# Handling Uncertainty in Data Management Jian Li Tsinghua University, Beijing, China WAIM 2014, Macau

Tay Doint fonts used in EME

## **Uncertain Data**

- Uncertain data is ubiquitous
  - Data Integration and Information Extraction
  - Sensor Networks; Information Networks

| SSN         | Name          |             | SSN         | Name          | Prob |
|-------------|---------------|-------------|-------------|---------------|------|
| 208-79-4209 | John Williams | <b>&gt;</b> | 208-79-4209 | John Williams | 0.5  |
| SSN         | Name          | 7           | 208-79-4209 | Michael Lewin | 0.5  |
| 208-79-4209 | Michael Lewin |             |             |               |      |

**Data integration** 

**Tuple uncertainty** 



| Sensor | network |
|--------|---------|
|        |         |

| Sensor ID | Temp.       |
|-----------|-------------|
| 1         | Gauss(40,4) |
| 2         | Gauss(50,2) |
| 3         | Gauss(20,9) |
|           |             |
|           |             |

**Attribute uncertainty** 

## **Uncertain Data**



**Social network** 

Future data is destined to be uncertain



## **Uncertain Data**

Decision making under uncertainty

- Many statistical/machine learning models (Graphical model etc.)
- Job Scheduling (uncertain job length)
- Online Ads assignment (uncertain intents)
- Kidney Exchange (probabilistic matching)
- Crowdsourcing (noisy answers)

## Dealing with Uncertainty

- There is an increasing need for analyzing and reasoning over such data
- Handling uncertainty is a very broad topic that spans multiple disciplines
  - Economics / Game Theory
  - Finance
  - Electrical Engineering
  - Probability Theory / Statistics
  - Psychology
  - Computer Science

## Outline

- Ignoring Uncertainty?
  - Examples
  - Possible world semantics
- Beyond Expectation— expected utility theory
  - St Peterburg Paradox
  - Consensus Answer
- Queries over Probabilistic Data
  - Top-k queries
  - Other queries
- Stochastic Optimization
  - Stochastic Matching
  - Stochastic Knapsack

## Possible World Semantics

View a probabilistic database as probability distribution over the set of possible worlds



## Possible World Semantics



- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question: What is E[MST]?
  - MST: minimum spanning tree





- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question: What is E[MST]?
  - MST: minimum spanning tree



- Ignoring uncertainty ("replace by the expected values" heuristic)
  - each edge has a fixed length 0.5
  - This gives a WRONG answer 0.5(n-1)

- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]

- Question: What is E[MST]?
- Ignoring uncertainty ("replace by the expected values" heuristic)
  - each edge has a fixed length 0.5
  - This gives a WRONG answer o.5(n-1)
- But the true answer is (as n goes to inf)

$$\zeta(3) = \sum_{i=1}^{\infty} 1/i^3 < 2$$

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]

## A Similar Problem

• N points: i.i.d. uniform[0,1]×[0,1]



Question: What is E[MST]?

• Answer:

## A Similar Problem

• N points: i.i.d. uniform $[0,1] \times [0,1]$ 



- Question: What is **E[MST]**?
- Answer:  $\theta(\sqrt{n})$  [Frieze, Karp, Steele, ...]

The problem is similar, but the answer is not similar.....

A more general computational problem considered in [Huang, L. ArXiv 2013]

 Similar phenomena can be found in many combinatorial optimization problems, such as matching, TSP (traveling salesman problem) etc.

A take away message:

Ignoring uncertainty (or simplistic replace-by-expectation heuristic ) may not the right thing to do

## Outline

- Ignoring Uncertainty?
  - Examples
  - Possible world semantics
- Beyond Expectation— expected utility theory
  - St Peterburg Paradox
  - Consensus Answer
- Queries over Probabilistic Data
  - Top-k queries
  - Other queries
- Stochastic Optimization
  - Stochastic Matching
  - Stochastic Knapsack

# Aggregate Queries

#### Aggregate Query:

| Item    | Forecaster | Profit | P    |
|---------|------------|--------|------|
| Widget  | Alice      | \$-99K | 0.99 |
| Widget  | Bob        | \$100M | 0.01 |
| Whatsit | Alice      | \$1M   | 1    |

Profit(Item;Forecaster,Profit;P)

SELECT SUM(PROFIT)
FROM PROFIT
WHERE ITEM='Widget'

ROFIT FROM PROFIT

ITEM='Widget' WHERE ITEM='Widget'

HAVING SUM(PROFIT) > 0.0

(a) Expectation Style

(b) HAVING Style

Answer: E[profit]=19.9K

Answer: Prob[profit>0]

=0.01

### **Expected value may not be sufficient!**

Example taken from The trichotomy of HAVING queries on a probabilistic database, Re, C. and Suciu, D., The VLDB Journal, 2009

# Inadequacy of Expected Value

Be aware of risk!

