$
t ₃	0.064			
Ф	0.096			

Top-k Queries

- Which one should we use???
- Comparing different ranking functions

Normalized Kendall Distance between two top-k answers:

Penalizes #reversals and #mismatches

Lies in [0,1], 0: Same answers; 1: Disjoint answers

	E-Score	PT/GT	U-Rank	E-Rank	U-Тор
E-Score		0.124	0.302	0.799	0.276
PT/GT	0.124		0.332	0.929	0.367
U-Rank	0.302	0.332		0.929	0.204
E-Rank	0.799	0.929	0.929		0.945
U-Тор	0.276	0.367	0.204	0.945	

	E-Score	PT/GT	U-Rank	E-Rank	U-Тор
E-Score	-	0.864	0.890	0.004	0.925
PT/GT	0.864	-	0.395	0.864	0.579
U-Rank	0.890	0.395		0.890	0.316
E-Rank	0.004	0.864	0.890		0.926
U-Top	0.925	0.579	0.316	0.926	

Real Data Set: 100,000 tuples, Top-100

Synthetic Dataset: 100,000 tuples, Top-100

Parameterized Ranking Function

PRF
$$\omega$$
(h): Weight Function : ω : rank \rightarrow $\Upsilon_{\omega}(t) = \sum_{i=1}^{h} \omega(i) \cdot \Pr(r(t) = i)$.

Positional probability:

Probability that t is ranked at position i

 $\mathsf{PRF}^e(\alpha)$: $\omega(i) = \alpha^i$ where α can be a real or a complex

$$\Upsilon_{\omega}(t) = \sum_{i>1} \alpha^i \cdot \Pr(r(t) = i).$$

Return k tuples with the highest $|\Upsilon_{\omega}|$ values.

- E.g., $\omega(i)=1$: Rank the tuples by probabilities
- E.g., $\omega(i)=1$ for $1 \le i \le k$, $\omega(i)=0$ for i > k: PT-k (i.e., ranking by $Pr(r(t) \le k)$)
- Generalizes PT/GT-k, *U-Rank*, *E-Rank*
- We can easily incorporate the score as an feature

Parameterized Ranking Function

Another justification/intepretation of PRF (via expected utility maximization principle or consensus answers)

• We can show that PT-k is equivalent to Consensus-Top-k under symmetric difference $T_1\Delta$ $T_2=(T_1\backslash T_2)\cup (T_2\backslash T_1)$

 More generally, PRFw is equivalent to Consensus-Top-k under weighted symmetric difference

Computing Positional Probability

T_{i-1}: the set of tuples with scores higher than t_i

 σ : Boolean indicator vector

$$\begin{array}{lcl} \Pr(r(t_i)=j) & = & \Pr(t_i) \sum_{pw:|pw\cap T_{i-1}|=j-1} \Pr(pw) \\ & = & \Pr(t_i) \sum_{\substack{i-1 \\ \sigma: \sum_{l=1}^i \sigma_l=j-1}} \prod_{\substack{l < i: \sigma_l=1}} \Pr(t_l) \prod_{\substack{l < i: \sigma_l=0}} (1-\Pr(t_l)) \end{array}$$

Generating Function Method

$$\mathcal{F}(x) = \prod_{i=1}^{n} (a_i + b_i x)$$

• The coefficient of \mathbf{x}^{k} : $\sum_{\beta:\sum_{i=1}^n\beta_i=k}\prod_{i:\beta_i=0}a_i\prod_{i:\beta_i=1}b_i$

Computing Positional Probability

$$T_{i-1}$$
: { t_1 , t_2 , , t_{i-1} }

Generating Function Method

$$\mathcal{F}^i(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \mathsf{Pr}(t) + \mathsf{Pr}(t) \cdot x\right)\right) (\mathsf{Pr}(t_i) \cdot x)$$

- The coefficient of x^k: Pr(r(t_i)=k)
- Algorithm:
 - For i=1 to n
 - Construct $\mathcal{F}^i(x)$
 - Expand $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$
 - $\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \Pr(r(t_i) = j)$

