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Uncertain Data 
 Uncertain data is ubiquitous  

 Data Integration and Information Extraction 

 Sensor Networks; Information Networks 

 

 

 
 

Sensor ID Temp. 

1 Gauss(40,4) 

2 Gauss(50,2) 

3 Gauss(20,9) 

… … 

Sensor network 
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OCR (Optical Character Recognition) data.  

Stochastic Finite Automata 
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Uncertain Data 
 

 

 Future data is destined to be uncertain 

 



Dealing with Uncertainty 
 Handling uncertainty is a very broad topic that spans 

multiple disciplines 
 Economics / Game Theory 

 Finance  

 Operation Research 

 Management Science 

 Probability Theory / Statistics 

 Psychology 

 Computer Science 

Today: Problems in Combinatorial Optimization 



Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 
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Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 

 Ignoring uncertainty (“replace by the expected values” heuristic) 

 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 

 But the true answer is (as n goes to inf)  

                     𝜁 3 =  1/𝑖3∞
𝑖=1 <2  

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans] 



A Similar Problem 
 N points: i.i.d. uniform[0,1]×[0,1] 
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 Question: What is E[MST] ? 

 

 Answer:  𝜃( 𝑛)  [Frieze, Karp, Steele, …] 

 The problem is similar, but the answer is not similar………… 



A Generalization 
 The position of each point is random (non-i.i.d) 

 A model in wireless networks 

 

 

 

 

 

 

 Question: What is E[MST] ? 

 Of Course, there is no close-form formula 

 Need efficient algorithms to compute E[MST] 

 

0.1 0.5 

0.4 

[Huang, L. ArXiv 2012] 



MST over Stochastic Points 
 The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11] 

 So, let us focus on approximating the value 

 Attempt one: list all realizations? (Exponentially many) 

 Attempt two: Monte Carlo (variance can be very large) 

 

 

 

Small prob, 

large value 

PDF of a random var 



MST over Stochastic Points 
 Our approach: (sketch) 

 Law of total expectation:  

𝐄 𝑋 = Pr 𝑌 = 𝑦 𝐄[𝑋 ∣ 𝑌 = 𝑦]

𝑦

 

 

 

 

How to choose Y? 

 

A carefully chosen 

random event Y 

Easy to compute Low variance Hopefully, we have 



MST over Stochastic Points 
 The “home set” technique: 

 

 
home 

(1)Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 
(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 
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𝐄 𝑀𝑆𝑇 = Pr 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒]

𝑦

 

≈ Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄 𝑋 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 + 

 Pr 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] 
 



Let us start to optimize: 
      Online stochastic optimization 



Stochastic Matching 
Stochastic Matching  

Given: 
 Existential prob. pe  for each edge e. 

 Patience level tv for each vertex v. 

 Probing e=(u,v): The only way to know the existence of e.  
 We can probe (u,v) only if tu>0, tv>0 . 

 If  e indeed exists, we should add it to our matching. 

 If not, tu =tu-1 , tv =tv-1. 

 Objective: Find a probing strategy to maximize the expected 
weight of the matching 

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra. ESA’10] 



Stochastic Matching 
Stochastic Matching  

Given: 
 Existential prob. pe  for each edge e. 

 Patience level tv for each vertex v. 

 Probing e=(u,v): The only way to know the existence of e.  
 We can probe (u,v) only if tu>0, tv>0 . 

 If  e indeed exists, we should add it to our matching. 

 If not, tu =tu-1 , tv =tv-1. 

 Objective: Find a probing strategy to maximize the expected 
weight of the matching 

 Our Results: we give constant approx. algo. for the weighted 
version, resolving an open question posed in previous work 

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra. ESA’10] 



Stochastic Matching 
Motivation: Online dating 

 Existential prob. pe : estimation of the success prob. 
based on users’ profiles.  
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Stochastic Matching 
Motivation: Online dating 

 Existential prob. pe : estimation of the success prob. based on 
users’ profiles.  

 Probing edge e=(u,v) : u and v are sent to a date.   

 Patience level: obvious. 

 

 

 

 

 

 Other motivations: Kidney exchange, online ad assignment 

 

 

 

 



A LP Upper Bound 
 Variable ye : Prob. that any algorithm probes e.    

