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Research interests

• Theoretical Computer Science
• Algorithm design 
• Computational complexity

• Databases
• Uncertain data management
• Crowdsourcing

Machine Learning
• Online learning, Bandits
• Optimization
• Learning Theory (esp. for deep learning)

• Applications in spatial-temporal data 
prediction, financial data analysis



Why Deep Neural Networks Work So Well?
• Tremendous success in practice
• Theory, several exciting recent results (still not so satisfying)

Ali Rahimi, winner of the Test-of-Time award at a recent NIPS conference:
“Machine learning has become alchemy.”
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The Rahimi – LeCun debate：



Theory of Deep Learning

• Develop theory of nonconvex learning and deep learning
• Understand what happens in the blackbox

• Use theory to develop better algorithms

• Motivate important theoretical/mathematical questions

Judea Pearl, 2011 Turing award winner



Why Deep Neural Networks Work So Well?

• Convex Learning（linear, logistic, SVM etc.）
• Convex objectives

• Optimization (optimal rate, well studied)

• Generalization（PAC, VC-dimension, Rademacher
Complexity, Margin bounds）

• errgen ≈ 𝑂( complexity/𝑛)

• Traditional complexity measure ≥ #𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 >> n

• Nonconvex
• Deep Learning, topic modeling, matrix/tensor completion

• Optimization

• Traditional learning theory does not suffices
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Understanding deep learning requires rethinking generalization，ICLR 17 best paper



Why Deep Neural Networks Work So Well?

Mysteries:
• Over-parametrized (traditional theories do not work directly)
• Highly Nonconvex, many local/global minima
• Commonly believed that the training algorithms (gradient-based 

algorithms) play important roles (not just the network architectures)
• Algorithm-dependent generalization
• Implicit bias (towards local/global min with interesting properties)

• Inductive bias
• Why CNN works so well for image data?

• Many useful tricks
• Dropout, batchnorm, layernorm, initialization



Outline

• Generalization 
• SGD,SGLD
• Bayes-Stability
• Extensions

• Implicit Bias
• Smoothed Normalized Margin
• Main Results
• Robustness



Generalization error
• Measure how well a hypothesis obtained from the training data can generalize to a new test 

data point 
• A central concept in machine learning
• Well studied in convex setting [uniform convergence, ERM, huge literature]
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Formal definition:

Population loss:

This is what we truly 
want to minimize

Training loss:

This is what we can optimize 
in practice, using training data



Generalization error

• Classical learning theory
• VC-dimension，Rademacher Complexity, etc

errgen = 𝑂( complexity/𝑛)
• Only depends on the complexity of the hypothesis class

• Traditional complexity measure > #parameters >> n

• We need data dependent bound: Otherwise, we can’t 
explain the random label experiment [Zhang et al.] 
(next page)
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Understanding deep learning requires rethinking generalization 
[Zhang et al. 16]

Random label experiments: choose a random label for each image

Previous Argument: 
Random-labeled instances requires more time to train, hence worse generalization 
Training faster, generalize better [Hardt et al. 15][Mou et al. 18] 
(generalization bound only depends on T)
What data characteristics makes random labeled data different from normal data?
Several other perspectives (e.g., [Bartlett et al. 17]…….[Arora et al. 19][Oymak et al. 19]) 



Generalization error in nonconvex settings/Deep learning
• Random label experiment [Zhang et al. 16]

• Flat/Sharp local min [Kerskar et al. 16] [Dinh et al. 17]

• Norm/Margin based [Neyshabur et al. 17][Bartlett et al. 17][Wei et al. 18]

• Rademacher complexity [Kawaguchi et al. 17]

• PAC Bayesian [Neyshabur et al. 17, London 17, Mou et al. 18]

• Compression based [Brutzkus et al. 17][Arora et al. 18]

• Information Bottlenek [Shwartz-Ziv and Tishby 17]

• Algorithmic stability: Training faster, generalize better [Hardt et al. 

15][Mou et al. 18][Pensia et al. 18]

• Overparametrization [Brutzkus et al. 17][Li et al. 18] [Du et al. 18] [Allen-Zhu 

et al. 18][Alon et al. 18] [Arora et al. 19]
• ……

Related Work
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GD/SGD

SGD and SGLD

SGLD (Stochastic Gradient Langevin Dynamics)

The most popular algorithm for nonconvex objectives.
May be difficult to analyze due to the noise structure.

With the extra Gaussian noise, the theoretical analysis can be much easier sometimes
The Gaussian noise is useful sometimes in practice (sometimes not) [Zhu et at. 2019]

(full or stochastic) gradient



The continuous case (Langevin Monte Carlo)

Langevin dynamics: 𝑑𝑤 𝑡 = −𝛻𝑓 𝑤 𝑑𝑡 + 2/𝛽𝑑𝐵(𝑡)

SGLD

Stationary distribution:
( )( ) f xx e  

Related to Bayesian inference [Welling, Teh. 11]….
It hits a (nearly) stationary point in poly-time [Zhang et al. 17][Du et al. 19]
Excess risk is small when the distr close to stationary [Raginsky et al. 17] 

(but it may take exponential time to mix)
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Bayes-Stability Framework

SQ : distribution of 
TW for a given dataset S

1 1 1( ,..., ) ( ,..., )[ ]
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Theorem Assuming the loss is bounded by C, the generalization 

can be bounded by 

P : prior distr, independent of training data S

A new framework combining algorithm stability and some ideas from 
PAC Bayesian

or



SGLD with mini batch

Theorem

Suppose loss function f is C-bounded. The Batch size is less equal to n/2, 
learning rate is 𝛾𝑡. 
The generalization error of SGLD can be bounded by 