Expand from scratch $O(n^2)$

O(n3) overall

Computing Positional Probability

$$T_{i-1}$$
: { t_1 , t_2 , , t_{i-1} }

Generating Function Method

$$\mathcal{F}^i(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \mathsf{Pr}(t) + \mathsf{Pr}(t) \cdot x\right)\right) (\mathsf{Pr}(t_i) \cdot x)$$

- The coefficient of x^k: Pr(r(t_i)=k)
- Algorithm:
 - For i=1 to n
 - Construct $\mathcal{F}^i(x)$
 - Expand $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$
 - $\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \Pr(r(t_i) = j)$

Can be improved to O(n)

O(n2) overall

Computing PRFe

- Recall $\omega(j) = \alpha^j$
- Generating Function Method
 - $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$
 - $\Upsilon(t_i) = \sum_{i=1}^n \Pr(r(t_i) = j)\omega(i) = \sum_{i=1}^n \Pr(r(t_i) = j)\alpha^j$

$$\Upsilon(t_i) = \mathcal{F}^i(lpha)$$

No need to expand the polynomial!!

- Therefore: $\mathcal{F}^i(\alpha) = \left(\prod_{t \in T_{i-1}} \left(1 \Pr(t) + \Pr(t) \cdot \alpha\right)\right) (\Pr(t_i) \cdot \alpha)$
- Morevoer: $\mathcal{F}^i(\alpha) = \frac{\Pr(t_i)}{\Pr(t_{i-1})} \mathcal{F}^{i-1}(\alpha) \Big(1 \Pr(t_{i-1}) + \Pr(t_{i-1}) \alpha \Big)$

0(1)

O(n) overall

 For special weight functions, we do not even need to compute the positional probabilities Pr(r(t)=k)

 O(nlogn) for PRFe (exponential functions) and Exp-rank (linear functions) [Cormode, Li, Yi. ICDE'09]

 We can use sum of complex exponentials (Fourier transform) to approximate any weight functions.

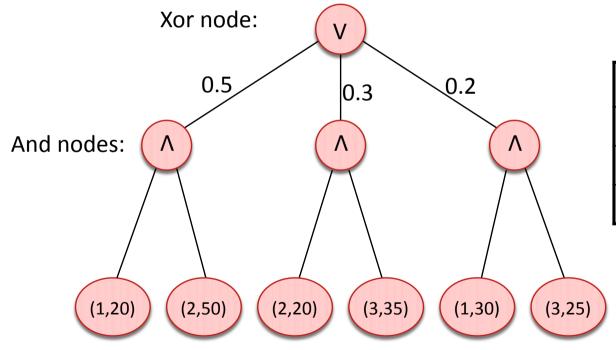
Probabilistic And/Xor Trees

- Capture two types of correlations: mutual exclusivity and coexistence.
- Generalize x-tuples which can model only mutual exclusivity



Probabilistic And/Xor Trees

• And/Xor trees can represent any finite set of possible worlds (not necessarily compact).

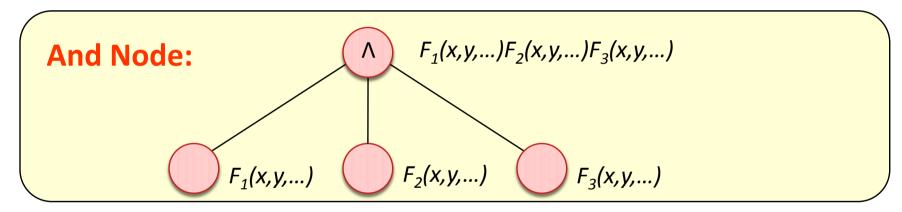


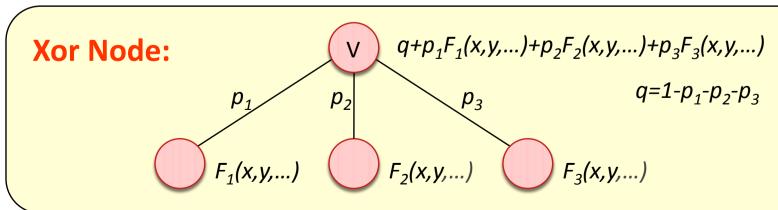
Possible Worlds	Pr
(1,20);(2,50)	0.5
(2,20);(3,35)	0.3
(1,30);(3,25)	0.2

