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Uncertain Data and Stochastic Model 
 Data Integration and Information Extraction 

 Sensor Networks; Information Networks 

 Probabilistic models in machine learning 

 

 

 
 

Sensor ID Temp. 

1 Gauss(40,4) 

2 Gauss(50,2) 

3 Gauss(20,9) 

… … 

Sensor Readings Probabilistic database 

? 

? 

Uncertain link 

Stochastic Finite Automata 

Social networks  



Uncertain Data and Stochastic Model 
 

 

 Future data are usually modeled by stochastic models 

 



Dealing with Uncertainty 

 Handling uncertainty is a very broad topic that spans multiple 

disciplines 

 Economics / Game Theory 

 Finance  

 Operation Research 

 Management Science 

 Probability Theory / Statistics 

 Psychology 

 Computer Science 

Today: Problems in Stochastic Combinatorial Optimization 
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 A Classical Example: E[MST] in [0,1]2 

 Estimating E[MST] and other statistics 

 Expected Utility Theory 

 Expected Utility Maximization 

 Threshold Probability Maximization 

 The Poisson Approximation Technique 

 Expected Utility Maximization 

 Stochastic Knapsack 

 Other Applications 

 Conclusion 
 

 



Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 

 Ignoring uncertainty (“replace by the expected values” heuristic) 

 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 



Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 

 Ignoring uncertainty (“replace by the expected values” heuristic) 

 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 

 But the true answer is (as n goes to inf)  

                     𝜁 3 =  1/𝑖3∞
𝑖=1 <2  

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans] 



A Similar Problem 

 N points: i.i.d. uniform[0,1]×[0,1] 

 

 

 

 

 

 Question: What is E[MST] ? 

 

 Answer: 



A Similar Problem 

 N points: i.i.d. uniform[0,1]×[0,1] 

 

 

 

 

 

 Question: What is E[MST] ? 

 

 Answer:  𝜃( 𝑛)  [Frieze, Karp, Steele, …] 

 The problem is similar, but the answer is not similar………… 
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A Computational Problem 

 The position of each point is random (non-i.i.d) 

 A model in wireless networks 

 

 

 

 

 

 

 Question: What is E[MST] ? 

 Of Course, there is no close-form formula 

 Need efficient algorithms to compute E[MST] 

 

0.1 0.5 

0.4 

[Huang, L. ArXiv 2013] 



Our Results 



MST over Stochastic Points 

 The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11] 

 So, let us focus on approximating the value 

 Attempt one: list all realizations? (Exponentially many) 

 Attempt two: Monte Carlo (variance can be very large) 

 

 

 
Small prob, 

Large value 

PDF of a random var 

A sufficient condition for MC to work (in poly time): 
{ }

poly
E[ ]

Max X

X
(just Chernoff Bound) 



MST over Stochastic Points 

 Our approach: (sketch) 

 Law of total expectation:  

𝐄 𝑋 = Pr 𝑌 = 𝑦 𝐄[𝑋 ∣ 𝑌 = 𝑦]

𝑦

 

 

 

 

How to choose Y? 

 

A carefully chosen 

random event Y 

Easy to compute Low variance Hopefully, we have 



MST over Stochastic Points 

 The “home set” technique: 

 

 

home 

(1) Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 

(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated: 

   

Diameter(home)
poly

E[MST all node are at home]∣



MST over Stochastic Points 

 The “home set” technique: 

 

 

home 

(1) Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 

(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 

Home={all points w.p.  ≥ 1/ 𝑛𝑚 2} 

Diameter(home)
poly

E[MST all node are at home]∣



MST over Stochastic Points 

 The “home set” technique: 

 

 

home 

(1) Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 

(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 

(3)  
𝐄 𝑀𝑆𝑇 = Pr 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒]

𝑦

 

≈ Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄 𝑋 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 + 

 Pr 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] 
 

The contribution of other terms is negligible and can be ignored. 



