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Why Deep Neural Networks Work So Well?
« Tremendous success in practice

« Theory, several exciting recent results (still not so satisfying)
All Rahimi, winner of the Test-of-Time award at a recent NIPS conference:
“Machine learning has become alchemy.”

Yann LeCun
December 6 at 8:57am - @

Th e Ra h | m | _ LeCu n d e bate . My take on Ali Rahimi's "Test of Time" award talk at NIPS.

Ali gave an entertaining and well-delivered talk. But | fundamentally
disagree with the message.

The main message was, in essence, that the current practice in machine
learning is akin to "alchemy" (his word).

It's insulting, yes. But never mind that: It's wrong!




Theory of Deep Leammg

0 Eric Xing added 3 new photos.
10hrs+ @

(picture from a friend) This is a sad scene at NIPS 2017. Being alchemy is
certainly not a shame, not wanting to work on advancing to chemistry is
a shame!
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Judea Pearl, 2011 Turing award winner

Develop theory of nonconvex learning and deep learning
* Understand what happens in the blackbox

Use theory to develop better algorithms
Motivate important theoretical/mathematical questions
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The mathematics of machine learning and deep learning — Sanjeev Arora — ICM2018



Why Deep Neural Networks Work So Well?

» Convex Learning (linear, logistic, SVM etc.)
» Convex objectives

« Optimization (optimal rate, well studied)
« Generalization (PAC, VC-dimension, Rademacher

Complexity, Margin bounds)
* €ITgep & 0(\/ complexity/n)
 Traditional complexity measure > #parameters >> n
» Nonconvex
- Deep Learning, topic modeling, matrix/tensor completion
» Optimization
« Traditional learning theory does not suffices

Understanding deep learning requires rethinking generalization, ICLR 17 best paper




Why Deep Neural Networks Work So Well?

Mysteries:
« QOver-parametrized (traditional theories do not work directly)
« Highly Nonconvex, many local/global minima
« Commonly believed that the training algorithms (gradient-based
algorithms) play important roles (not just the network architectures)
 Algorithm-dependent generalization
« Implicit bias (towards local/global min with interesting properties)
» Inductive bias
« Why CNN works so well for image data?
« Many useful tricks
« Dropout, batchnorm, layernorm, initialization
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Generallzatlon error

Measure how well a hypothesis obtained from the training data can generalize to a new test

data point
* A central concept in machine learning
«  Well studied in convex setting [uniform convergence, ERM, huge literature]

Formal definition:

err,,, = ESE [T (A(S)) - T(A(S),S)]

Tralnlng daﬁ /_{pullation loss: ) /—/l ™
v Z,) ini

S (z,,2,, f(w)=E,[f(w,2)] Tralnlln% loss:
This is what we truly f(W,S)ZHZ f(w,z)
Learnlng algorithm \__want to minimize __/ This is what vvelzclzan optimize
- in practice, using training data

- /




Generalization error

* Classical learning theory
* VC-dimension, Rademacher Complexity, etc

€lMTgen = 0(\/ complexity/n)
* Only depends on the complexity of the hypothesis class

* Traditional complexity measure > #parameters >> n

* We need data dependent bound: Otherwise, we can't
explain the random label experiment [Zhang et al.]
(next page)



Understanding deep learning requires rethinking generalization
[Zhang et al. 106]

Random label experiments: choose a random label for each image
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(a) learning curves (c¢) generalization error growth

Previous Argument:
Random-labeled instances requires more time to train, hence worse generalization

Training faster, generalize better [Hardt et al. 15][Mou et al. 18]

(generalization bound only depends on T)
What data characteristics makes random labeled data different from normal data?

Several other perspectives (e.g., [Bartlettetal. 17]....... [Arora et al. 19][Oymak et al. 19])



Related Work

Generalization error in nonconvex settings/Deep learning
« Random label experiment [Zhang et al. 16]
* Flat/Sharp local min [Kerskar et al. 16] [Dinh et al. 17]
 Norm/Margin based [Neyshabur et al. 17][Bartlett et al. 17][Wei et al. 18]
« Rademacher complexity [Kawaguchi et al. 17]

» PAC Bayesian [Neyshabur et al. 17, London 17, Mou et al. 18]

« Compression based [Brutzkus et al. 17][Arora et al. 18]

« Information Bottlenek [Shwartz-Ziv and Tishby 17]

« Algorithmic stability: Training faster, generalize better [Hardt et al.
15][Mou et al. 18][Pensia et al. 18]

» QOverparametrization [Brutzkus et al. 17][Li et al. 18] [Du et al. 18] [Allen-Zhu
et al. 18][Alon et al. 18] [Arora et al. 19]
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SGD and SGLD

GD/SGD wll\0>t0(:hastic) gradient 1

Wi <= W1 — veg¢ (["I’;t — 1)

The most popular algorithm for nonconvex objectives.
May be difficult to analyze due to the noise structure.

