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e

Uncertain Data

e Uncertain data is ubiquitous

e Data Integration and Information Extraction
e Sensor Networks; Information Networks
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Uncertain Data

Uncertain

link

The make of the elaim..
Ford:Fusion 16 SEL, .
Detroit, MI on the ..
2011. The details of ..
have been verified by ..

agent; and the parts ..
[A]

SELECT DocId, Loss
7= | FROM Claims

% 4 | WHERE Year = 2010 AND
DocData LIKE '%Ford%';

[C]

[

Stochastic Finite Automata ]

OCR (Optical Character Recognition) data.




Uncertain Data

e Future data is destined to be uncertain
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Dealing with Uncertainty

e Handling uncertainty is a very broad topic that spans
multiple disciplines
e Economics / Game Theory
e Finance
e Operation Research
e Management Science
e Probability Theory / Statistics
e Psychology
e Computer Science

Today: Problems in Combinatorial Optimization




Ignoring uncertainty is not the right thing to do

e A undirected graph with n nodes

e The length of each edge: i.i.d. Uniform|[0,1]

e Question: What is E[MST]?
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* |gnoring uncertainty (“replace by the expected values” heuristic)
e each edge has a fixed length 0.5
e This gives a WRONG answer 0.5(n-1)




Ignoring uncertainty is not the right thing to do

e A undirected graph with n nodes
e The length of each edge: i.i.d. Uniform|[0,1]

e Question: What is E[MST]?

* |gnoring uncertainty (“replace by the expected values” heuristic)
e each edge has a fixed length 0.5
e This gives a WRONG answer 0.5(n-1)

e But the true answer is (as n goes to inf)

((3) = X2 1/i%<2

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]




A Similar Problem
e N points:i.i.d. uniform[0,1] X [0,1]

e Question: What is E[MST] ?




A Similar Problem
e N points:i.i.d. uniform[0,1] X [0,1]

e Question: What is E[MST] ?

o Answer: 8(x/n) [Frieze, Karp, Steele, ...]

The problem is similar, but the answer is not similar............




A Generalization

e The position of each point is random (non-i.i.d)
* A model in wireless networks

e Question: What is E[MST] ?
e Of Course, there is no close-form formula

* Need efficient algorithms to compute E[MST]
\_ [Huang, L. ArXiv 2012]




MST over Stochastic Points

e The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11]

e So, let us focus on approximating the value

o Attempt one: list all realizations? (Exponentially many)
o Attempt two: Monte Carlo (variance can be very large)
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MST over Stochastic Points

e Our approach: (sketch)
e Law of total expectation:

E[X] =2Pr[/Y — y]E[X | Y = y]
y

A carefully ¢chosen
random event Y

Hopefully, we have  Easy to compute Low variance

How to choose Y?




MST over Stochastic Points

* The “home set” technique:

(1)Pr[all nodes are at home]| = 1
(2) E[MST | all node are at home] can be estimated (due to low variance)




MST over Stochastic Points

* The “home set” technique:

(1)Pr[all nodes are at home]| = 1
(2) E[MST | all node are at home] can be estimated (due to low variance)

E[MST] = z Pr[y nodes are at home] E[X | y nodes are at home]

y
~ Prlall nodes are at home] E[ X | all nodes are at home | +

Pr[n — 1 nodes are at home] E[X | n — 1 nodes are at home]




Let us start to optimize:
Online stochastic optimization




Stochastic Matching

Stochastic Matching

Given:

 Existential prob. p, for each edge e.
e Patience level t, for each vertex v.

* Probing e=(u,v): The only way to know the existence of e.
e We can probe (u,v) only if t >0, t >0
e If eindeed exists, we should add it to our matching.
e Ifnot, t,=t-1,t, =t -1.

e Objective: Find a probing strategy to maximize the expected
weight of the matching




Stochastic Matching
Stochastic Matching

Given:
 Existential prob. p, for each edge e.
e Patience level t, for each vertex v.