Estimating Statistics 

 Another technique based on Hierarchical tree decomposition 

 Interesting connection to classical counting problem: 

 Counting #perfect matchings 

 Counting #Knapsack 

 Counting #(certain subgraphs) 

 Still some open questions 
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 Other Applications 

 Conclusion 
 

 



Inadequacy of Expected Value 

 Stochastic Optimization  

 Some part of the input are probabilistic 

 Most common objective: Optimizing the expected value   

 



Inadequacy of Expected Value 

 Be aware of risk! 

 

 

 

 

 

 

 

 

 

 

 St. Petersburg Paradox 



Inadequacy of Expected Value 

 Inadequacy of expected value: 

 Unable to capture risk-averse or risk-prone behaviors 
 Action 1: $100    VS   Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

 Risk-averse players prefer Action 1 

 Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play Double-
or-Nothing) 

 St. Petersburg Paradox  

 You pay x dollars to enter the game 
 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 How much  should x be? 
 Expected payoff = 

 Few people would pay even $25 [Martin ’04] 

 



Expected Utility Maximization 

Expected Utility Maximization Principle: the decision maker 
should choose the action that maximizes the expected utility 

Remedy: Use a utility function 

 
Proved quite useful to explain some popular choices that seem to 
contradict the expected value criterion   

 



Expected Utility Maximization Principle 

μ 

Risk-averse 

200$ 100$ 

E[μ(action 1)] 

E[μ(action 2)] 

$ 

Risk-prone 

200$ 100$ 

μ 

E[μ(action 2)] 

E[μ(action 1)] 

 Action 1: $100     

 Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

Expected Utility Maximization Principle: the decision 

maker should choose the action that maximizes the 

expected utility 

  Von Neumann and Morgenstern provides an axiomitization of the 

principle (known as von Neumann-Morgenstern expected utility theorem). 

 



Threshold Probability Maximization 
 If μ is a threshold function, maximizing E[μ(cost)] is equivalent to maximizing 

Pr[w(cost)<1] 
 minimizing overflow prob. [Kleinberg, Rabani, Tardos. STOC’97] [Goel, Indyk. FOCS’99] 

 chance-constrained stochastic optimization problem [Swamy. SODA’11] 

1 

1 0 

μ(x) 
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New Techniques 
 A common challenge: How to deal with/ optimize on the 

distribution of the sum of several random variables. 

 More often seen in the risk-aware setting (linearity of expectation 

does not help) 

 Previous techniques:  

 Special distributions [Nikolova, Kelner, Brand, Mitzenmacher. 

ESA’06] [Goel, Indyk. FOCS’99] [Goyal, Ravi. ORL09] ….. 

 Effective bandwidth [Kleinberg, Rabani, Tardos STOC’97] 

 LP [Dean, Goemans, Vondrak. FOCS’04] …..  

 Discretization [Bhalgat, Goel, Khanna. SODA’11] 

 Characteristic Function + Fourier Series Decomposition [L, 

Deshpande. FOCS’11] 

 Today: Poisson Approximation [L, Yuan STOC’13] 



Threshold Probability Maximization 
 Deterministic version: 

 A set of element {ei}, each associated with a weight wi 

 A solution S is a subset of elements (that satisfies some property) 

 Goal: Find a solution S such that the total weight of the solution w(S)=ΣiєSwi is 

minimized 

 E.g. shortest path, minimal spanning tree, top-k query, matroid base 

 



 Deterministic version: 

 A set of element {ei}, each associated with a weight wi 

 A solution S is a subset of elements (that satisfies some property) 

 Goal: Find a solution S such that the total weight of the solution w(S)=ΣiєSwi is 

minimized 

 E.g. shortest path, minimal spanning tree, top-k query, matroid base 

 Stochastic version: 

 wis are independent positive random variables 

 Goal: Find a solution S such that the threshold probability 

  Pr [𝑤 𝑆 ≤ 1]    is maximized. 

