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Uncertain Data and Stochastic Model

® Data Integration and Information Extraction
e Sensor Networks; Information Networks

® Probabilistic models in machine learning
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Uncertain Data and Stochastic Model

e Future data are usually modeled by stochastic models
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Dealing with Uncertainty

* Handling uncertainty is a very broad topic that spans multiple
disciplines
® Economics / Game Theory
® Finance
® Operation Research
® Management Science
® Probability Theory / Statistics
® Psychology

° Computer Science

Today: Problems in Stochastic Combinatorial Optimization




Outline

® A Classical Example: E[]MST]in [0,1]’
* Estimating E[MST] and other statistics
* Expected Utility Theory

* Expected Utility Maximization

® Threshold Probability Maximization

® The Poisson Approximation Technique
® Expected Utility Maximization
® Stochastic Knapsack
® Other Applications

® Conclusion




Ignoring uncertainty is not the right thing to do

® A undirected graph with n nodes
® The length of each edge: i.i.d. Uniform[0,1]

® Question: What is E[MST]?

® Ignoring uncertainty (“replace by the expected values” heuristic)
® cach edge has a fixed length 0.5
® This givesa WRONG answer 0.5(n-1)




Ignoring uncertainty is not the right thing to do

e A undirected graph with n nodes

® The length of each edge: i.i.d. Unitorm[0,1] R

® Question: What is E[MST]?

® Ignoring uncertainty (“replace by the expected values” heuristic)
® ecach edge has a fixed length 0.5
® This givesa WRONG answer 0.5(n-1)

* But the true answer is (as n goes to inf)

((3) = Xi2, 1/i°<2

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]




A Similar Problem
* N points: i.i.d. uniform[0,1] X[0,1]

® Question: What is E[MST] ?

® Answer:




A Similar Problem
* N points: i.i.d. uniform[0,1] X[0,1]

® Question: What is E[MST] ?

® Answer: 9(\/%) [Frieze, Karp, Steele, ...]
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A Computational Problem

® The position of each point is random (non-i.i.d)

® A model in wireless networks

® Question: What is E[MST] ?
e Of Course, there is no close-form formula

* Need efficient algorithms to compute E[MST]




Our Results

Problems Existential Locational
E[CP] P /FPRAS 4P /FPRAS
Closest Pair (Section 2) PriCP <1 #P [19|/FPRAS #P/FPRAS
Pr|CP =1 #P /Inapprox #P/Inapprox
E[D] #P/FPRAS #P/FPRAS
Diameter (Section 2.2) PrlD <1 #P/Inapprox #P/Inapprox
Pr|D = 1] #P/FPRAS #P/FPRAS
E[MST #P [20]/FPRAS | #P [20|/FPRAS
MST (Section 3) PriMST < 1] | #P/Inapprox [20] | #P/Inapprox [20]
Pr|MST =1 #P/Open #P/Open
k-Clustering/k-Center/k-median (Section 4) E[Cy] #P /FPRAS™ #P /FPRAS"
Perfect Matching (Section 5) E[MPM \ Open/FPRAS
Cycle Cover (Section 6) E[CC #P/FPRAS #P/FPRAS
kth Closest Pair (Section 4) E[CPy] #P [19]/FPRAS #P /Open
kth Longest m-Nearest Neighbor E[k-NN,] #P/Open #P /Open
Convex Hull (2D) (Section 7) E[CH Open/FPRAS Open
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MST over Stochastic Points

e The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11]
® So, let us focus on approximating the value
® Attempt one: list all realizations? (Exponentially many)

* Attempt two: Monte Carlo (variance can be very large)

Small prob,

A , Large value

PDF of a random var

A sufficient condition for MC to work (in poly time):

(just Chernoff Bound)




MST over Stochastic Points
® Our approach: (sketch)

e [aw of total expectation:

E[X] =zPr[Y — y]E[X | Y = y]
y

A carefully chosen
random event Y

Hopefully, we have  Easy to compute Low variance

How to chooseY?




MST over Stochastic Points

® The “home set” technique:

(1) Pr[all nodes are at home] = 1
(2) E[MST | all node are at home] can be estimated:

Diameter(home)
< poly
E[MST]| all node are at home]




MST over Stochastic Points

® The “home set” technique:

(1) Pr[all nodes are at home] = 1
(2) E[MST | all node are at home] can be estimated (due to low variance)

Diameter(home)

< poly
E[MST] all node are at home]

Home={all points w.p. > 1/(nm)?}




MST over Stochastic Points

® The “home set” technique:

(1) Pr[all nodes are at home] = 1
(2) E[MST | all node are at home] can be estimated (due to low variance)

3)
E[MST] = z Pr[y nodes are at home] E[X | y nodes are at home]

y
~ Prlall nodes are at home] E[ X | all nodes are at home | +

Pr[n — 1 nodes are at home]| E[X | n — 1 nodes are at home]

The contribution of other terms is negligible and can be ignored.