Computing Probabilities on And/Xor Trees

Generating Function Method:

Leaves: x y x z





Computing Probabilities on And/Xor Trees

Generating Function Method:

Root:

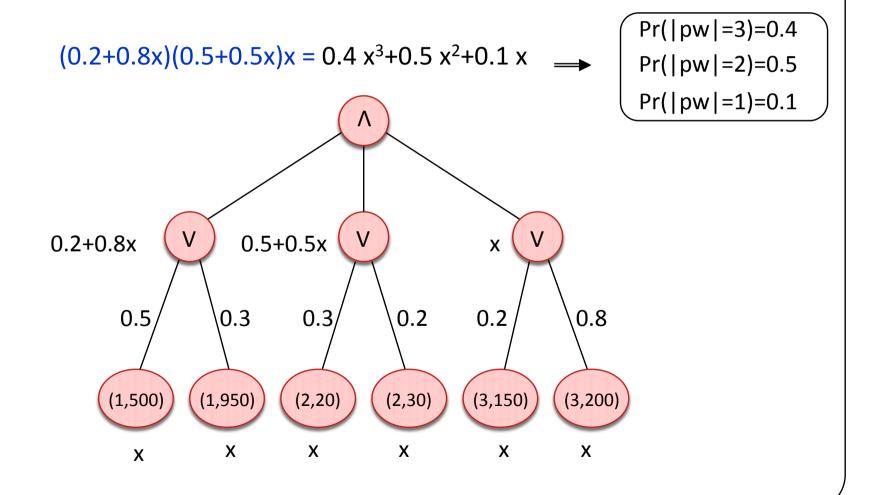
$$F(x,y,...) = \sum_{ij...} c_{ij...} x^{i} y^{j}...$$

THM: The coefficient $c_{ij...}$ of the term $x^iy^j...$

- = total prob. of the possible worlds which contain
 - *i* tuples annotated with *x*,
 - *j* tuples annotated with *y*,.....

Computing Probabilities on And/Xor Trees

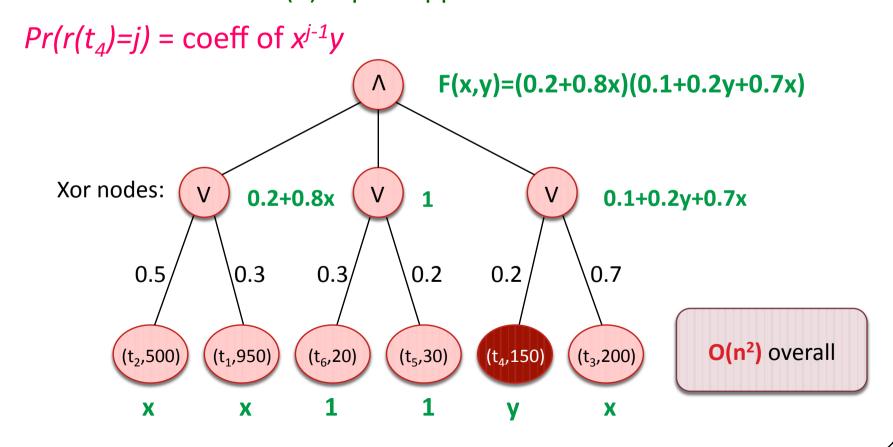
Example: Computing the prob. dist. of the size of the pw



Computing PRF: And/Xor Trees

Construct generating function for t_{4}

r(i)=j if and only if (1) j-1 tuples with higher scores appear (2) tuple i appears