Threshold Probability Maximization 



Threshold Probability Maximization 

 Stochastic shortest path : find an s-t path P such that 

Pr[w(P)<1] is maximized 

 

 

s t 



Our Result 
If the deterministic problem is “easy”, then for any 𝜖 > 0, 

we can find a solution S such that 

 
Pr 𝑤 𝑆 ≤ 1 + 𝜖 > 𝑂𝑃𝑇 − 𝜖 

 

“Easy”: there is a PTAS for the corresponding O(1)-dim packing problem: 
  Shortest path, MST, matroid base, matroid intersection, min-cut 

 

The above result can be generalized to the expected utility maximization 
problem: 

           maximize  E[𝜇(𝑋(𝑆))] for Lipschitz utility function 𝜇 
 generalizes/simplies/improves the previous results in [Nikolova, Kelner, Brand, 

Mitzenmacher. ESA’06] [Nikolova. APPROX’10] [Kleinberg, Rabani, Tardos. 
STOC’97] [Goel, Indyk. FOCS’99] [Goyal, Ravi. ORL09] [Bhalgat, Goel, 
Khanna. SODA’11] [Li, Deshpande. FOCS’11] 

 

 

 



Our Results 
 Stochastic shortest path : find an s-t path P such that 

Pr[w(P)<1] is maximized 

 

 

 Previous results 

 Many heuristics  

 Poly-time approximation scheme (PTAS) if (1) all edge weights are normally 

distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06] 

[Nikolova. APPROX’10] 

 Bicriterion PTAS (Pr[w(P)<1+δ]>(1-eps)OPT) for exponential distributions 
[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06] 

 Our result 

 Bicriterion PTAS if OPT=  Const 

s t 

Uncertain length 



Our Results 
 Stochastic knapsack: find a collection S of items such that 

Pr[w(S)<1]>γ and the total profit is maximized 
 

 

 

 Previous results 
 log(1/(1- γ))-approximation [Kleinberg, Rabani, Tardos. STOC’97] 

 Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS’99] 

 PTAS for Bernouli distributions if γ= Const [Goel, Indyk. FOCS’99] [Chekuri, Khanna. 
SODA’00] 

 Bicriterion PTAS if γ= Const [Bhalgat, Goel, Khanna. SODA’11] 

 Our result 
 Bicriterion PTAS if γ= Const (with a better running time than Bhalgat et al.) 

 Stochastic partial-ordered knapsack problem with tree constraints 

Knapsack, capacity=1 
Each item has a deterministic profit and a 

(uncertain) size  
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Algorithm2 (based on Poisson Approx) 

 Step 1: Discretizing the prob distr 
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but much simpler) 

 Step 2: Reducing the problem to the multi-dim problem 



 Step 1: Discretizing the prob distr 
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler) 

 

 

 

 

 

 

 

 

 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

pdf of Xi 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

Discretized version: 𝑋𝑖  

0 

0 

0 0 
0 0 

Algorithm2 (based on Poisson Approx) 



 Step 1: Discretizing the prob distr 
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler) 

 

 

 

 

 

 

 

 

 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

pdf of Xi 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

Discretized version: 𝑋𝑖  

0 

0 

0 0 
0 0 

The behaviors of 𝑋𝑖  and 𝑋𝑖 are close:  

Algorithm2 (based on Poisson Approx) 



 Step 2: Reducing the problem to the multi-dim problem 

 Heavy items: E[Xi]>poly(𝜖) 

 At most O(1/poly(𝜖)) many heavy items, so we can afford enumerating 

them 

 

 

 

  

 

 

Algorithm2 (based on Poisson Approx) 



 Step 2: Reducing the problem to the multi-dim problem 

 Heavy items: E[Xi]>poly(ϵ) 

 At most O(1/poly(𝜖)) heavy items, so we can afford enumerating them 

 Light items: 

 Fix the set H of heavy items 

 Each Xi can be represented as a O(1)-dim vector Sg(i) (signature) 

   𝐒𝐠 𝑖 = (Pr 𝑋 𝑖 = 𝜖4 , Pr 𝑋 𝑖 = 𝜖4 + 𝜖5 , …… ) 

 Enumerating all O(1)-dim (budget) vectors B 

 Find a set S such that 𝑆 ∪ 𝐻 is feasible and 

  𝐒𝐠 𝑆 =  𝐒𝐠(𝑖)𝑖∈𝑆 ≤ (1 + 𝜖)𝐵   (using the multi-dim PTAS) 

     (or declare there is none S s.t. 𝐒𝐠 𝑆 ≤ 𝐵 ) 