* Probing e=(u,v): The only way to know the existence of e.
e We can probe (u,v) only if t >0, t >0
e If eindeed exists, we should add it to our matching.
e Ifnot, t,=t-1,t, =t -1.
e Objective: Find a probing strategy to maximize the expected
weight of the matching

e Our Results: we give constant approx. algo. for the weighted
version, resolving an open question posed in previous work




Stochastic Matching

Motivation: Online dating

e Existential prob. p, : estimation of the success prob.
based on users’ profiles.

Section 12: Communication Style
Please use the scale below to rate how well you believe each of the following words generally describes you,
not at all somewhal vory wo'
1. |ty to accommodate the other person's OI0101I® 101010
position
2. |iry 1o understand the other person OI1OI101CIOM@ 10O
3. |ty 1o be respectful of all opinions different OO 10O @ OO0
from my own
4. |1y to resolve the conflict quickly 3 e siliisiieil_Nis

7~ £~ ' ' - ‘&
5. |iry to avoid disagreement - O o @ e -




Stochastic Matching

Motivation: Online dating

e Existential prob. p, : estimation of the success prob.
based on users’ profiles.

® Probing edge e=(u,v) : uand v are sent to a date.

This is the
ugliest blind date
I've ever seen!




Stochastic Matching

Motivation: Online dating

e Existential prob. p, : estimation of the success prob. based on
users’ profiles.

® Probing edge e=(u,v) : u and v are sent to a date.
e Patience level: obvious.

e Other motivations: Kidney exchange, online ad assignment

-




A LP Upper Bound

* Variable y, : Prob. that any algorithm probes e.

maximize E We * Te

eckE
subject to Z z.< 1 YoeV At most 1 edge in 8(v) is matched
ecd(v)
Z Ye< t, YoEV At most t, edges in d(v) are probed
e€d(v)

To=pe-Yo Ve € E x,: Prob. e 1s matched
e £ =

0<ye<1 VecE

The LP value is an upper bound of the optimal expected value




A Simple 8-Approximation

An edge (u,v) is safe if t >0, t >0 and neither u nor v is matched

Algorithm:

* Pick a permutation 77 on edges uniformly at random

e For each edge e in the ordering T, do:
e |f eis not safe then do not probe it.
e If eis safe then probe it w.p. y_/a.




A Simple 8-Approximation

An edge (u,v) is safe if t >0, t >0 and neither u nor v is matched

Algorithm:

* Pick a permutation 77 on edges uniformly at random

e For each edge e in the ordering T, do:
e |f eis not safe then do not probe it.
e If eis safe then probe it w.p. y_/a.

* If e is always safe, we can recover the LP value },, w,y,p,
* We can show this algorithm can recover 1/8 of the LP value
_ by proving Pr[e is safe]>=1/8

/




A Simple 8-Approximation

Analysis:

Lemma: For any edge (u,v), at the point when (u,v) is
considered under it, Pr(u loses its patience) <1/2a .

Proof: Let U be #probes incident to u and before e.




A Simple 8-Approximation

Analysis:
Lemma: For any edge (u,v), at the point when (u,v) is
considered under it, Pr(u loses its patience) <1/2a .
Proof: Let U be #probes incident to u and before e.
E[U] = > _.ca(u) Prledge e appears before (u,v) in m AND e is probed]
= ZEEH[U} Pr[edge e appears before (u,v) in m AND e is safe] - %=
< Eﬂeﬂ[u} Pr[edge e appears before (u,v) in 7] -

_ 1 ye £
= Dicco(u) 2 S o

a —
E Ye = To
ecd(wv)




A Simple 8-Approximation

Analysis:

Lemma: For any edge (u,v), at the point when (u,v) is
considered under it, Pr(u loses its patience) <1/2a .

Proof: Let U be #probes incident to u and before e.

E[U] = > _.ca(u) Prledge e appears before (u,v) in m AND e is probed]
= ZEEH[U} Pr[edge e appears before (u,v) in m AND e is safe] - %=
< ZEEE[H} Pr[edge e appears before (u,v) in 7] -

Ly

_ 1, We
o zeeﬂ[n} 2 < 2o

D> ye< th

ecd(v)
By the Markov inequality: prry > 4,1 < E[U]
—_— " R t.u

<1
20

_




A Simple 8-Approximation

Analysis:
Lemma: For any edge e=(u,v), at the point when (u,v) is
considered under i, Pr(uis matched) <1/2a .

