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Uncertain Data

* Uncertain data is ubiquitous

e Data Integration and Information Extraction
e Sensor Networks; Information Networks

SSN Name SSN Name Prob
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Social network

Future data is destined to be uncertain
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Uncertain Data

Decision making under uncertainty

* Many statistical/machine learning models (Graphical
model etc.)

* Job Scheduling (uncertain job length)

* Online Ads assignment (uncertain intents)
» Kidney Exchange (probabilistic matching)
* Crowdsourcing (noisy answers)
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Dealing with Uncertainty

e There is an increasing need for analyzing and reasoning
over such data

e Handling uncertainty is a very broad topic that spans
multiple disciplines
e Economics / Game Theory
e Finance
e Electrical Engineering
e Probability Theory / Statistics
e Psychology
e Computer Science
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Outline

* |Ignoring Uncertainty?
e Examples
e Possible world semantics

* Beyond Expectation— expected utility theory

e St Peterburg Paradox
e Consensus Answer

e Queries over Probabilistic Data
e Top-k queries
e Other queries

» Stochastic Optimization

e Stochastic Matching
\_ e Stochastic Knapsack




Possible World Semantics

View a probabilistic database as probability distribution
over the set of possible worlds

i i 0.064
pwl : ] P
t, 2

ow2 | g | g | WP-009

A probabilistic table
(assume tuple-independence) pw3 ] ] w.p. 0.256

8 worlds /
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Possible World Semantics

a4 "\ should be 4 A
Prob Model efficient
\_ W, N J
ﬁ combine
| All Possible Worlds: Al Possible Answers: |
| pw1, E R . Answer(pw1),
| pwW2, . Query |  Answer(pw2), |
Eponential
Size !!
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Ignoring uncertainty is not the right thing to do

* A undirected graph with n nodes
* The length of each edge: i.i.d. Uniform[0,1]

e Question: What is E[MST]?

e MST: minimum spanning tree
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Ignoring uncertainty is not the right thing to do
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Ignoring uncertainty is not the right thing to do

* A undirected graph with n nodes
* The length of each edge: i.i.d. Uniform[0,1]

e Question: What is E[MST]?

e MST: minimum spanning tree

e |[gnoring uncertainty (“replace by the expected values”
heuristic)

e each edge has a fixed length 0.5
e This gives a WRONG answer 0.5(n-1)
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Ignoring uncertainty is not the right thing to do

E[MST]

(“replace by the expected values” heuristic)

WRONG 0.5(n-1)

((3) =22, 1/i%<2
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o

A Similar Problem

* N points: i.i.d. uniform[0,1]x[0,1]

e Question: What is E[MST] ?

e Answer:
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A Similar Problem

® N points: i.i.d. uniform[0,1] X [0, 1]

® Question: What is E[MST] ?

® Answer: 9(\/%) [Frieze, Karp, Steele, ...]

The problem is similar, but the answer is not similar............

k A more general computational problem considered in [Huang, L. ArXiv 2013] /




* Similar phenomena can be found in many combinatorial

optimization problems, such as matching, TSP (traveling
salesman problem) etc.

* A take away message:
Ignoring uncertainty (or simplistic replace-by-expectation
heuristic) may not the right thing to do
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* |Ignoring Uncertainty?
e Examples
e Possible world semantics

* Beyond Expectation— expected utility theory

e St Peterburg Paradox
e Consensus Answer

e Queries over Probabilistic Data
e Top-k queries
e Other queries

» Stochastic Optimization

e Stochastic Matching
\_ e Stochastic Knapsack




Aggregate Queries

e Aggregate Query:

SELECT SUM(PROFIT)

FROM PROFIT

[ Item | Forecaster | Profit || P
. Alice $—99K 0.99
Wikiget Bob $T00OM || 0.01
[ Whatsit | Alice [ sim || 1 |

o

Profit(ltem:Forecaster.Profit: P)

(a) Expectation Style

WHERE ITEM=‘Widget’

SELECT ITEM

FROM PROFIT

WHERE ITEM=‘Widget’
HAVING SUM(PROFIT) = 0.0

(b) HAVING Style

AT

Answer: Prob[profit>0]

Answer: E[profit]=19.9K J[ 0,01

|

Expected value may not be sufficient!

Example taken from The trichotomy of HAVING queries on a probabilistic database,
Re, C. and Suciu, D., The VLDB Journal, 2009

/




Inadequacy of Expected Value

e Be aware of risk!