 Return 𝑆 ∪ 𝐻 for which Pr 𝑤 𝑆 ∪ 𝐻 ≤ 1 + 𝜖   is largest 

 

 

 

 

  

 

 

Algorithm2 (based on Poisson Approx) 



 

Well known: Law of small numbers 

 n Bernoulli r.v. 𝑋𝑖 (1-p, p) 

 𝑛𝑝 = 𝑐𝑜𝑛𝑠𝑡 

As 𝑛 → ∞, 𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑝) 

Poisson Approximation 



Le Cam’s theorem (rephrased): 

n r.v. 𝑋𝑖 (with common support (0,1,2,3,4,…)) with signature 

𝐬𝐠𝑖 = (Pr 𝑋𝑖 = 1 , Pr 𝑋𝑖 = 2 ,… ) 

Let 𝐬𝐠 =  𝐬𝐠𝑖  

𝑌𝑖  are i.i.d. r.v. with distr  𝐬𝐠/ 𝐬𝐠 1 

𝑌 follows the compound Poisson distr (CPD) corresponding to sg 

                   𝑌 =  𝑌𝑖
𝑁
𝑖=1  where 𝑁 ∼ Poisson( 𝐬𝐠 1) 

 

Then,   Δ  𝑋𝑖 , 𝑌 ≤  𝑝𝑖
2 where 𝑝𝑖 = Pr[𝑋𝑖 ≠ 0] 

 Variational distance: 

 Δ 𝑋, 𝑌 =  | Pr 𝑋 = 𝑖 − Pr[𝑌 = 𝑖] |𝑖  

Poisson Approximation 



Poisson Approximation 

 Le Cam’s theorem: Δ  𝑋𝑖 , 𝑌 ≤  𝑝𝑖
2 

 

 Ob: If 𝑆1 and 𝑆2 have the same signature, then 
they correspond to the same CPD 

 

 So if  𝑝𝑖
2

𝑖∈𝑆1
  and  𝑝𝑖

2
𝑖∈𝑆2

 are sufficiently small, 
the distributions of 𝑋(𝑆1) and 𝑋(𝑆2) are close 

 

 Therefore, enumerating the signature of light items 
suffices (instead of enumerating subsets) 

 



Summary 

 The #dimension needs to be 𝐿 = 𝑝𝑜𝑙𝑦(1/𝜖)  

 We solve an 𝑝𝑜𝑙𝑦
1

𝜖
-dim optimization problem 

 

 The overall running time is 

 

 This improves the                       running time in [Bhalgat, Goel, 

Khanna. SODA’11]   

 Can be easily extended to the multi-dimensional case, other 

combinatorial constraints etc. 
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Stochastic Knapsack 

 A knapsack of capacity C 

 A set of items, each having a fixed profit 

 Known: Prior distr of size of each item. 

 Each time we choose an item and place it in the knapsack 

irrevocably 

 The actual size of the item becomes known after the decision   

 Knapsack constraint: The total size of accepted items <= C 

 Goal: maximize E[Profit]  

[L, Yuan STOC13] 



Stochastic Knapsack 

Previous work 

 5-approx [Dean, Goemans, Vondrak. FOCS’04] 

 3-approx [Dean, Goemans, Vondrak. MOR’08] 

 (1+𝜖, 1+𝜖)-approx [Bhalgat, Goel, Khanna. SODA’11] 

 2-approx [Bhalgat 12] 

 8-approx (size&profit correlation, cancellation) 

   [Gupta, Krishnaswamy, Molinaro, Ravi. FOCS’11]  

Our result: 

(1+𝜖, 1+𝜖)-approx  (size&profit correlation, cancellation) 

2-approx  (size&profit correlation, cancellation) 

 

 

 



Stochastic Knapsack 
 Decision Tree 

Item 1 

Exponential size!!!! (depth=n) 

How to represent such a tree? Compact solution? 

Size=𝜖 Size=3𝜖 Size=10𝜖 
Size=1-𝜖 

Item 2 Item 3 Item 7 

…
.. 



Stochastic Knapsack 

 By discretization, we make some simplifying assumptions: 

 Support of the size distribution: （0, 𝜖, 2𝜖, 3𝜖, …… , 1）. 