At most 1 edge in ∂(v) is matched 

At most tv edges in ∂(v) are probed 

xe: Prob. e is matched 

The LP value is an upper bound of the optimal expected value 



A Simple 8-Approximation 

An edge (u,v) is safe if tu>0, tv>0  and neither u nor v is matched 

 

Algorithm: 

 Pick a permutation π on edges uniformly at random   

 For each edge e in the ordering π, do:     
  If e is not safe then do not probe it.     

 If  e is safe then probe it w.p. ye/α. 

 



A Simple 8-Approximation 

An edge (u,v) is safe if tu>0, tv>0  and neither u nor v is matched 

 

Algorithm: 

 Pick a permutation π on edges uniformly at random   

 For each edge e in the ordering π, do:     
  If e is not safe then do not probe it.     

 If  e is safe then probe it w.p. ye/α. 

 

• If e is always safe, we can recover the LP value  𝑤𝑒𝑦𝑒𝑝𝑒𝑒  
• We can show this algorithm can recover 1/8 of the LP value 
      by proving Pr[e is safe]>=1/8 



A Simple 8-Approximation 

Analysis: 

Lemma:  For any edge (u,v), at the point when (u,v) is 
considered  under π,  Pr(u loses its patience) ≤1/2α . 

 Proof: Let U be #probes incident to u and before e. 
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A Simple 8-Approximation 

Analysis: 

Lemma:  For any edge e=(u,v), at the point when (u,v) is 
considered  under π,  Pr(u is matched) ≤1/2α . 

Proof: Let U be #matched edges incident to u and before e. 

 

 

 

 

 

 

By the Markov  inequality: 

 

 



A Simple 8-Approximation 

Analysis: 

Theorem: The algorithm is a 8-approximation. 

 Proof:  When e is considered,  

Pr(e is not safe) ≤ Pr(u is matched)+ Pr(u loses its patience)+           
         Pr(v is matched)+ Pr(v loses its patience)  

     ≤ 2/α 
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A Simple 8-Approximation 

Analysis: 

Theorem: The algorithm is a 8-approximation. 

 Proof:  When e is considered,  

Pr(e is not safe) ≤ Pr(u is matched)+ Pr(u loses its patience)+           
         Pr(v is matched)+ Pr(v loses its patience)  

     ≤ 2/α 

Therefore, 

  

Recall Σe we ye pe is an upper bound of OPT 

Can be improved to a 3-approximation with a more careful algorithm 



Stochastic online matching 
 

 A set of items and a set of buyer 
types. A buyer of type b likes item 
a with probability pab.   
 G(buyer types, items): Expected 

graph) 

 The buyers arrive online.  
 Her type is an i.i.d. r.v. . 

 The algorithm shows the buyer (of 
type b)  at most t items one by 
one. 

 The buyer buys the first item she 
likes or leaves without buying. 

 Goal: Maximizing the expected 
number of satisfied users. 
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Expected graph [Bansal, Gupta, L, Mestre, Nagarajan, Rudra. Algorithmica ’11] 



Bayesian Online Selection Problem 
 A knapsack of capacity C 

 A set of items.  

 Known: Prior distr of (size, profit) of each item. 

 Items arrive one by one 

 Can see the actually size and profit of an item. But have 
to decide whether to accept the item immediately 

 Knapsack constraint: The total size of accepted items <= C 

 

 Goal: maximize E[Profit]  

[L, Yuan. ArXiv 2012] 

 Generalization of the Prophet inequalities in optimal control  

 Application in multi-parameter  mechanism design 



Bayesian Online Selection Problem 
 We can get a constant approx using the same LP 

technique (simple exercise) 

We can get a 1+𝜖 –approximate optimal policy 

We developed a new technique, called Poisson approximation technique 
 
The technique can be used in many other problems: 
    Stochastic knapsack problem 
    Stochastic Bin Packing Problem 
    Stochastic Shortest Path ……. 

[L, Yuan. ArXiv 2012] 



A More Fundamental Issue 



Inadequacy of Expected Value 

 Stochastic Optimization  

 Most common objective: Optimizing the expected value   

 

 Inadequacy of expected value: 

 Unable to capture risk-averse or risk-prone behaviors 
 Action 1: $100    VS   Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

 Risk-averse players prefer Action 1 

 Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play 
Double-or-Nothing) 



Inadequacy of Expected Value 

 Be aware of risk! 