Flaw of averages (weak form):

FLAW
AVERAGES

‘.

\V/
.

Mean correct,
Variance ignored

Flaw of averages (strong form):

The
State of
the drunk

at his AVERAGE
position
is ALIVE.

But the AVERAGE state W
of the drunk is DEAD

Wrong value of mean:

f(E[X]) # E[f(X)]




Inadequacy of Expected Value

* Inadequacy of expected value:

e Unable to capture risk-averse or risk-prone behaviors
Action 1: S100 VS Action 2: $200 w.p. 0.5; SO w.p. 0.5
Risk-averse players prefer Action 1
Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play
Double-or-Nothing)

e St. Petersburg paradox
You pay x dollars to enter the game
» Repeatedly toss a fair coin until a tail appears
o payoff=2% where k=#heads
How much should x be?

» Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+......=
» Few people would pay even $25 [Martin 04]
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Expected Utility Maximization Principle

A : The set of valid answers
Wpw (@) : the cost of answer in pw

u: R = R : the utility function

Expected Utility Maximization Principle:
The most desirable answer a is the answer that max. the exp.
utility, i.e.,

a = max greqabpy [:“(pr(a’))]

Von Neumann and Morgenstern provides an axiomitization of the
principle (known as von Neumann-Morgenstern expected utility
theorem).

o /
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Expected Utility Maximization Principle

u: R - R: The utility function: profit-> utility

Expected Utility Maximization Principle: the decision maker
should choose the action that maximizes the expected utility

o Action 1: $100
o Action 2: $200 w.p. 0.5; SO w.p. 0.5

IJ, A uA
E[u(action 1)] 1
E[i(action 2)] E[u(action 2)]
E[pn(action 1)]
| | > | | )
100 200$ 100 200$ ¢
Risk-averse Risk-prone
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Threshold Probability Maximization

o If uis athreshold function, maximizing E[u(cost)] is equivalent

to maximizing Pr[w(cost)<1]
e minimizing overflow prob. [Kleinberg, Rabani, Tardos. STOC’97] [Goel, Indyk.

FOCS'99]

J chance-corxtmined stochastic optimization problem [Swamy. SODA’11]

1

H(x)
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Threshold Probability Maximization
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Threshold Probability Maximization

e Stochastic shortest path : find an s-t path P such that Pr
[w(P)<1] is maximized
e First assume Gaussian distributions (with different parameters)
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Threshold Probability Maximization

e Stochastic shortest path : find an s-t path P such that

Pr{w(P)<t] is maximized
* First assume Gaussian distributions (with different parameters)
e Note that N(uy, of) + N(up, 05) = N(uy + Uy, 0f + 05)

Pr (oK) = pr(ST et < fé;;')x*\%;z).

l .
So, we want to ma,.\ ’ 'rl - Standard Gaussian

\/Z, -0 COF

[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06] [Nikolova. APPROX’10] /
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* Objective: 111&\

Threshold Probability Maximization

ch‘ru“

\/z,ﬁ

Convex hull of 10-d hypercube projection on m,cz)—plane
I 1 I

hypercube vertex
— = — hypercube hull
path vertex
5| —e— path hull

Ob: The obj is quasi-convex; the
optimal solution must be a
boundary point on the path hull

ALGO: enumerate the boundary
{  points

1« Time (worst case): 0(nl°8™)
* (Smoothed): polynomial

1 ¢ Approximation with € error:
polynomial




Threshold Probability Maximization

For more general distributions, we can get the same
result via more sophisticated techniques
(characteristic functions, Poisson Approximation)

Dol & sywwrmtraod

For more general results, see [L, Deshpande, FOCS11][L, Yuan STOC13V
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Consensus Answer

Consensus Answer:
* Think of each possible answers as a point in the space.
» Suppose d() is a distance metric between answers.

e Consensus Answer is a single deterministic answer
T =argming. e {E[d(T', pw)]}
where T, is the answer for the possible world pw

: ‘$ Can be viewed as a

: version of the expected
' A " the consensus Answer or . . .
________ O Centroid / Center of Mass Ut!IItY maximization
""" — principle!
P (utility= - distance)
: w.p. 0.
A5
.p. 0.05 :

Consensus answers for queries over probabilistic databases, Li, J. and Deshpande, A., PODS, 2009 /
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Ranking over Probabilistic Data

® Our goal: support “ranking” or “top-k” query processing
e Deciding which apartments to inquire about
e Selecting a set of sensors to “probe”
e Choosing a set of stocks to invest in