SGLD (Stochastic Gradient Langevin Dynamics)

r T T G _
Wy < W1 — vege(Wi—_1) - \/%N (0,1y)

With the extra Gaussian noise, the theoretical analysis can be much easier sometimes
The Gaussian noise Is useful sometimes in practice (sometimes not) [Zhu et at. 2019]



SGLD

The continuous case (Langevin Monte Carlo)

Langevin dynamics: dw(t) = ~7f (wydt + J2/BdB(t)
Stationary distribution: 77(X) oc e™#' %

—— density of x

Related to Bayesian inference [Welling, Teh. 11]....

It hits a (nearly) stationary point in poly-time [Zhang et al. 17][Du et al. 19]

Excess risk is small when the distr close to stationary [Raginsky et al. 17]
(but it may take exponential time to mix)
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Bayes-Stability Framework

A new framework combining algorithm stability and some ideas from
PAC Bayesian

P : prior distr, independent of training data S
Q : distribution of W, for a given dataset S

an < E (7

Theorem Assuming the loss is bounded by C, the generalization
can be bounded by

°CE, [\/QKL(P, Qz)] or 2CE, [\/QKL(QEEP)]




Our Result

§ . . o
SGLD with mini batch Wi Wi1 —v:9:(Wi—1) + 7%N (0, 14)

Theorem

Suppose loss function f is C-bounded. The Batch size is less equal to n/2,
learning rate is y;.
The generalization error of SGLD can be bounded by

T |
() . 1 n R 2
eI pen — O (— £ [ E T—;gﬂ(t)]) 8e(t) = Ew~w, ,[3 D iy IVf(w,2:)l]5]

T) ‘Tr'u T
\5 D | = 0}

* Independent of #parameters
 Typically, T < 0(n?)
e Larger 0 is good for generalization, but hurts optimization

Average Gradient Norm wrt training data/population
along the optimization path

One cannot obtain such bound using the standard stability framework




Comparison with previous results
Previous bound for SGD in [Hardt et al. ICML16]

2
« Convex: 0(%& Ye)

1

. Nonconvex: O(T' Be+1i/n) (step size y, < c/t, B-smooth)

Typical practice in deep learning: the constant step size for several
epochs, then decrease the step size, and then repeat. So the above
assumption doesn't really apply




Comparison with previous results

Previous approach in [Mou et al. COLT181 (only for b=1)

. _ y 2 C
Their bound= O (%’ \/ D —35) eITgen = 0 | —4| E [
t TL \ S~Pm P—

L: Worst case Lipschitz constant J
Unknown, very large for NN
Their technique:

« Interpolate SGLD steps using SDE
« Use Fokker-Planck to derive a bound for oH(W,, W) /ot

oP,
E:Apt‘l'V'(PtVf)

« Using FP, we can only get information about the distr P, (only) at time ¢

* Hence, it is a pointwise proof (doesn’t work if the final output dependent on the path)

« In practice, we take the average of all steps, or the average of the suffix of certain
length [e.g., Shamir&Zhang]

(]~
CYE
':,{:
~
T B

We can obtain their result with a much simpler proof, and our proof is pathwise.



Comparison with previous results

In practice, we take the average of all steps, or the average of the suffix
of certain length [e.g., Shamir&Zhang]

Previous bound in [Pensia et al. ISIT18] (only for b=1)
Pathwise analysis, works for the averaging schemes.

Their Bound:
O (\/1 (S; W) /n) < 0(+/X¥?/n) (only scales with 1/y/n)




Some additional results

Our bounds

* Proof simpler

« Work for arbitrary averaging scheme (pathwise)

« Easily extended to momentum, aceleration and other
variants (e.g., Entropy-SGD [Chaudhari et al. 2016])

« Extended to other continuous noises (log-Lipschitz)

» (Can better explain the experiments in [Zhang et al. 2016]



Generalization Error
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Bayes-Stability bound (SGLD)
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Entropy-SGD [Pratik et al. 2017]

/ 1 / /
Local entropy: f,(w) = —log f exp (—f(w ) — 5 lw—w ||2) dw

argmin — log (Gy # e_f(w))

w
%
1.5 ¥
o, 105
- F(x,2x10*

Gaussian kernel focuses on the
of variance Yy neighborhood of W 10| %
Difficult to estimate the gradient of Local entropy: 05
« use MCMC y
* The resulting algorithm is similar to SGLD -
« We can show similar generalization bound 3 i

Picture from [Pratik et al.]