Estimating Statistics

® Another technique based on Hierarchical tree decomposition

® Interesting connection to classical counting problem:

* Counting #perfect matchings
* Counting #Knapsack
* Counting #(certain subgraphs)

e Still some open questions
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Inadequacy of Expected Value

® Stochastic Optimization
® Some part of the input are probabilistic

® Most common objective: Optimizing the expected value




e
Inadequacy of Expected Value

® Be aware of risk!

Flaw of averages (weak form): Flaw of averages (strong form):

The
State of
the drunk

at his AVERAGE
position
is ALIVE.

Mean correct,
Variance ignored

But the AVERAGE state
of the drunk is DEAD

AVERAGES

Wrong value of mean:
f(E[X]) # E[f(X)]
21

e St. Petersburg Paradox




Inadequacy of Expected Value

® Inadequacy of expected value:

® Unable to capture risk-averse or risk-prone behaviors
Action 1: $100 VS Action 2: $200 w.p. 0.5; $0 w.p. 0.5
Risk-averse players prefer Action 1
Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play Double-
or-Nothing)
® St. Petersburg Paradox

® You pay x dollars to enter the game

Repeatedly toss a fair coin until a tail appears
payoff=2¥ where k=#heads
¢ How much should x be?
Expected payoft =
Few people would pay even $25 [Martin "04]




Expected Utility Maximization

Remedy: Use a utility function

12 R — R :The utility function: value (profit/cost)-> utility

Expected Utility Maximization Principle: the decision maker
should choose the action that maximizes the expected utility

maximize. E|u(profit)]

=Proved quite useful to explain some popular choices that seem to
contradict the expected value criterion
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Expected Utility Maximization Principle

Expected Utility Maximization Principle: the decision
maker should choose the action that maximizes the
expected utility

« Action 1: $100
o« Action 2: $200 w.p. 0.5; $0 w.p. 0.5

M M

E[u(action 1)] T
E[u(action 2)] / E[u(action 2)]

E[u(action 1)]

100$  200% 100$  200$ ¢
Risk-averse Risk-prone

- Von Neumann and Morgenstern provides an axiomitization of the
principle (known as von Neumann-Morgenstern expected utility theoremy




Threshold Probability Maximization

® If u is a threshold function, maximizing E[[i(cost)] is equivalent to maximizing

Pr[w(cost)<I]

® minimizing overflow prob. [Kleinberg, Rabani, Tardos. STOC’97] [Goel, Indyk. FOCS’99]

® chance-constrained stochastic optimization problem [Swamy. SODA’11]

t

H(x)
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New Techniques

® A common Challenge: How to deal with/ optimize on the

distribution of the sum of several random variables.
® More often seen in the risk-aware setting (linearity of expectation
does not help)
® Previous techniques:

® Special distributions [Nikolova, Kelner, Brand, Mitzenmacher.

ESA’06] [Goel, Indyk. FOCS 99] [Goyal, Ravi. ORL09] .....
® Effective bandwidth [Klecinberg, Rabani, Tardos STOC"97]
® P [Dean, Goemans, Vondrak. FOCS’04] .....
® Discretization [Bhalgat, Goel, Khanna. SODA’11]
® Characteristic Function + Fourier Series Decomposition [L,

Deshpande. FOCS’11]
* Today: Poisson Approximation [L,Yuan STOC"13]




Threshold Probability Maximization

® Deterministic version:
* A set of element {e,}, each associated with a weight w,
® A solution § is a subset of elements (that satisfies some property)
* Goal: Find a solution § such that the total weight of the solution w(S)=2,w, is
minimized

® E.g. shortest path, minimal spanning tree, top-k query, matroid base




Threshold Probability Maximization

® Deterministic version:
* A set of element {e,}, each associated with a weight w,
® A solution § is a subset of elements (that satisfies some property)
* Goal: Find a solution § such that the total weight of the solution w(S)=2 w, is
minimized
® E.g. shortest path, minimal spanning tree, top-k query, matroid base
® Stochastic version:
® w;s are independent positive random variables
® Goal: Find a solution S such that the threshold probability
Pr{w(S) < 1] is maximized.