* How? Choose tuples with large scores? Or tuples with higher
probabilities?
e A complex trade-off




Top-k Query Processing

Score values are used to rank the tuples in every pw.

t 200
w.p. 0.064
t) 150
Score Prob t, 100
‘) I w.p. 0.096
! 150
A probabilistic table
(assume tuple-independence) w.p. 0.256
The top-1 answer for each possible world t, 100
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Top-k Queries: Many Prior Proposals

* Return k tuples t with the highest score(t)Pr(t) [exp. score]

e Returns the most probable top k-answer [U-top-k]
[Soliman et al. ICDE’07]

e At rank i, return tuple with max. prob. of being at rank j [U-rank-
k]

[Soliman et al. ICDE’07]

* Return k tuples t with the largest Pr (r(t) < k) values [PT-k/GT-k]
[Hua et al. SIGMOD’08] [Zhang et al. EDBT’08]

e Return k tuples t with smallest expected rank: prPr(pW) rou(t)
[Cormode et al. ICDE’09]

* Return k tuples t with expected score of best available tuple [k-
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Top-k Queries: Many Proposals

* Probabilistic Threshold (PT-k/GT-k) [Hua et al. SIGMOD’08]
[Zhang et al. EDBT’08]

e Return k tuples t with the largest Pr(r(t) < k) values

Possible Prob K=2
worlds
ID Score Prob t, 6t 0.064 ID Prob(r(t)<2)
t, 200 0.2 t,t,  0.096 t, 0.2
t, 150 0.8 t,t; 0016 ~~ 1 0.8
t, 100 0.4 t,t, 0256 A t 0.336
t, 0.024
¢, 0384 Ranking: t,, t;, t;
t, 0.064

/

I oV a¥aVWal
W U.UJo




Top-k Queries
e Which one should we use???

e Comparing different ranking functions

Normalized Kendall Distance between two top-k answers:
Penalizes #reversals and #mismatches
Liesin [0,1], O: Same answers; 1: Disjoint answers

E-Scorel PT/GT l U-Rankl E-Rank l U-Top l E-Score‘ PT/GT ‘ U—Rank| E-Rank ‘ U-Top |
E-Score || - 0.124 | 0.302 | 0.799 0.276 E-Score || - 0.864 | 0.890 | 0.004 | 0.925
PT/GT || 0.124 0.332 | 0.929 0.367
PT/GT || 0.864 0.395 | 0.864 | 0.579
U-Rank || 0302 | 0332 | -— 0.929 0.204 Il o0so0 | 039s | Y T o
ERank | 0799 | 0.929 | 0.929 | — 0.945 E-Rank || 0.004 | 0864 | 0890 | - | 0926
UTop || 0.276 | 0367 | 0.204 | 0.945 U-Top || 0.925 | 0579 | 0316 | 0.926

Real Data Set: 100,000 tuples, Top-100 Synthetic Dataset: 100,000 tuples, Top-100

o /
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Parameterized Ranking Function

PRF*(h): Weight Function : w : rank—s G
To(t) = Yoy w(i) - Pr(r(t) = ).

Positional probability:
Probability that t is ranked at position i

PRF¢(a): w(i)=a* where o can be a real or a complex
To(t) = Yy 0 - Pr(r(t) = i).

Return k tuples with the highest |T.| values.
* E.g., w(i)= 1 : Rank the tuples by probabilities
e E.g., w(i)=1 for 1<i<k, w(i)=0 for i>k: PT-k (i.e., ranking by Pr(r(t) < k))
* Generalizes PT/GT-k, U-Rank, E-Rank

\_ * We can easily incorporate the score as an feature )
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Parameterized Ranking Function

Another justification/intepretation of PRF (
or )

* We can show that PT-k is equivalent to Consensus-Top-k
under symmetric difference T;A T, = (T;\T,) U (T,\Ty)

* More generally, PRFw is equivalent to Consensus-Top-k
under weighted symmetric difference
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Computing Positional Probability

T,.;: the set of tuples with scores higher than t,
o : Boolean indicator vector

Pr(r(t:) =j) = Pr(t:) > Pr(pw)

pw:|pwNT;_1|=7—1
—  Pr(t) Z H Prt) ] (1—Pr(t))
[<iiop= l<i:o;=0
0'20'1—3 1

e Generating Function Method
F(x) = ;= (ai + biz)

e The coefficient of x*: > [ « [] o
B:Z:"ZI Bi=k 1:8:=0 i:8;=1




-

Computing Positional Probability

e Generating Function Method

Fi(z) = ( H (1 — Pr(t) + Pr(t) -:1:)) (Pr(t;) - )

teT;
e The coefficientof x* : Pr(r(t_i)=k)
» Algorithm:

e Fori=1l ton

Fix
Construct (r) Expand from scratch
Expand Fi(x) =S "_, Pr(r(t;) = j)al 2 O(n?)