Flaw of averages (weak form):

Flaw of averages (strong form):





Wrong value of mean:  $f(E[X]) \neq E[f(X)]$ 

## Inadequacy of Expected Value

- Inadequacy of expected value:
  - Unable to capture risk-averse or risk-prone behaviors
    - Action 1: \$100 VS Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5
    - Risk-averse players prefer Action 1
    - Risk-prone players prefer Action 2 (e.g., a gambler spends \$100 to play Double-or-Nothing)
  - St. Petersburg paradox
    - You pay x dollars to enter the game
      - Repeatedly toss a fair coin until a tail appears
      - payoff=2<sup>k</sup> where k=#heads
    - How much should x be?
      - Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+....=
      - Few people would pay even \$25 [Martin '04]

# **Expected Utility Maximization Principle**

A: The set of valid answers

 $w_{pw}(a)$ : the cost of answer in pw

 $u: R \to R$ : the utility function

#### **Expected Utility Maximization Principle:**

The most desirable answer a is the answer that max. the exp. utility, i.e.,

$$a = \max_{a' \in A} E_{pw} [\mu(w_{pw}(a'))]$$

Von Neumann and Morgenstern provides an *axiomitization* of the principle (known as von Neumann-Morgenstern expected utility theorem).

# **Expected Utility Maximization Principle**

 $u: R \to R$ : The utility function: profit-> utility

**Expected Utility Maximization Principle:** the decision maker should choose the action that maximizes the **expected utility** 

Action 1: \$100

Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5



- If  $\mu$  is a threshold function, maximizing  $E[\mu(cost)]$  is equivalent to maximizing Pr[w(cost)<1]
  - *minimizing overflow prob.* [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99]
  - chance-constrained stochastic optimization problem [Swamy. SODA'11]





- Stochastic shortest path: find an s-t path P such that Pr
  [w(P)<1] is maximized</li>
  - First assume Gaussian distributions (with different parameters)



in [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Nikolova. APPROX'10]

- Stochastic shortest path: find an s-t path P such that Pr[w(P)<t] is maximized</li>
  - First assume Gaussian distributions (with different parameters)
  - Note that  $N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

$$\Pr\left(\sum_{i\in\pi}X_i\leq t\right)=\Pr\left(\frac{\sum X_i-\sum \mu_i}{\sqrt{\sum\sigma_i^2}}\leq \frac{t-\sum \mu_i}{\sqrt{\sum\sigma_i^2}}\right)=\Phi\left(\frac{t-\sum \mu_i}{\sqrt{\sum\sigma_i^2}}\right),$$
 So, we want to 
$$\max_{\pi}\frac{t-\sum_{i\in\pi}\mu_i}{\sqrt{\sum_{i\in\pi}\sigma_i^2}}.$$
 Standard Gaussian CDF

Objective:

$$\max_{\pi} \frac{t - \sum_{i \in \pi} \mu_i}{\sqrt{\sum_{i \in \pi} \sigma_i^2}}.$$



Ob: The obj is **quasi-convex**; the optimal solution must be a boundary point on the path hull

ALGO: enumerate the boundary points

- Time (worst case):  $O(n^{\log n})$
- (Smoothed): polynomial
- Approximation with  $\epsilon$  error: polynomial

For more general distributions, we can get the same result via more sophisticated techniques

(characteristic functions, Poisson Approximation)



## Consensus Answer

#### **Consensus Answer:**

- Think of each possible answers as a point in the space.
- Suppose d() is a distance metric between answers.
- Consensus Answer is a single deterministic answer

$$\tau = \arg\min_{\tau' \in \{\mathbb{E}[d(\tau', \tau_{pw})]\}}$$

where  $\tau_{pw}$  is the answer for the possible world pw



Can be viewed as a version of the expected utility maximization principle! (utility= - distance)

Consensus answers for queries over probabilistic databases, Li, J. and Deshpande, A., PODS, 2009