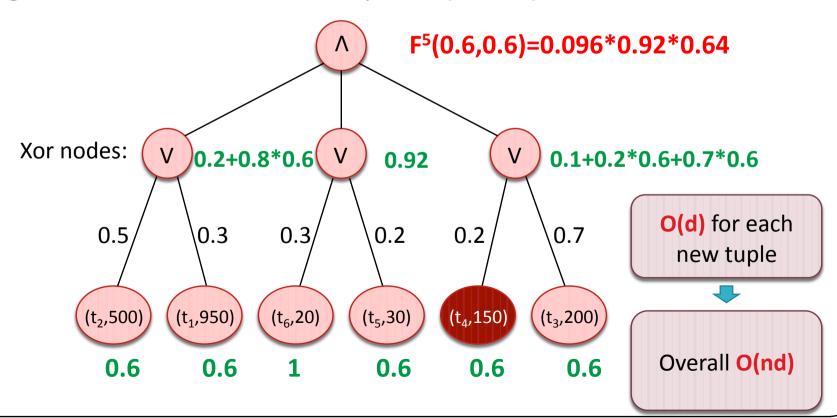


Computing PRF $^{e}(\alpha)$: And/Xor Trees

$$\Upsilon(t_i) = \mathcal{F}^i(\alpha, \alpha) - \mathcal{F}^i(\alpha, 0).$$

We maintain only the numerical values of $F^{i}(\alpha,\alpha)$ and $F^{i}(\alpha,0)$ at each node.

E.g., α =0.6. Now we want to compute **F**⁵(0.6,0.6)



Summary of Results

PRFw(h):

- Independent tuples: O(nh+nlogn)
 - Previous results for U-Rank: O(n²h) [Soliman et al. ICDE'07], O(nh +nlogn) [Yi et al. TKDE'09]
 - Previous results for PT-k: O(nh+nlogn) [Hua et al. SIGMOD'08]
- And/Xor trees: O(dnh+nlogn) (d is the height of the tree, d=2 for x-tuples)
 - Previous results for U-Rank over x-tuples: O(n²h) [Soliman et al. ICDE'07], O(n²h) [Yi et al. TKDE'09]
 - Previous results for PT-k over x-tuples: O(n²h) [Hua et al. SIGMOD'08]

PRFe:

- Independent tuples: O(nlogn)
- And/Xor trees: O(nd+nlogn)

Outline

- Ignoring Uncertainty?
 - Examples
 - Possible world semantics
- Beyond Expectation— expected utility theory
 - St Peterburg Paradox
 - Consensus Answer
- Queries over Probabilistic Data
 - Top-k queries
 - Other queries
- Stochastic Optimization
 - Stochastic Matching
 - Stochastic Knapsack

Problem Definition

Stochastic Matching

Given:

- A probabilistic graph G(V,E).
- Existential prob. p_e for each edge e.
- Patience level t_v for each vertex v.
- Probing e=(u,v): The only way to know the existence of e.
 - We can probe (u,v) only if $t_u>0$, $t_v>0$
 - If *e* indeed exists, we should add it to our matching.
 - If not, $t_u = t_u 1$, $t_v = t_v 1$.

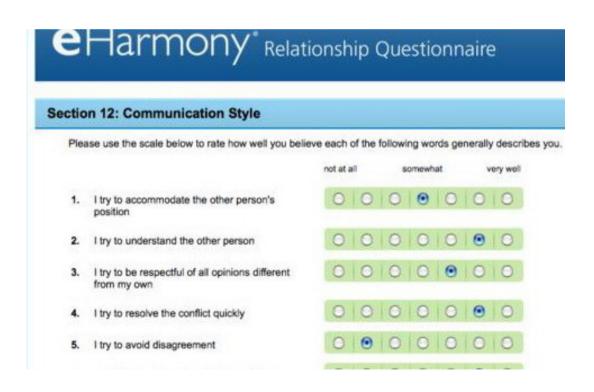
[Chen, Immorlica, Karlin, Mahdian, and Rudra. 'ICALP09]

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra. ESA 10, Algorithmica 11]

Problem Definition

- Output: A strategy to probe the edges
 - Edge-probing: an (adaptive or non-adaptive) ordering of edges.
 - Matching-probing: k rounds; In each round, probe a set of disjoint edges
- Objectives:
 - Unweighted: Max. *E[cardinality of the matching]*.
 - Weighted: Max. E[weight of the matching].

- Online dating
 - Existential prob. p_e : estimation of the success prob. based on users' profiles.



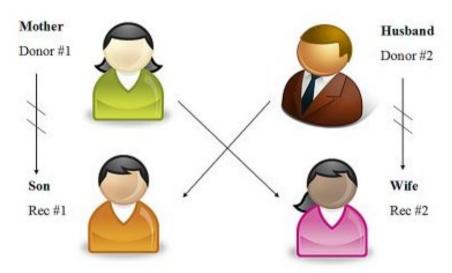
- Online dating
 - Existential prob. p_e : estimation of the success prob. based on users' profiles.
 - Probing edge e=(u,v): u and v are sent to a date.