]

j=1

/
T(ti) = Z?:] w(ti, J)Pr(r(ti) = j) [ 0(n3) overall ]

/




4 N
Computing Positional Probability

e Generating Function Method

Fi(z) = ( H (1 — Pr(t) + Pr(t) -:II)) (Pr(ti) - x)

teT;
e The coefficientof x* : Pr(r(t_i)=k)
* Algorithm:

e Fori=l ton

Fi(x
Construct (T) Canbe improvedto }
Expand F'(x) = Y, Pr(r(t:) = j)a’ 4 o)

]
T(t;) = Z?ﬂ w(ti, J)Pr(r(ti) = J) [ O(n?) overall ]
N /
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Computing PRFe
* Recall w(j)=a

e Generating Function Method
o Fi(@) =327 Pr(r(ti) = j)a’

No need to expand

T(tz) — P(Oz) the polynomial !l

* Therefore: F'(a) = ( 1] (1 — Pr(t) +

e Morevoer: F'(a)= PI:(rt(-t_i)l)Fi_l (a)(l — Pr(ti-1) + Pr(ti—l)(.k')

| 0(1) I [ O(n) overall ]

\_ /




* For special weight functions, we do not even need to
compute the positional probabilities Pr(r(t)=k)

* O(nlogn) for PRFe (exponential functions) and Exp-rank
(linear functions)

* We can use sum of complex exponentials (Fourier
transform) to approximate any weight functions.
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Xor nodes:

And node:

Probabilistic And/Xor Trees

* Capture two types of correlations: mutual exclusivity and
coexistence.

* Generalize x-tuples which can model only mutual exclusivity

Possible Worlds Pr
(3,150) 0.02
(3,200) /7 0.08
(1 5 0.03
50
950 0.018
@/ .......

(1-0.5-0.3)*(1-0.3-0.2)*0.2=0.02 J
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Probabilistic And/Xor Trees

e And/Xor trees can represent any finite set of possible
worlds (not necessarily compact).

Xor node:

And nodes:

Possible Worlds Pr
(1,20);(2,50) 0.5
(2,20):(3,35) 0.3
(1,30);(3,25) 0.2
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Computing Probabilities on And/Xor Trees

Generating Function Method:

e O O O O

4 D
And Node: F.(x%,Y,...)F(X,V,...)F5(X,Y,...)

k F3(x,y,...) /
\

Xor Node: q+p.F1(%Y,...)+0,F (%, Y,...)+p3F5(X,Y,...)

q=1-p;-P,P3

Fs(x,y,...)

\ Y,
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Computing Probabilities on And/Xor Trees

Generating Function Method:

L Root: O Flxy..)=; c; Xy..

THM: The coefficient ¢; of the term x'y/...
= total prob. of the possible worlds which contain
— i tuples annotated with x,
— j tuples annotated with y,......
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Computing Probabilities on And/Xor Trees

Example: Computing the prob. dist. of the size of the pw

Pr(|pw|=3)=0.4
(0.2+0.8x)(0.5+0.5x)x = 0.4 x>+0.5 x*+0.1X 5 | pr(|pw|=2)=0.5
Pr(|pw|=1)=0.1
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Computing PRF: And/Xor Trees

Construct generating function for t,
r(i)=j if and only if (1) /-1 tuples with higher scores appear
(2) tuple i appears
Pr(r(t,)=j) = coeff of X1y

F(x,y)=(0.2+0.8x)(0.1+0.2y+0.7x)

{ O(n?) overall J

o /
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Computing PRFé(«): And/Xor Trees
Y (t;) = F(a,a) — F'(a,0).
We maintain only the numerical values of Fi(c,a) and F'(«,0) at each node.
E.g., «=0.6. Now we want to compute F>(0.6,0.6)
F>(0.6,0.6)=0.096*0.92*0.64
Xor nodes: 0 0.1+0.2*0.6+0.7*0.6
0.7 { O(d) for each J
new tuple
$
0.6 0.6 1 0.6 0.6 0.6 Overall O(nd)
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Summary of Results