Proof: Let U be #matched edges incident to u and before e.

E[U] = 3 _.ca(u) Priedge e appears before (u, v) in m AND e is matched]
= Zséﬁ{u} Pr{edge e appears before (u, v) in m AND e is safe] - = - p,

< D eea(u) Priedge e appears before (u,v) in ] - 2 - p,

— 1, e | 1
=2.ccow)2 a P = ia

D Tes 1
ecd(v)

By the Markov inequality: PriU > 1] <E[U] < !

2¢y
-




A Simple 8-Approximation

Analysis:
Theorem: The algorithm is a 8-approximation.
Proof: When e is considered,

Pr(e is not safe) < Pr(u is matched)+ Pr(u loses its patience)+
Pr(v is matched)+ Pr(v loses its patience)

<2/




A Simple 8-Approximation

Analysis:
Theorem: The algorithm is a 8-approximation.
Proof: When e is considered,

Pr(e is not safe) < Pr(u is matched)+ Pr(u loses its patience)+
Pr(v is matched)+ Pr(v loses its patience)

<2/a
. . Ye
Therefore, E[Our Solution] = ) " w, Pr(e is safe) = p,

Ck

=

1

1 — —} ngyepe

1
> SOPT (o =4)

{ Recall 2, w, y. p, is an upper bound of OPT /




A Simple 8-Approximation

Analysis:
Theorem: The algorithm is a 8-approximation.
Proof: When e is considered,

Pr(e is not safe) < Pr(u is matched)+ Pr(u loses its patience)+
Pr(v is matched)+ Pr(v loses its patience)

<2/
Therefore, E[Our Solution] = Y " w, Pr(e is safe) i—e De
=
1
1 — —) zweyepe
~ 1 AT f - AN

Can be improved to a 3-approximation with a more careful algorithm

Recall2_ w, y, p, Is an upper bound of OPT /




A set of items and a set of buyer

types. A buyer of type b likes item

a with probability p,,.

e G(buyer types, items): Expected
graph)

The buyers arrive online.

e Hertypeisani.i.d.rv..

The algorithm shows the buyer (of
type b) at most t items one by
one.

The buyer buys the first item she
likes or leaves without buying.

Goal: Maximizing the expected
number of satisfied users.

> Expected graph

/




Bayesian Online Selection Problem

e A knapsack of capacity C

e A set of items.

e Known: Prior distr of (size, profit) of each item.
e |[tems arrive one by one

e Can see the actually size and profit of an item. But have
to decide whether to accept the item immediately

e Knapsack constraint: The total size of accepted items <= C

e Goal: maximize E[Profit]

v Generalization of the Prophet inequalities in optimal control
v Application in multi-parameter mechanism design

[L, Yuan. ArXiv 2012] /




Bayesian Online Selection Problem

e We can get a constant approx using the same LP
technique (simple exercise)

We can get a 1+€ —approximate optimal policy

We developed a new technique, called Poisson approximation technique

The technique can be used in many other problems:
Stochastic knapsack problem
Stochastic Bin Packing Problem
Stochastic Shortest Path .......

[L, Yuan. ArXiv 2012] /




A More Fundamental Issue




Inadequacy of Expected Value

e Stochastic Optimization

e Most common objective: Optimizing the expected value

* Inadequacy of expected value:

e Unable to capture risk-averse or risk-prone behaviors
Action 1: $100 VS Action 2: $200 w.p. 0.5; SO w.p. 0.5
Risk-averse players prefer Action 1

Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play
Double-or-Nothing)




s

Inadequacy of Expected Value

® Be aware of risk!

Flaw of averages (weak form): Flaw of averages (strong form):

The
State of
the drunk

at his AVERAGE
position
is ALIVE.