 

 

 

 

 

 

 

 



Inadequacy of Expected Value 
 St. Petersburg paradox  

 You pay x dollars to enter the game 

 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 



Inadequacy of Expected Value 
 St. Petersburg paradox  

 You pay x dollars to enter the game 

 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 

 How much  should x be? 

 Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+……= infinity 

 Few people would pay even $25 [Martin ’04] 



Expected Utility Maximization Principle 

Expected Utility Maximization Principle: the decision maker 
should choose the action that maximizes the expected utility 

Remedy: Use a utility function 

 
Proved quite useful to explain some popular choices that seem to 
contradict the expected value criterion   
An axiomatization of the principle (known as von Neumann-
Morgenstern expected utility theorem). 

 



Expected Utility Maximization Principle 

 The utility function: profit-> utility 

μ 

Risk-averse 

200$ 100$ 

E[μ(action 1)] 

E[μ(action 2)] 

$ 

Risk-prone 

200$ 100$ 

μ 

E[μ(action 2)] 

E[μ(action 1)] 

 Action 1: $100     

 Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

Expected Utility Maximization Principle: the decision maker 

should choose the action that maximizes the expected utility 

𝑢:  𝑅 → 𝑅 : 



Problem Definition 
 Deterministic version: 

 A set of element {ei}, each associated with a weight wi 

 A solution S is a subset of elements (that satisfies some property) 

 Goal: Find a solution S such that the total weight of the solution 
w(S)=ΣiєSwi is minimized 

 E.g. shortest path, minimal spanning tree, top-k query, matroid base 

 Stochastic version: 

 wis are independent positive random variable 

 μ(): R+→R+ is the utility function (assume limx →∞μ(x)=0) 

 Goal: Find a solution S such that the expected utility E[μ(w(S))] is 
maximized 

 

[L. , Deshpande. FOCS’11] 



Our Results 
 THM: If the following two conditions hold 

 (1) there is a pseudo-polynomial time algorithm for the 
exact versionof deterministic problem, and 

 (2) μ is bounded by a constant and satisfies Holder 
condition |μ(x)- μ(y)|≤ C|x-y|α for constant C and α≥0.5,  

 then we can obtain in polynomial time a solution S 
such that E[μ(w(S))]≥OPT-ε, for any fixed ε>0 

 Exact version: find a solution of weight exactly K 
 Pseudo-polynomial time: polynomial in K 
 Problems satisfy condition (1): shortest path, minimum 
spanning tree, matching, knapsack. 



Our Results 
 Stochastic shortest path : find an s-t path P such that 

Pr[w(P)<1] is maximized 

 

 

 Previous results 
 Many heuristics 

 Poly-time approximation scheme (PTAS) if (1) all edge weights are 
normally distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand, 
Mitzenmacher. ESA’06] [Nikolova. APPROX’10] 

 Bicriterion PTAS for exponential distributions [Nikolova, Kelner, Brand, 
Mitzenmacher. ESA’06] 

 Our result 
 Bicriterion PTAS (Pr[w(P)<1+δ]>(1-eps)OPT) if OPT=  Const 

s t 

Uncertain length 



Our Results 
 Stochastic knapsack: find a collection S of items such that 

Pr[w(S)<1]>γ and the total profit is maximized 
 
 
 

 Previous results 
 log(1/(1- γ))-approximation [Kleinberg, Rabani, Tardos. STOC’97] 

 Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS’99] 

 PTAS for Bernouli distributions if γ= Const [Goel, Indyk. FOCS’99] [Chekuri, 
Khanna. SODA’00] 

 Bicriterion PTAS if γ= Const [Bhalgat, Goel, Khanna. SODA’11] 

 Our result 
 Bicriterion PTAS if γ= Const (with a better running time than Bhalgat et al.) 

 Stochastic partial-ordered knapsack problem with tree constraints 

Knapsack, capacity=1 
Each item has a deterministic profit and a 

(uncertain) size  
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Approx Algo for NP-hard problems 

Graph problems 

Scheduling Problems 

Data structures 

Stochastic Optimization 
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