Threshold Probability Maximization

e Stochastic shortest path - find an s-t path P such that
Pr[w(P)<I] is maximized




Our Result

If the deterministic problem is “casy”, then for any € > 0,

we can find a solution S such that
Priw(S) <1+4+¢€] > O0OPT —¢

“Easy”: there is a PTAS for the corresponding O(1)-dim packing problem:
® Shortest path, MST, matroid base, matroid intersection, min-cut

The above result can be generalized to the expected utility maximization

problem:
maximize E[p@(X(S))] for Lipschitz utility function

® generalizes/simplies/improves the previous results in [Nikolova, Kelner, Brand,
Mitzenmacher. ESA’06] [Nikolova. APPROX’10] [Kleinberg, Rabani, Tardos.
STOC’97] [Goel, Indyk. FOCS’99] [Goyal, Ravi. ORL09] [Bhalgat, Goel,
Khanna. SODA’11] [Li, Deshpande. FOCS’11]




e

Our Results
e Stochastic shortest path : find an s-t path P such that

Pr[w(P)<I] is maximized
Uncertain length

S t

® Previous results
Many heuristics

Poly—time approximation scheme (PTAS) if (1) all edge Weights are normally

distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06]
[Nikolova. APPROX’10]

Bicriterion PTAS (Pr[w(P)<I1+8]>(1-eps)OPT) for exponential distributions
[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06]

® QOur result
Bicriterion PTAS if OPT= Const




e

Our Results

* Stochastic knapsack: find a collection S of items such that
Pr[w(S)<<I]>Y and the total profit is maximized

Each item has a deterministic profit and a

Knapsack, capacity=1

(uncertain) size

® Previous results
log(1/(1-Y))-approximation [Kleinberg, Rabani, Tardos. STOC’97]
Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS’99]

PTAS for Bernouli distributions if y= Const [Goel, Indyk. FOCS’99] [Chekuri, Khanna.
SODA’00]

Bicriterion PTAS if Y= Const [Bhalgat, Goel, Khanna. SODA’11]
® Our result

Bicriterion PTAS if y= Const (with a better running time than Bhalgat et al.)

Stochastic partial—ordered knapsack problem with tree constraints
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Algorithm?2 (based on Poisson Approx)

® Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but much simpler)

* Step 2: Reducing the problem to the multi-dim problem




Algorithm?2 (based on Poisson Approx)

® Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler)




Algorithm?2 (based on Poisson Approx)

® Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler)

0 et Y+ 2e° 1

Discretized version: X;

EEN

0 et €t + 265 1

The behaviors of X; and X; are close:
1. PriX(S) < B] < Pr[X(S) < 3 + € + O(e);
2. Pr[X(S) < 8] < Pr[X(S) < B + €] + O(e).




Algorithm?2 (based on Poisson Approx)

* Step 2: Reducing the problem to the multi-dim problem
® Heavy items: E[X;]>poly(€)

At most O(1/poly(€)) many heavy items, so we can atford enumerating
them




Algorithm?2 (based on Poisson Approx)

® Step 2: Reducing the problem to the multi-dim problem
® Heavy items: E[X;]>poly(€)
At most O(1/poly(€)) heavy items, so we can afford enumerating them
* Light items:
Fix the set H of heavy items
Each X, can be represented as a O(1)-dim vector Sg(1) (signature)
Sg(i) = (Pr[X; = €*],Pr[X; = €* + €°], ... .. )
Enumerating all O(1)-dim (budget) vectors B
* Find a set S such that S U H is feasible and
Sg(S) =YesSg()) < (1+¢)B (using the multi-dim PTAS)
(or declare there is none Ss.t. Sg(S) < B)
Return S U H for which Priw(SUH) <1 + €] is largest




Poisson Approximation

Well known: Law of small numbers
n Bernoulli r.v. X; (1-p, p)

np = const

Asn — 00,Y X; ~ Poisson(np)

0.40
o0
0.35} |
|

0.30F |

o e @
= e




Poisson Approximation

Le Cam’s theorem (rephrased):

nr.v. X; (with common support (0,1,2,3,4,...)) with signature
S8 = (PI‘[XL — 1],PI'[Xi — 2] ) )

Letsg = ).;sg
Y; arei.i.d. r.v. with distr sg/|sg|;
Y fo]]ows the compound Poisson distr ( CPD) corresponding to sg

Y = YN, Y; where N ~ Poisson(|sg|;)