## Outline

- Ignoring Uncertainty?
  - Examples
  - Possible world semantics
- Beyond Expectation— expected utility theory
  - St Peterburg Paradox
  - Consensus Answer
- Queries over Probabilistic Data
  - Top-k queries
  - Other queries
- Stochastic Optimization
  - Stochastic Matching
  - Stochastic Knapsack

## Ranking over Probabilistic Data

- Our goal: support "ranking" or "top-k" query processing
  - Deciding which apartments to inquire about
  - Selecting a set of sensors to "probe"
  - Choosing a set of stocks to invest in
  - ...
- How? Choose tuples with large scores? Or tuples with higher probabilities?
  - A complex trade-off

# Top-k Query Processing

Score values are used to rank the tuples in every pw.



# Top-k Queries: Many Prior Proposals

- Return k tuples t with the highest score(t)Pr(t) [exp. score]
- Returns the most probable top k-answer [U-top-k]
   [Soliman et al. ICDE'07]
- At rank i, return tuple with max. prob. of being at rank i [U-rank-k]

[Soliman et al. ICDE'07]

- Return k tuples t with the largest  $Pr(r(t) \le k)$  values [PT-k/GT-k] [Hua et al. SIGMOD'08] [Zhang et al. EDBT'08]
- Return k tuples t with smallest expected rank:  $\sum_{pw} Pr(pw) r_{pw}(t)$  [Cormode et al. ICDE'09]
- Return k tuples t with expected score of best available tuple [k-selection] [Liu et al. DASFAA'10]

# Top-k Queries: Many Proposals

- Probabilistic Threshold (PT-k/GT-k) [Hua et al. SIGMOD'08] [Zhang et al. EDBT'08]
  - Return k tuples t with the largest  $Pr(r(t) \le k)$  values

| ID             | Score | Prob |  |
|----------------|-------|------|--|
| t <sub>1</sub> | 200   | 0.2  |  |
| t <sub>2</sub> | 150   | 0.8  |  |
| t <sub>3</sub> | 100   | 0.4  |  |

| Possible<br>worlds                              | Prob  | _ | K=2            |                       |
|-------------------------------------------------|-------|---|----------------|-----------------------|
| t <sub>1</sub> , t <sub>2</sub> ,t <sub>3</sub> | 0.064 |   | ID             | Prob(r(t)≤2)          |
| t <sub>1</sub> ,t <sub>2</sub>                  | 0.096 |   | t <sub>1</sub> | 0.2                   |
| t <sub>1</sub> , t <sub>3</sub>                 | 0.016 | 7 | t <sub>2</sub> | 0.8                   |
| t <sub>2</sub> ,t <sub>3</sub>                  | 0.256 | 7 | t <sub>3</sub> | 0.336                 |
| t <sub>1</sub>                                  | 0.024 |   |                | _                     |
| t <sub>2</sub>                                  | 0.384 |   | Rank           | $xing: t_2, t_3, t_1$ |
| t <sub>3</sub>                                  | 0.064 |   |                |                       |
| Ф                                               | 0.096 |   |                |                       |

# Top-k Queries

- Which one should we use???
- Comparing different ranking functions

#### **Normalized Kendall Distance between two top-k answers:**

Penalizes #reversals and #mismatches

Lies in [0,1], 0: Same answers; 1: Disjoint answers

|         | E-Score | PT/GT | U-Rank | E-Rank | U-Тор |
|---------|---------|-------|--------|--------|-------|
| E-Score |         | 0.124 | 0.302  | 0.799  | 0.276 |
| PT/GT   | 0.124   |       | 0.332  | 0.929  | 0.367 |
| U-Rank  | 0.302   | 0.332 |        | 0.929  | 0.204 |
| E-Rank  | 0.799   | 0.929 | 0.929  |        | 0.945 |
| U-Тор   | 0.276   | 0.367 | 0.204  | 0.945  |       |

|         | E-Score | PT/GT | U-Rank | E-Rank | U-Тор |
|---------|---------|-------|--------|--------|-------|
| E-Score | -       | 0.864 | 0.890  | 0.004  | 0.925 |
| PT/GT   | 0.864   | -     | 0.395  | 0.864  | 0.579 |
| U-Rank  | 0.890   | 0.395 |        | 0.890  | 0.316 |
| E-Rank  | 0.004   | 0.864 | 0.890  |        | 0.926 |
| U-Top   | 0.925   | 0.579 | 0.316  | 0.926  |       |

Real Data Set: 100,000 tuples, Top-100

Synthetic Dataset: 100,000 tuples, Top-100

## Parameterized Ranking Function

**PRF**
$$\omega$$
(h): Weight Function :  $\omega$  : rank  $\rightarrow$   $\Upsilon_{\omega}(t) = \sum_{i=1}^{h} \omega(i) \cdot \Pr(r(t) = i)$ .