- Online dating
 - Existential prob. p_e : estimation of the success prob. based on users' profiles.
 - Probing edge e=(u,v): u and v are sent to a date.
 - Patience level: obvious.



Kidney exchange

- Existential prob. p_e : estimation of the success prob. based on blood type etc.
- Probing edge e=(u,v): the crossmatch test (which is more expensive and time-consuming).



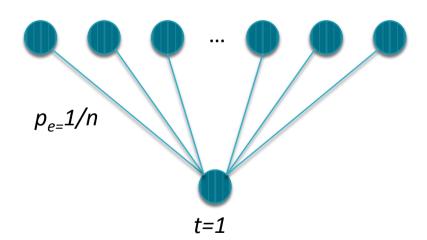
• This models the online AdWords allocation problem.

• This generalizes the stochastic online matching problem of [Feldman et al. '09, Bahmani et al. '10, Saberi et al '10] where $p_e = \{0,1\}$.

Approximation Ratio

 We compare our solution against the optimal (adaptive) strategy (not the offline optimal solution).

An example:



E[offline optimal] = $1-(1-1/n)^n \approx 1-1/e$

E[any algorithm] = 1/n

A LP Upper Bound

• Variable y_e : Prob. that any algorithm probes e.

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} w_e \cdot x_e \\ \\ \text{subject to} & \sum_{e \in \partial(v)} x_e \leq 1 \ \, \forall v \in V \qquad \text{At most 1 edge in $\partial(v)$ is matched} \\ & \sum_{e \in \partial(v)} y_e \leq t_v \ \, \forall v \in V \qquad \text{At most t_v edges in $\partial(v)$ are probed} \\ & x_e = p_e \cdot y_e \ \, \forall e \in E \qquad \qquad x_e \text{: Prob. e is matched} \\ & 0 \leq y_e \leq 1 \ \, \forall e \in E \end{array}$$

An edge (u,v) is *safe* if $t_u>0$, $t_v>0$ and neither u nor v is matched

Algorithm:

- Pick a permutation π on edges uniformly at random
- For each edge e in the ordering π , do:
 - If *e* is not safe then do not probe it.
 - If e is safe then probe it w.p. y_e/α .

Analysis:

Lemma: For any edge (u,v), at the point when (u,v) is considered under π , $Pr(u | loses its patience) <math>\leq 1/2\alpha$.

Proof: Let *U* be #probes incident to *u* and before *e*.

$$\begin{split} \mathbb{E}[U] &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is probed}] \\ &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is safe}] \cdot \frac{y_e}{\alpha} \\ &\leq \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi] \cdot \frac{y_e}{\alpha} \\ &= \sum_{e \in \partial(u)} \frac{1}{2} \cdot \frac{y_e}{\alpha} \leq \frac{t_u}{2\alpha}. \end{split}$$

By the Markov inequalit $\Pr[U \geq t_u] \leq \frac{\mathbb{E}[U]}{t_u} \leq \frac{1}{2\alpha}$.

Analysis:

Lemma: For any edge e=(u,v), at the point when (u,v) is considered under π , $Pr(u \text{ is matched}) \leq 1/2\alpha$.

Proof: Let *U* be #matched edges incident to u and before *e*.

$$\begin{split} \mathbb{E}[U] &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is matched}] \\ &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is safe}] \cdot \frac{y_e}{\alpha} \cdot p_e \\ &\leq \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi] \cdot \frac{y_e}{\alpha} \cdot p_e \\ &= \sum_{e \in \partial(u)} \frac{1}{2} \cdot \frac{y_e}{\alpha} \cdot p_e \quad \leq \quad \frac{1}{2\alpha}. \end{split}$$

By the Markov inequality: $\Pr[U \geq 1] \leq \mathbb{E}[U] \leq \frac{1}{2\alpha}$

Analysis:

Theorem: The algorithm is a 8-approximation.