ElMgen = ZC\/% KL(\NT,L+1’WT’,L+1) — [ \/7 VTLJ
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Implicit Bias

« A traditional wisdom in ML
« Many models tend to overfit if you train longer (increase the
complexity of the model)
« Trick: Early Stopping or adding |2 —regularizations (capacity control)
 Mystery in DL: Early stopping/ |2-regularization is not so useful.
* For DNN, the training objective has many global minima.
« (For overparameterized super-wide NN, there is a global optimal near
every initialization point

* The optimization algorithm may implicitly bias the solutions to global
minima with special properties.
 Implicit bias is particularly important in learning deep neural networks
as “it introduces effective capacity control not directly specified in
the objective”



Related Work

For 2-layer overparametrized network (with leakyRelLU activation and linearly
separable data), [Brutzkus et al. 1/] show SGD can find global optimum for hinge
loss.

For (deep) linear logistic regression, there is no attainable global minima.

« So the solution does not converge.

« But for linear separable data, the direction of the solution (hence decision
boundary) converges to the hard margin support vector machine solution
[Soudry et al., 2018] [Nacson et al., 2018].

Ji and Telgarsky, 2018] characterized the convergence of weight without assuming

separability;

Gunasekar et al., 2018] characterized the convergence of weight direction for other

optimization methods, and provided results for (full-width) deep linear convolutional

networks :

The regularization path e,(\) = arsmin £(6) + A6} cONverges to a max margin solution

for homogeneous DNN with cross entropy or logistic loss [\Wei et al. 18].




The setting

Deep Homogeneous Networks (binary classification for this talk):
« A function F(x) is k-homogeneous If for all input x

F(az) = o*F(x)

* Output of the neural network: ®(9; x) € R
* For RelLU (or leakyReLU) network (without bias terms), the output is k-

homogeneous if there are k layers

- Training loss: £(8) := >0, {(y.®(8; x,,))

n=1"

NmC
CD><L8:—E-
T8a

* We mainly consider the following loss func
« Exponential loss: ¢(q) := e~ 14

» Logistic loss: /(q) = log(1 +e79) S
* Note that such loss has no global min sz 4 o 1 & 9
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Good Decision Boundary:
Linear case (SVM)

* Maximize the margin, m

o1 2
Minimize §||w||

subject to y;(wlix; +b) > 1 Vi




Smoothed Normalized Margin
Minimize l||W||2
2

subject to y;(wlix; +b) > 1 )

* Margin of (xp, ¥n): ¢a(0) ==y, ®(8; ) £(0) =N ((y,3(6;,))
* Margin: g,in(0) := min, ¢y ¢,.(6)
« We hope the margin to be large (smaller loss, better classification)
« But the margin can approach to infinity (due to homogeneity)




Smoothed Normalized Margin
Minimize l||W||2
2

subject to y;(wlix; +b) > 1 )

* Margin of (xp, ¥n): ¢a(0) ==y, ®(8; ) £(0) =N ((y,3(6;,))
* Margin: g,in(0) := min, ¢y ¢,.(6)
« We hope the margin to be large (smaller loss, better classification)
« But the margin can approach to infinity (due to homogeneity)

Maximize m

(wlx; +b) m
subject to yl( l )2 — Vi
[lwl] 2

« So we consider the normalized margin (only consider the direction since the
direction is enough to determine the prediction, due to homogeneity):

Y(0) = Gmin(0) = qmin(0)/p*  p=16l, 6:=6/pc 5"



Smoothed Normalized Margin

« But the normalized margin is difficult to analyze
« Consider smoothed normalized margin (change min to softmin)

i 1 1 al
f}/(@) — p—L lOg Z log Z = — log (Z e_qn)

n=1

* One can easily show

« S0,as p — +oo0, we have y - .
 In fact, we will show p — +oo.
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Our Results
e Consider the gradient flow

W)  _por@(t) foraet>0

@~

Clarke subdifferential

* Assume that we have fitted the training data at time ¢,.

Theorem 1: SNM increases monotonically.
I. Fora.e.t >ty g > 0;

2. Fora.e. t > tg, either 'Y >00r =0;

(@) = A(E)| = 0.

If 0(-) is the exponential or logistic loss, then for t > t,

L(t) =06 (t(logt;—z/L) and p = O((logt)*/L).




Our Results

Max-Margin Problem: (P) Classical SVM
: 1 2 o1 >
min 1615 Minimize §||w||
s.t. gn(0) > 1 vn € [N] subject to y;(wlx; +b) > 1 Vi

Theorem 2: For every limit point of the direction 8,
ﬁ/qmin(ﬁ)lﬂ is a KKT point of (P).