Positional probability:

Probability that t is ranked at position i

 $\mathsf{PRF}^e(\alpha)$ :  $\omega(i) = \alpha^i$  where  $\alpha$  can be a real or a complex

$$\Upsilon_{\omega}(t) = \sum_{i>1} \alpha^i \cdot \Pr(r(t) = i).$$

Return k tuples with the highest  $|\Upsilon_{\omega}|$  values.

- E.g.,  $\omega(i)=1$ : Rank the tuples by probabilities
- E.g.,  $\omega(i)=1$  for  $1 \le i \le k$ ,  $\omega(i)=0$  for i > k: PT-k (i.e., ranking by  $Pr(r(t) \le k)$ )
- Generalizes PT/GT-k, *U-Rank*, *E-Rank*
- We can easily incorporate the score as an feature

## Parameterized Ranking Function

Another justification/intepretation of PRF (via expected utility maximization principle or consensus answers)

• We can show that PT-k is equivalent to Consensus-Top-k under symmetric difference  $T_1\Delta$   $T_2=(T_1\backslash T_2)\cup (T_2\backslash T_1)$ 

 More generally, PRFw is equivalent to Consensus-Top-k under weighted symmetric difference

## Computing Positional Probability

T<sub>i-1</sub>: the set of tuples with scores higher than t<sub>i</sub>

 $\sigma$ : Boolean indicator vector

$$\begin{array}{lcl} \Pr(r(t_i)=j) & = & \Pr(t_i) \sum_{pw:|pw\cap T_{i-1}|=j-1} \Pr(pw) \\ & = & \Pr(t_i) \sum_{\substack{i-1 \\ \sigma: \sum_{l=1}^i \sigma_l=j-1}} \prod_{\substack{l < i: \sigma_l=1}} \Pr(t_l) \prod_{\substack{l < i: \sigma_l=0}} (1-\Pr(t_l)) \end{array}$$

Generating Function Method

$$\mathcal{F}(x) = \prod_{i=1}^{n} (a_i + b_i x)$$

• The coefficient of  $\mathbf{x}^{\mathsf{k}}$  :  $\sum_{\beta:\sum_{i=1}^n\beta_i=k}\prod_{i:\beta_i=0}a_i\prod_{i:\beta_i=1}b_i$ 

## Computing Positional Probability

$$T_{i-1}$$
: {  $t_1$ ,  $t_2$ , ... ... ,  $t_{i-1}$ }

Generating Function Method

$$\mathcal{F}^i(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \mathsf{Pr}(t) + \mathsf{Pr}(t) \cdot x\right)\right) (\mathsf{Pr}(t_i) \cdot x)$$

- The coefficient of x<sup>k</sup>: Pr(r(t\_i)=k)
- Algorithm:
  - For i=1 to n
    - Construct  $\mathcal{F}^i(x)$
    - Expand  $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$
    - $\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \Pr(r(t_i) = j)$

Expand from scratch  $O(n^2)$ 

O(n3) overall

## Computing Positional Probability

$$T_{i-1}$$
: {  $t_1$ ,  $t_2$ , ... ... ,  $t_{i-1}$ }

Generating Function Method

$$\mathcal{F}^i(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \mathsf{Pr}(t) + \mathsf{Pr}(t) \cdot x\right)\right) (\mathsf{Pr}(t_i) \cdot x)$$

- The coefficient of x<sup>k</sup>: Pr(r(t\_i)=k)
- Algorithm:
  - For i=1 to n
    - Construct  $\mathcal{F}^i(x)$
    - Expand  $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$
    - $\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \Pr(r(t_i) = j)$

Can be improved to O(n)

O(n2) overall

## Computing PRFe

- Recall  $\omega(j) = \alpha^j$
- Generating Function Method
  - $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$
  - $\Upsilon(t_i) = \sum_{i=1}^n \Pr(r(t_i) = j)\omega(i) = \sum_{i=1}^n \Pr(r(t_i) = j)\alpha^j$

$$\Upsilon(t_i) = \mathcal{F}^i(lpha)$$

No need to expand the polynomial!!