Proof: When e is considered,

 $Pr(e \ is \ not \ safe) \leq Pr(u \ is \ matched) + Pr(u \ loses \ its \ patience) + Pr(v \ is \ matched) + Pr(v \ loses \ its \ patience)$

$$\leq 2/\alpha$$

Therefore,
$$\mathbb{E}[\text{Our Solution}] = \sum_e w_e \Pr(e \text{ is safe}) \frac{y_e}{\alpha} p_e$$

$$\geq (1 - \frac{2}{\alpha}) \frac{1}{\alpha} \sum_e w_e y_e p_e$$

Recall $\Sigma_e w_e y_e p_e$ is an upper bound of *OPT*

 We can improve the algorithm to achieve a 3approximation (by a more careful selection of which edges to probe and a more careful analysis)

Outline

- Ignoring Uncertainty?
 - Examples
 - Possible world semantics
- Beyond Expectation— expected utility theory
 - St Peterburg Paradox
 - Consensus Answer
- Queries over Probabilistic Data
 - Top-k queries
 - Other queries
- Stochastic Optimization
 - Stochastic Matching
 - Stochastic Knapsack

Stochastic Knapsack

- A knapsack of capacity C
- A set of items, each having a fixed profit
- Known: Prior distr of size of each item.
- Each time we choose an item and place it in the knapsack irrevocably
- The actual size of the item becomes known after the decision
- Knapsack constraint: The total size of accepted items <= C
- Goal: maximize E[Profit]

- Scheduling with stochastic job length
 - The length/profit of each job is a random variable
 - The actual length/profit is unknown until we schedule to run it
 - Maximize the profit
- Related to the prophet inequality and secretary problem
 - Prophet inequality: We can decide to choose or discard a job
 AFTER we see its actual length/profit
 - Simplest case: choose only one job. E[our profit] >= E[max profit]/2
 - Secretary problem: We do NOT assume that the jobs follow any prob. distr. But instead assume they comes in a random order
 - Simplest case: choose only one job: Pr[we pick the best job]>= 1/e

Secretary Problem

- N candidates.
- Arrive in a random order. Must decide hire or not right away

Algo:

- Interview the first R=N/e candidates, but do not choose any one. Let x be the best candidate.
- Hire the first candidate who is better than x.

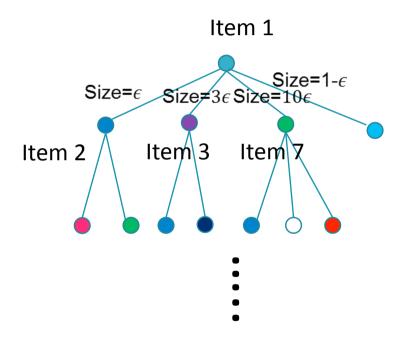
We can show $Pr[we pick the best candidate] \approx 1/e$

A one line proof:

• Pr[we pick the best candidate] $\geq \sum_{i=R+1 \text{ to } N} \Pr[i \text{ is the best}] \Pr[the 2nd \text{ best of first i candidates is in } [1,R]] = \sum_{i=R+1 \text{ to } N} \frac{1}{n} \frac{R}{i} \approx 1/e$

Stochastic Knapsack

Decision Tree



Exponential size!!!! (depth=n)

How to represent such a tree? Compact solution?

The problem is P-space complete

Stochastic Knapsack

Previous work

- 5-approx [Dean, Goemans, Vondrak. FOCS'04]
- 3-approx [Dean, Goemans, Vondrak. MOR'08]
- $(1+\epsilon, 1+\epsilon)$ -approx [Bhalgat, Goel, Khanna. SODA'11]
- 2-approx [Bhalgat 12]
- 8-approx (size&profit correlation, cancellation)

[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS'11]

Our result:

 $(1+\epsilon, 1+\epsilon)$ -approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)

[Yuan, L. STOC'13]

Thanks.

Questions/Comments, please send to lijian83@mail.tsinghua.edu.cn

Prob. DB Research

 Our strength: support declarative queries, query processing and optimization techniques (indexing etc.).

- Current issues
 - Independence assumption.
 - Expressiveness/scalability trade off.
 - Different existing prototypes excels at different aspects (but not all).
 - Semantics not rich enough (need to go beyond expected values and probabilistic thresholds).