Mean correct,
Variance ignored

But the AVERAGE state
of the drunk is DEAD

AVERAGES

Wrong value of mean:
f(E[X]) # E[f(X)]
21




Inadequacy of Expected Value

e St. Petersburg paradox
You pay x dollars to enter the game
» Repeatedly toss a fair coin until a tail appears
o payoff=2k where k=#heads




Inadequacy of Expected Value

e St. Petersburg paradox
You pay x dollars to enter the game
» Repeatedly toss a fair coin until a tail appears
o payoff=2k where k=#heads

How much should x be?
o Expected payoff =1x(1/2)+2x(1/4)+4x(1/8)+......= infinity
» Few people would pay even $25 [Martin '04]




Expected Utility Maximization Principle

Remedy: Use a utility function

12 R — R :The utility function: value (profit/cost)-> utility

Expected Utility Maximization Principle: the decision maker
should choose the action that maximizes the expected utility

maximize. E|u(profit)]

=Proved quite useful to explain some popular choices that seem to
contradict the expected value criterion

«An axiomatization of the principle (known as von Neumann-
Morgenstern expected utility theorem).




Expected Utility Maximization Principle
u: R - R . The utility function: profit-> utility

Expected Utility Maximization Principle: the decision maker
should choose the action that maximizes the expected utility

« Action 1: $100
« Action 2: $200 w.p. 0.5; $0 w.p. 0.5

H K

E[u(action 1)] T
E[u(action 2)] / E[u(action 2)]

E[u(action 1)]

7z

I I - I

100$  200% 100$  200$ ¢
Risk-averse Risk-prone




Problem Definition

e Deterministic version:
* A set of element {e;}, each associated with a weight w,
e A solution S is a subset of elements (that satisfies some property)
e Goal: Find a solution S such that the total weight of the solution
w(S5)=2 . .w; is minimized
e E.g. shortest path, minimal spanning tree, top-k query, matroid base
e Stochastic version:
e ws are independent positive random variable
e u(): R*->R*is the utility function (assume lim, _,_u(x)=0)
e Goal: Find a solution S such that the expected utility E[u(w(S))] is
maximized

[L., Deshpande. FOCS’11]




Our Results

e THM: If the following two conditions hold

® (1) thereis a pseudo-polynomial time algorithm for the
exact versionof deterministic problem, and

e (2) nis bounded by a constant and satisfies Ho/der
condition |u(x)- u(y)| < C|x-y|< for constant C and a=0.5,

then we can obtain in polynomial time a solution S
such that E/u(w(S))]20OPT-¢, for any fixed >0

+ Exact version: find a solution of weight exactly K

¢ Pseudo-polynomial time: polynomial in K

¢ Problems satisfy condition (1): shortest path, minimum
spanning tree, matching, knapsack.




e

Our Results
e Stochastic shortest path : find an s-t path P such that

Pr{w(P)<1] is maximized
Uncertain length

S t

e Previous results

Many heuristics

Poly-time approximation scheme (PTAS) if (1) all edge weights are

normally distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand,
Mitzenmacher. ESA’06] [Nikolova. APPROX’10]

Bicriterion PTAS for exponential distributions [Nikolova, Kelner, Brand,
Mitzenmacher. ESA’06]

e Our result
Bicriterion PTAS (Pr[w(P)<1+6]>(1-eps)OPT) if OPT= Const




4 N

Our Results

e Stochastic knapsack: find a collection S of items such that
Pr[w(S)<1]>y and the total profit is maximized

Each item has a deterministic profit and a

Knapsack, capacity=1

(uncertain) size

e Previous results
log(1/(1- y))-approximation [Kleinberg, Rabani, Tardos. STOC’97]

Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS’99]

PTAS for Bernouli distributions if y= Const [Goel, Indyk. FOCS’99] [Chekuri,
Khanna. SODA’00]

Bicriterion PTAS if y= Const [Bhalgat, Goel, Khanna. SODA’11]
e Our result

Bicriterion PTAS if y= Const (with a better running time than Bhalgat et al.)
Stochastic partial-ordered knapsack problem with tree constraints

- /
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