- Therefore:  $\mathcal{F}^i(\alpha) = \left(\prod_{t \in T_{i-1}} \left(1 \Pr(t) + \Pr(t) \cdot \alpha\right)\right) (\Pr(t_i) \cdot \alpha)$
- Morevoer:  $\mathcal{F}^i(\alpha) = \frac{\Pr(t_i)}{\Pr(t_{i-1})} \mathcal{F}^{i-1}(\alpha) \Big( 1 \Pr(t_{i-1}) + \Pr(t_{i-1}) \alpha \Big)$

0(1)

O(n) overall

 For special weight functions, we do not even need to compute the positional probabilities Pr(r(t)=k)

 O(nlogn) for PRFe (exponential functions) and Exp-rank (linear functions) [Cormode, Li, Yi. ICDE'09]

 We can use sum of complex exponentials (Fourier transform) to approximate any weight functions.

## Probabilistic And/Xor Trees

- Capture two types of correlations: mutual exclusivity and coexistence.
- Generalize x-tuples which can model only mutual exclusivity



## Probabilistic And/Xor Trees

• And/Xor trees can represent any finite set of possible worlds (not necessarily compact).



| Possible Worlds | Pr  |
|-----------------|-----|
| (1,20);(2,50)   | 0.5 |
| (2,20);(3,35)   | 0.3 |
| (1,30);(3,25)   | 0.2 |

### Computing Probabilities on And/Xor Trees

#### **Generating Function Method:**

Leaves: x y x z





### Computing Probabilities on And/Xor Trees

#### **Generating Function Method:**

**Root:** 



$$F(x,y,...) = \sum_{ij...} c_{ij...} x^{i} y^{j}...$$

**THM:** The coefficient  $c_{ij...}$  of the term  $x^iy^j...$ 

- = total prob. of the possible worlds which contain
  - *i* tuples annotated with *x*,
  - *j* tuples annotated with *y*,.....

### Computing Probabilities on And/Xor Trees

Example: Computing the prob. dist. of the size of the pw



## Computing PRF: And/Xor Trees

#### Construct generating function for $t_{4}$

r(i)=j if and only if (1) j-1 tuples with higher scores appear (2) tuple i appears



## Computing PRF $^{e}(\alpha)$ : And/Xor Trees

$$\Upsilon(t_i) = \mathcal{F}^i(\alpha, \alpha) - \mathcal{F}^i(\alpha, 0).$$

We maintain only the numerical values of  $F^{i}(\alpha,\alpha)$  and  $F^{i}(\alpha,0)$  at each node.

E.g.,  $\alpha$ =0.6. Now we want to compute **F**<sup>5</sup>(0.6,0.6)



## Summary of Results

#### PRFw(h):

- Independent tuples: O(nh+nlogn)
  - Previous results for U-Rank: O(n²h) [Soliman et al. ICDE'07], O(nh +nlogn) [Yi et al. TKDE'09]
  - Previous results for PT-k: O(nh+nlogn) [Hua et al. SIGMOD'08]
- And/Xor trees: O(dnh+nlogn) (d is the height of the tree, d=2 for x-tuples)
  - Previous results for U-Rank over x-tuples: O(n²h) [Soliman et al. ICDE'07], O(n²h) [Yi et al. TKDE'09]
  - Previous results for PT-k over x-tuples: O(n²h) [Hua et al. SIGMOD'08]

#### PRFe:

- Independent tuples: O(nlogn)
- And/Xor trees: O(nd+nlogn)

### Outline

- Ignoring Uncertainty?
  - Examples
  - Possible world semantics
- Beyond Expectation— expected utility theory
  - St Peterburg Paradox
  - Consensus Answer
- Queries over Probabilistic Data
  - Top-k queries
  - Other queries
- Stochastic Optimization
  - Stochastic Matching
  - Stochastic Knapsack

### **Problem Definition**

#### **Stochastic Matching**

#### Given:

- A probabilistic graph G(V,E).
- Existential prob.  $p_e$  for each edge e.
- Patience level  $t_v$  for each vertex v.
- Probing e=(u,v): The only way to know the existence of e.
  - We can probe (u,v) only if  $t_u>0$ ,  $t_v>0$
  - If *e* indeed exists, we should add it to our matching.
  - If not,  $t_u = t_u 1$ ,  $t_v = t_v 1$ .