 

 

Still way too many possibilities, how 
to narrow the search space? 



 Block Adaptive Policies: Process items block by block 

 
Items 

1,5,7 

Items 

2,3 
Items 

3,6 
Items 

6,8,9 

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶) 

Item 2 Item 3 Key Properties: 
(1) Depth=O(1) 
(2) Degree=O(1) 
So #nodes=O(1) 
Note: O(1) depends on 𝜖 

Block Adaptive Policies 



Items 

1,5,7 

Items 

2,3 
Items 

3,6 
Items 

6,8,9 

Item 2 Item 3 Key Properties: 
(1) Depth=O(1) 
(2) Degree=O(1) 
So #nodes=O(1) 
Note: O(1) depends on 𝜖 

Still exponential many possibilities, even in a single block 

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶) 

Block Adaptive Policies 

 Block Adaptive Policies: Process items block by block 

 



Poisson Approximation 

 Each heavy item consists of a singleton block 

 Light items: 

 Recall if two blocks have the same signature, their size 

distributions are similar 

 So, enumerate Signatures! (instead of enumerating subsets) 

 



 Outline: Enumerate all block structures with a 

signature associated with each node 

 

 

 

 

(0.4,1.1,0,…) 

(0,1,1,2.2,…) 

(5,1,1.7,2,…) 

(1.1,1,1,1.5,…) 

(1,1,2,…) 

(0,1.4,1.2,2.1,…) 

(0,0,1.5,2,…) 

- O(1) nodes 
 

- Poly(n) possible 
      signatures for each node 
 
- So total #configuration   
      =poly(n) 

Algorithm 



2. Find an assignment of items to blocks that matches all 

signatures  

 – (this can be done by standard dynamic program) 

 

Algorithm 



2. Find an assignment of items to blocks that matches all 

signatures  

 – (this can be done by standard dynamic programming) 

 
Item 1 

(0.2,0.04,0…..) 

(0.2,0.04,0.1…..) 

(0.1,0,0…..) 

(0.1,0.2,0.1…..) 

(0.15,0,0…..) 

(0.15,0.2,0.22…..) 

Item 2 Item 3 
(0.4,1.1,0,…) 

(0,1,1,2.2,…) 

(5,1,1.7,2,…) 

(1.1,1,1,1.5,
…) 

(1,1,2,
…) 

(0,1.4,1.2,2.1,…) 

(0,0,1.5,2,…) 

On any root-leaf path, each item appears at most once 

Algorithm 

Item 4 Item 5 Item 6 



Outline  

 A Classical Example: E[MST] in [0,1]2 

 Estimating E[MST] and other statistics 

 Expected Utility Theory 

 Expected Utility Maximization 

 Threshold Probability Maximization 

 The Poisson Approximation Technique 

 Expected Utility Maximization 

 Stochastic Knapsack 

 Other Applications 

 Conclusion 
 

 



Poisson Approximation-Other Applications 

 Incorporating other constraints 

 Size/profit correlation 

 cancellation 

 Bayesian Online Selection Problem with Knapsack Constraint 

 Can see the actually size and profit of an item before the decision 

 (1+𝜖, 1+𝜖)-approx (against the optimal adaptive policy) 

 

 

 

 Stochastic Bin Packing 

 Prophet inequalities [Chawla, Hartline, Malec, Sivan. STOC10] [Kleinberg, 

Weinberg. STOC12] 

 Close relations with Secretary problems 

 Applications in multi-parameter  mechanism design 

[L, Yuan STOC13] 



Conclusion 
 

 

 Replacing the input random variable with its expectation typically is 
NOT the right thing to do 
 Carry the randomness along the way and optimize the expectation of the 

objective  

 Optimizing the expectation may not be the right thing to do neither 
 Be aware of the risk  

 We can often reduce the stochastic optimization problem (with 
independent random variables) to a constant dimensional packing 
problem 

 Stochastic optimization problems with dependent random variables 
are typically extremely hard (i.e., inapproximable) 



Thanks 
 

lijian83@mail.tsinghua.edu.cn 