PRFY(h):
* Independent tuples: O(nh+nlogn)

* Previous results for U-Rank: O(n?h) [Soliman et al. ICDE’07], O(nh
+nlogn) [Yi et al. TKDE'09]

e Previous results for PT-k: O(nh+nlogn) [Hua et al. SIGMOD’08]
* And/Xor trees: O(dnh+n|ogn) (d is the height of the tree, d=2 for x-tuples)

* Previous results for U-Rank over x-tuples: O(n?h) [Soliman et al.
ICDE’07], O(n?h) [Yi et al. TKDE’09]

* Previous results for PT-k over x-tuples: O(n’h) [Hua et al.
SIGMOD’08]

PRFe:
* Independent tuples: O(nlogn)
* And/Xor trees: O(nd+nlogn)




g
Outline

* |Ignoring Uncertainty?
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e Possible world semantics
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e Consensus Answer
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» Stochastic Optimization

e Stochastic Matching
\_ e Stochastic Knapsack
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Problem Definition

Stochastic Matching

Given:
e A probabilistic graph G(V,E).
e Existential prob. p, for each edge e.
e Patience level t, for each vertex v.

* Probing e=(u,v): The only way to know the existence of e.
e We can probe (u,v) only if t >0, t >0
e If e indeed exists, we should add it to our matching.
e If not, t,=t,-1,t, =t,-1.
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Problem Definition

e Output: A strategy to probe the edges

e Edge-probing: an (adaptive or non-adaptive) ordering of edges.

e Matching-probing: k rounds; In each round, probe a set of
disjoint edges

e Objectives:
e Unweighted: Max. E[ cardinality of the matching].
e Weighted: Max. E[ weight of the matching].
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Motivations

e Online dating

e Existential prob. p, : estimation of the success prob. based on
users’ profiles.

Section 12: Communication Style
Please use the scale below to rate how well you believe each of the following words generally describes you,
not at as someanit vory wo'
1. |1ry to accommodale the other person's DIOCIOI® IO 0O IC
position
2. | try to understand the other person OI10I1I0I1ICI0Ie |10
3. |1y to be respectful of all opinions different OI10101018@ 1010
from my own
4. | 1try to resoive the conflict quickly DICIOIOI101@e | O
5. |1ry 10 avoid disagreement OI1® 101010 O

E &)
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Motivations

¢ Online dating

e Existential prob. p, : estimation of the success prob. based on
users’ profiles.

* Probing edge e=(u,v) : uand v are sent to a date.

This is the
ugliest blind date
I've ever seen!
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Motivations

¢ Online dating

e Existential prob. p, : estimation of the success prob. based on
users’ profiles.

e Probing edge e=(u,v) : u and v are sent to a date.
e Patience level: obvious.
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Motivations

e Kidney exchange

e Existential prob. p, : estimation of the success prob. based on
blood type etc.

e Probing edge e=(u,v) : the crossmatch test (which is more
expensive and time-consuming).

A \
@
>, -

Husband

Donor #2

Mother
Donor #1
N

Son
Rec #1
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Motivations

e This models the online AdWords allocation problem.
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e This generalizes the stochastic online matching problem of
[Feldman et al. 09, Bahmani et al. ’10, Saberi et al "10] where

p.={0,1}.




Approximation Ratio

* We compare our solution against the optimal (adaptive)
strategy (not the offline optimal solution).

* An example:

t=1
E[offline optimal] = 1-(1-1/n)"= 1-1/e

E[any algorithm] = 1/n
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A LP Upper Bound

* Variable y, : Prob. that any algorithm probes e.

maximize E We * Te

eclE
subject to Z z.< 1 YoeV At most 1 edge in d(v) is matched
ecd(v)
Z ye< t, YweV  Atmostt, edgesind(v)are probed
e€d(v)

To=Pe-Ye Ve € E x,: Prob. e 1s matched
e € e

0 <ye< 1l Vec E
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A Simple 8-Approximation

An edge (u,v) is safe if t >0, t >0 and neither u nor v is
matched

Algorithm:
* Pick a permutation it on edges uniformly at random

* For each edge e in the ordering T, do:
e If eis not safe then do not probe it.
e If eis safe then probe it w.p. y /0.
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A Simple 8-Approximation

Analysis:

Lemma: For any edge (u,v), at the point when (u,v) is
considered under i, Pr(u loses its patience) <1/2c .

Proof: Let U be #probes incident to u and before e.