[Chen, Immorlica, Karlin, Mahdian, and Rudra. 'ICALP09]

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra. ESA 10, Algorithmica 11]

### **Problem Definition**

- Output: A strategy to probe the edges
  - Edge-probing: an (adaptive or non-adaptive) ordering of edges.
  - Matching-probing: k rounds; In each round, probe a set of disjoint edges
- Objectives:
  - Unweighted: Max. *E[ cardinality of the matching]*.
  - Weighted: Max. E[ weight of the matching].

- Online dating
  - Existential prob.  $p_e$ : estimation of the success prob. based on users' profiles.



- Online dating
  - Existential prob.  $p_e$ : estimation of the success prob. based on users' profiles.
  - Probing edge e=(u,v): u and v are sent to a date.





- Online dating
  - Existential prob.  $p_e$ : estimation of the success prob. based on users' profiles.
  - Probing edge e=(u,v): u and v are sent to a date.
  - Patience level: obvious.





#### Kidney exchange

- Existential prob.  $p_e$ : estimation of the success prob. based on blood type etc.
- Probing edge e=(u,v): the crossmatch test (which is more expensive and time-consuming).



• This models the online AdWords allocation problem.



• This generalizes the stochastic online matching problem of [Feldman et al. '09, Bahmani et al. '10, Saberi et al '10] where  $p_e = \{0,1\}$ .

## **Approximation Ratio**

 We compare our solution against the optimal (adaptive) strategy (not the offline optimal solution).

An example:



E[offline optimal] =  $1-(1-1/n)^n \approx 1-1/e$ 

E[any algorithm] = 1/n

### A LP Upper Bound

• Variable  $y_e$ : Prob. that any algorithm probes e.

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} w_e \cdot x_e \\ \\ \text{subject to} & \sum_{e \in \partial(v)} x_e \leq 1 \ \, \forall v \in V \qquad \text{At most 1 edge in $\partial(v)$ is matched} \\ & \sum_{e \in \partial(v)} y_e \leq t_v \ \, \forall v \in V \qquad \text{At most $t_v$ edges in $\partial(v)$ are probed} \\ & x_e = p_e \cdot y_e \ \, \forall e \in E \qquad \qquad x_e \text{: Prob. $e$ is matched} \\ & 0 \leq y_e \leq 1 \ \, \forall e \in E \end{array}$$

An edge (u,v) is *safe* if  $t_u>0$ ,  $t_v>0$  and neither u nor v is matched

#### Algorithm:

- Pick a permutation  $\pi$  on edges uniformly at random
- For each edge e in the ordering  $\pi$ , do:
  - If *e* is not safe then do not probe it.
  - If e is safe then probe it w.p.  $y_e/\alpha$ .

#### **Analysis:**

**Lemma:** For any edge (u,v), at the point when (u,v) is considered under  $\pi$ ,  $Pr(u | loses its patience) <math>\leq 1/2\alpha$ .

**Proof:** Let *U* be #probes incident to *u* and before *e*.

$$\begin{split} \mathbb{E}[U] &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is probed}] \\ &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is safe}] \cdot \frac{y_e}{\alpha} \\ &\leq \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi] \cdot \frac{y_e}{\alpha} \\ &= \sum_{e \in \partial(u)} \frac{1}{2} \cdot \frac{y_e}{\alpha} \leq \frac{t_u}{2\alpha}. \end{split}$$

By the Markov inequalit  $\Pr[U \geq t_u] \leq \frac{\mathbb{E}[U]}{t_u} \leq \frac{1}{2\alpha}$ .

#### **Analysis:**

**Lemma:** For any edge e=(u,v), at the point when (u,v) is considered under  $\pi$ ,  $Pr(u \text{ is matched}) \leq 1/2\alpha$ .