Definition A feasible point @ of (P) is a KKT point if there exist A\1,..., Ay > 0 such that

1. 6 — Zle Anhy, = 0 for some hq, ..., hy satistying h,, € 0°¢,(0);
2. Vn € [N]: \y(gn(0) — 1) = 0.

First order (necessary) condition for a local optimal solution in a constrained
optimization problem

Comparing to an independent recent work [Nacson et al. 19], we use much weaker assumptions.
They have some other results. E.g., convergence to “lexicographic max-margin” solution.



Our Results

Corollary: For every limit point of the direction 8 is along the
max-margin direction for the Kernel SVM with neural
tangent kernel (NTK, introduced in [Jacot et al. 2018])

Ke—(az,a':’) — <V‘1I)m(9_)j V@mr(é»

Kernel SVM:

1 _
min §||9||% st Yn (0,VP,, (0)) > 1 Vn € [N]




Experiments

—— |r=0.01, w/ bias Ir=0.01, w/o bias
100% - S
c 1.50 X 10_3'
> 99% 5
© 0 _
- n © 1.00%x 1073/ : :
S 98% 3 s !\Iormallzed Margin
Y 2 T o50x10-3] Increases (slowly)
o 97% = N
< 'S o ) R
€ o0l e £ 0.00x10 3
© o
_
950 S —0.50 x 10731
0
=0 100 10° 10 102 10® 10° 10° 10 102 10® 10°
#epochs #epochs #epochs
(a)

CNN, MNIST, constant learning rate
conv-32 with filter size 5x5, max-pool, conv-64 with filter size 3x3, max-pool, fc-1024, fc-10
Standard architecture used in MNIST Adversarial Examples Challenge



Experiments

—— loss-based Ir, w/ bias loss-based Ir, w/o bias
1004
- 1.50x1073]
10—200_ @ Mwﬁ‘
0 © 1.00x 1073 e
o £ e
-400 | o~
210 © 050x1073|
b= i
® 10600 £ 0.00x1073|
+ |
O |
10-800. S _0.50x1073]
|
0 2500 5000 7500 10000 0 2500 5000 7500 10000
#epochs #epochs
(b)

« Constant LR: Gradient very small, loss decreases very slowly
 We can increase the learning rate! (based on the loss)
« SGD with Loss-based Learning Rate.

« Training loss so small. We even have to modify Tensorflow to deal with numerical issues
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Robustness

« Adversarial examples in deep learning (first found in [Szegedy et al. 13])

o s

pig “airliner”

+.007 x
+0.005 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

« Accuracy drops to nearly zero in the presence of small adversarial perturbations
« Geometrically, every training sample (as well as testing sample) is very close to
the decision boundary.



Robustness

 Robustnhess

Rg(z) := ing{ {lle —'|| : (=, y) is misclassified}
x' e

* Robustness and normalized margin
« If gis B-Lipschitz, it is easy to see that (see e.g.,[Sokolic et al., 2017])

q6(2)
RQ(Z) > [j)

« So larger normalized margin perhaps implies better robustness



Robustness

model name | number of epochs  train loss  normalized margin

model-1 38 1071004 5.65 x 107
model-2 75 1071512 9.50 x 107
model-3 107 [ 1.30 x 1074
The robust AEGElE (5 / i model-4 935 1012001 4.61 x 1074
(the percentage of data with robustness = €) model-5 10000 10-38151 118 x 102
—— model-1 —— model-2 —— model-3 —— model-4 model-5
100%] 100% =
= 98%; 80%
©
Z 96%] 60% 1
>
@
= 94%] 40%-
o
U
T 92%/ 20%
% \ 0%,
90/,0.0 0.2 0.4 0.6

3

Hence, training longer may be useful in improving the robustness.
Hopefully, it can be used in combination with other methods (data augmentation,
regularization, ensemble, robust optimization etc.) (future work)
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Concluding Remarks

« Generalization of SGLD:
« Bayes-stability framework
« (Generalization error
» Connection to the sum of gradient variance over the training
trajectory
« Data dependent: can explain the random label experiment
« Implicit bias of GD
* GD maximizes the normalized margin
« Equivalent to kernel SVM (with Neural Tangent Kernel)
« Training longer can potentially improve robustness



Picture from [Li et al ]

Open Problems

(a) without skip connections (b) with skip connections

. Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
A\ CO n J ectu re ., normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
|

If the landscape of the loss function is “nice”, SGLD generalizes.

Handling discrete noise like in SGD

The noise structure of SGD is ill-conditioned (very different from
isotropic Gaussian noise)

Mini-batch and Dropout help (make the noise less ill-conditioned)
But SGD is fairly good even without extra noise (Zhu et al. 19)



Thanks

Jian Li
lapordge@gmail.com
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