E[U] = >_.co(u) Prledge e appears before (u,v) in m AND e is probed]
= D _eco(u) Priedge e appears before (u,v) in m AND e is safe] - %¢
< 2 _ces(u) Prledge e appears before (u,v) in 7] - %

— 1, Ye t
T Zeé@(u) 2 « < 20"

D> Ye= th

ecI(v)

By the Markov inequalit Pr[U >t,] < n
k (’

BU] _ 1
<L
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A Simple 8-Approximation

Analysis:
Lemma: For any edge e=(u,v), at the point when (u,v) is
considered under mt, Pr(uis matched)<1/2c .

Proof: Let U be #matched edges incident to u and before e.

E[U] = }_cco(u) Prledge e appears before (u,v) in m AND e is matched]
= _eco(u) Prledge e appears before (u,v) in m AND e is safe] - “¢ - p,

< D _cea(u) Prledge e appears before (u,v) in ] - % - p,

_ 1, %, 1
- Zeea(u) 2 " a "Pe < 20"

Z Te< 1
ecd(v)

By the Markov inequality: PrlU > 1] <E[U] < 1

2
N




-

A Simple 8-Approximation

Analysis:

Theorem: The algorithm is a 8-approximation.

Proof: When e is considered,

Pr(e is not safe) < Pr(u is matched)+ Pr(u loses its patience)+
Pr(v is matched)+ Pr(v loses its patience)

<2/
Therefore, E[Our Solution] = Z we Pr(e is safe) Je De
- e
1
1= 25 T
2§OPT (a = 4)

A/

[ Recall 2, w, y, p,is an upper bound of OPT ]




* We can improve the algorithm to achieve a 3-
approximation (by a more careful selection of which edges
to probe and a more careful analysis)
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* |Ignoring Uncertainty?
e Examples
e Possible world semantics

* Beyond Expectation— expected utility theory

e St Peterburg Paradox
e Consensus Answer

e Queries over Probabilistic Data
e Top-k queries
e Other queries

» Stochastic Optimization

e Stochastic Matching
\_ e Stochastic Knapsack
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Stochastic Knapsack

* A knapsack of capacity C
e A set of items, each having a fixed profit
e Known:

* Each time we choose an item and place it in the
knapsack irrevocably

e The actual size of the item becomes known after the
decision

e Knapsack constraint: The total size of accepted items <= C
e Goal: maximize E[Profit]

k [L, Yuan STOC13] /
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Motivation

* Scheduling with stochastic job length
e The length/profit of each job is a random variable
e The actual length/profit is unknown until we schedule to run it
e Maximize the profit

* Related to the prophet inequality and secretary problem

e Prophet inequality: We can decide to choose or discard a job
AFTER we see its actual length/profit
Simplest case: choose only one job. E[our profit] >= E[max profit]/2
e Secretary problem: We do NOT assume that the jobs follow any
prob. distr. But instead assume they comes in a random order
Simplest case: choose only one job: Pr[we pick the best job]>= 1/e




4 )
Secretary Problem

s N candidates.

* Arriveina random order. Must decide hire or not right away

Algo:

* Interview the first R=N/e candidates, but do not choose any one. Let x be the best
candidate.

» Hire the first candidate who is better than x.

We can show Pr[we pick the best candidate] = 1/e

A one line proof:

* Pr[we pick the best candidate] >

i=r+1to N Prli is the best] Pr[the 2nd best of first i candidates is in [1, R]]

1R
= Di=R+1 to N,7 T 1/e
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Stochastic Knapsack

e Decision Tree

Exponential size!ll! (depth=n)
How to represent such a tree? Compact solution?

The problem is P-space complete
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Stochastic Knapsack

Previous work
® 5-approx [Dean, Goemans, Vondrak. FOCS’04]
® 3-approx [Dean, Goemans, Vondrak. MOR’08]
® (1+€, 1t€)-approx [Bhalgat, Goel, Khanna. SODA 1]
® 2-approx [Bhalgat 12]
® 8-approx (size&profit correlation, cancellation)
[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS’11]
Our result:
(1+€, 1+€)-approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)




Thanks.

Questions/Comments, please send to lijian83@mail.tsinghua.edu.cn

/




e I
Prob. DB Research

e QOur strength: support declarative queries, query processing
and optimization techniques (indexing etc.).

e Current issues
e Independence assumption.
e Expressiveness/scalability trade off.

e Different existing prototypes excels at different aspects (but not
all).

e Semantics not rich enough (need to go beyond expected values
and probabilistic thresholds).