**Proof:** Let *U* be #matched edges incident to u and before *e*.

$$\begin{split} \mathbb{E}[U] &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is matched}] \\ &= \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi \text{ AND } e \text{ is safe}] \cdot \frac{y_e}{\alpha} \cdot p_e \\ &\leq \sum_{e \in \partial(u)} \Pr[\text{edge } e \text{ appears before } (u,v) \text{ in } \pi] \cdot \frac{y_e}{\alpha} \cdot p_e \\ &= \sum_{e \in \partial(u)} \frac{1}{2} \cdot \frac{y_e}{\alpha} \cdot p_e \quad \leq \quad \frac{1}{2\alpha}. \end{split}$$

By the Markov inequality:  $\Pr[U \geq 1] \leq \mathbb{E}[U] \leq \frac{1}{2\alpha}$ 

#### **Analysis:**

Theorem: The algorithm is a 8-approximation.

**Proof:** When e is considered,

 $Pr(e \ is \ not \ safe) \leq Pr(u \ is \ matched) + Pr(u \ loses \ its \ patience) + Pr(v \ is \ matched) + Pr(v \ loses \ its \ patience)$ 

$$\leq 2/\alpha$$

Therefore, 
$$\mathbb{E}[\text{Our Solution}] = \sum_e w_e \Pr(e \text{ is safe}) \frac{y_e}{\alpha} p_e$$

$$\geq (1 - \frac{2}{\alpha}) \frac{1}{\alpha} \sum_e w_e y_e p_e$$

Recall  $\Sigma_e w_e y_e p_e$  is an upper bound of *OPT* 

 We can improve the algorithm to achieve a 3approximation (by a more careful selection of which edges to probe and a more careful analysis)

### Outline

- Ignoring Uncertainty?
  - Examples
  - Possible world semantics
- Beyond Expectation— expected utility theory
  - St Peterburg Paradox
  - Consensus Answer
- Queries over Probabilistic Data
  - Top-k queries
  - Other queries
- Stochastic Optimization
  - Stochastic Matching
  - Stochastic Knapsack

## Stochastic Knapsack

- A knapsack of capacity C
- A set of items, each having a fixed profit
- Known: Prior distr of size of each item.
- Each time we choose an item and place it in the knapsack irrevocably
- The actual size of the item becomes known after the decision
- Knapsack constraint: The total size of accepted items <= C</li>
- Goal: maximize E[Profit]

- Scheduling with stochastic job length
  - The length/profit of each job is a random variable
  - The actual length/profit is unknown until we schedule to run it
  - Maximize the profit
- Related to the prophet inequality and secretary problem
  - Prophet inequality: We can decide to choose or discard a job
     AFTER we see its actual length/profit
    - Simplest case: choose only one job. E[our profit] >= E[max profit]/2
  - Secretary problem: We do NOT assume that the jobs follow any prob. distr. But instead assume they comes in a random order
    - Simplest case: choose only one job: Pr[we pick the best job]>= 1/e

## Secretary Problem

- N candidates.
- Arrive in a random order. Must decide hire or not right away

#### Algo:

- Interview the first R=N/e candidates, but do not choose any one. Let x be the best candidate.
- Hire the first candidate who is better than x.

We can show  $Pr[we pick the best candidate] \approx 1/e$ 

#### A one line proof:

• Pr[we pick the best candidate]  $\geq \sum_{i=R+1 \text{ to } N} \Pr[i \text{ is the best}] \Pr[the 2nd \text{ best of first i candidates is in } [1,R]] = \sum_{i=R+1 \text{ to } N} \frac{1}{n} \frac{R}{i} \approx 1/e$ 

## Stochastic Knapsack

Decision Tree



#### **Exponential size!!!! (depth=n)**

How to represent such a tree? Compact solution?

The problem is P-space complete

## Stochastic Knapsack

#### **Previous work**

- 5-approx [Dean, Goemans, Vondrak. FOCS'04]
- 3-approx [Dean, Goemans, Vondrak. MOR'08]
- $(1+\epsilon, 1+\epsilon)$ -approx [Bhalgat, Goel, Khanna. SODA'11]
- 2-approx [Bhalgat 12]
- 8-approx (size&profit correlation, cancellation)

[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS'11]

#### Our result:

 $(1+\epsilon, 1+\epsilon)$ -approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)

[Yuan, L. STOC'13]

# Thanks.

Questions/Comments, please send to lijian83@mail.tsinghua.edu.cn

### Prob. DB Research

 Our strength: support declarative queries, query processing and optimization techniques (indexing etc.).

- Current issues
  - Independence assumption.
  - Expressiveness/scalability trade off.
  - Different existing prototypes excels at different aspects (but not all).
  - Semantics not rich enough (need to go beyond expected values and probabilistic thresholds).