Then, AQX;,Y) < Zplz where p; = Pr[X; # 0]
\L Variational distance: }
ACX,Y) =¥, | PrX = i] — Pr[Y = i]| )
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Poisson Approximation
* Le Cam’s theorem: A} X;,Y) < Zplz

® Ob: If 51 and 5, have the same signature, then
they correspond to the same CPD

* Soif );e S, pl-z and )¢ s, piz are sufficiently small,
the distributions of X(S;) and X(S,) are close

® Therefore, enumerating the signature of light items
suffices (instead of enumerating subsets)

/




Summary

The #dimension needs to be L = poly(1/€)

We solve an poly (%)—dim optimization problem

The overall running time is nP oly(1/e)

ol 1l/e
This improves the n2" y(1/<)

Khanna. SODA’11]

running time 1n [Bhalgat, Goel,

Can be easily extended to the multi-dimensional case, other

combinatorial constraints etc.
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Stochastic Knapsack

* A knapsack of capacity C
* A set of items, each having a fixed profit
e Known: Prior distr of size of each item.

e Each time we choose an item and place it in the knapsack

irrevocably
® The actual size of the item becomes known after the decision
° Knapsack constraint: The total size of accepted items <= C

® Goal: maximize E[Profit]

[L, Yuan STOCL13] /




Stochastic Knapsack

Previous work
® 5-approx [Dean, Goemans, Vondrak. FOCS’04]
® 3-approx [Dean, Goemans, Vondrak. MOR’08]
* (1+€, 1t€)-approx [Bhalgat, Goel, Khanna. SODA"11]
® 2-approx [Bhalgat 12]
® 8-approx (size&profit correlation, cancellation)
[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS"11]

Our result:

(1+€, 1+€)-approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)




Stochastic Knapsack

® Decision Iree

Exponential size!!!! (depth=n)
How to represent such a tree? Compact solution?




Stochastic Knapsack

* By discretization, we make some simplifying assumptions:

® Support of the size distribution:

Still way too many possibilities, how
to narrow the search space?




Block Adaptive Policies

* Block Adaptive Policies: Process items block by block

Key Properties:
(1) Depth=0(1)

(2) Degree=0(1)
So #nodes=0(1)
Note: O(1) depends on €

LEMMA: [Bhalgat, Goel, Khanna. SODA11] There is a block adaptive
policy that is nearly optimal (under capacity (1 + €)C) y




Block Adaptive Policies

* Block Adaptive Policies: Process items block by block

Key Properties:
(1) Depth=0(1)

(2) Degree=0(1)
So #nodes=0(1)
Note: O(1) depends on €

--‘——-__"

policy that IS nearly optlmal (under capacity (1 + €)C)

-"‘—' A\ 4 4 1 1 |




Poisson Approximation

e Each heavy item consists of a singleton block

o Light items:

® Recall if two blocks have the same signature, their size

distributions are similar

® So, enumerate Signatures! (instead of enumerating subsets)




(1.1,1,1,1.5,...)

-

Algorithm

¢ QOutline: Enumerate all block structures with a

signature associated with each node

(0.4,1.1,0,...)

(5,1,1.7,2,...) (0,0,15,2,...)

(1,1,2,...) (0,1,1,2.2,...)

O(1) nodes

Poly(n) possible
signatures for each node

So total #configuration
=poly(n)




Algorithm

2. Find an assignment of items to blocks that matches all

signatures

— (this can be done by standard dynamic program)




Algorithm

2. Find an assignment of items to blocks that matches all

signatures

— (this can be done by standard dynamic programming)
ltem 1 ltem m

ltem 4 ltem 5 It

/ﬁ

T I

\_ Onany root-leaf path, each item appears at most once

/
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Poisson Approximation-Other Applications

® Incorporating other constraints
® Size/profit correlation
e cancellation

® Bayesian Online Selection Problem with Knapsack Constraint
® Can see the actually size and profit of an item before the decision
® (1+€, 1+€)-approx (against the optimal adaptive policy)

[Chawla, Hartline, Malec, Sivan. STOC10] [Kleinberg,
Weinberg. STOC12]
v Close relations with
v Applications in multi-parameter mechanism design

e Stochastic Bin Packing

[L, Yuan STOCL13] /




Conclusion

e Replacing the input random variable with its expectation typically is

NOT the right thing to do
® Carry the randomness along the way and optimize the expectation of the
objective
* Optimizing the expectation may not be the right thing to do neither
® Be aware of the risk
® We can often reduce the stochastic optimization problem (with
independent random variables) to a constant dimensional packing

problem

® Stochastic optimization problems with dependent random variables
are typically extremely hard (i.e., inapproximable)
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