Our Result

Average Gradient Norm wrt training data/population
along the optimization path

One cannot obtain such bound using the standard stability framework

• Independent of #parameters
• Typically, 𝑇 ≪ 𝑂(𝑛2)
• Larger 𝜎2 is good for generalization, but hurts optimization



Comparison with previous results

Previous bound for SGD in [Hardt et al. ICML16]

• Convex: 𝑂(
𝐿2

𝑛
σ𝑡 𝛾𝑡)

• Nonconvex: 𝑂(𝑇
1−

1

𝛽𝑐+1/𝑛) (step size 𝛾𝑡 ≤ 𝑐/𝑡, 𝛽-smooth)

Typical practice in deep learning: the constant step size for several 
epochs, then decrease the step size, and then repeat. So the above 
assumption doesn’t really apply



Comparison with previous results

Previous approach in [Mou et al. COLT18] (only for b=1)

Their technique:
• Interpolate SGLD steps using SDE
• Use Fokker-Planck to derive a bound for 𝜕𝐻(𝑊𝑡,𝑊𝑡

′)/𝜕𝑡
𝜕𝑃𝑡
𝜕𝑡

= ∆𝑃𝑡 + 𝛻 ⋅ (𝑃𝑡𝛻𝑓)

• Using FP, we can only get information about the distr 𝑃𝑡 (only) at time t
• Hence, it is a pointwise proof (doesn’t work if the final output dependent on the path)
• In practice, we take the average of all steps,  or the average of the suffix of certain 

length [e.g., Shamir&Zhang]

We can obtain their result with a much simpler proof, and our proof is pathwise.

Their bound=

≤ 𝐿2

L: Worst case Lipschitz constant
Unknown, very large for NN



Comparison with previous results

In practice, we take the average of all steps,  or the average of the suffix 
of certain length [e.g., Shamir&Zhang]

Previous bound in [Pensia et al. ISIT18] (only for b=1) 
Pathwise analysis, works for the averaging schemes.  

Their Bound:

O 𝐼 𝑆;𝑊 /𝑛 ≤ 𝑂( σ𝛾𝑡
2/𝑛) (only scales with 1/ 𝑛)



Some additional results

Our bounds
• Proof simpler
• Work for arbitrary averaging scheme (pathwise)
• Easily extended to momentum, aceleration and other 

variants (e.g., Entropy-SGD [Chaudhari et al. 2016])
• Extended to other continuous noises (log-Lipschitz) 
• Can better explain the experiments in [Zhang et al. 2016]



Bayes-Stability bound (SGLD)

flatness of f

Flatter training path leads to better generalization
Normal data has a much flatter training path

Random Label : y is drawn uniformly from {-1,1}

Normal Data :  If label < 5 then y = -1 else y = 1

Training CNN on Mnist Dataset. 
Convert to binary classification problem, 
(x,y) is a data point, y = -1 or 1.  



Bayes-Stability bound (SGLD)

MLP on CIFAR10 with SGLD

AlexNet on CIFAR10 with SGLD



Entropy-SGD [Pratik et al. 2017]

Local entropy:

Picture from [Pratik et al.]
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Difficult to estimate the gradient of Local entropy: 
• use MCMC
• The resulting algorithm is similar to SGLD
• We can show similar generalization bound
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• A traditional wisdom in ML

• Many models tend to overfit if you train longer (increase the 

complexity of the model)

• Trick: Early Stopping or adding l2 –regularizations (capacity control) 

• Mystery in DL: Early stopping/ l2-regularization is not so useful. 

• For DNN, the training objective has many global minima. 

• (For overparameterized super-wide NN, there is a global optimal near 

every initialization point [Du et al. 18] [Jacot et al. 2018][Arora et al. 

19])

• The optimization algorithm may implicitly bias the solutions to global 

minima with special properties.

• Implicit bias is particularly important in learning deep neural networks 

as “it introduces effective capacity control not directly specified in 

the objective” [Gunasekar et al. 18] (without explicit regularization and 

early stopping)

Implicit Bias



• For 2-layer overparametrized network (with leakyReLU activation and linearly 
separable data), [Brutzkus et al. 17] show SGD can find global optimum for hinge 

loss.

• For (deep) linear logistic regression, there is no attainable global minima. 

• So the solution does not converge.

• But for linear separable data, the direction of the solution (hence decision 

boundary) converges to the hard margin support vector machine solution 

[Soudry et al., 2018] [Nacson et al., 2018].

• [Ji and Telgarsky, 2018] characterized the convergence of weight without assuming 

separability; 

• [Gunasekar et al., 2018] characterized the convergence of weight direction for other 

optimization methods, and provided results for (full-width) deep linear convolutional 

networks (biases toward linear separators that are sparse in the frequency domain).

• The regularization path                                      converges to a max margin solution 

for homogeneous DNN with cross entropy or logistic loss [Wei et al. 18].

Related Work



The setting

Deep Homogeneous Networks (binary classification for this talk): 

• A function F(x) is k-homogeneous if for all input x

• Output of the neural network:

• For ReLU (or leakyReLU) network (without bias terms), the output is k-

homogeneous if there are k layers

• Training loss:

• We mainly consider the following loss func

• Exponential loss:

• Logistic loss:  

• Note that such loss has no global min
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• Maximize the margin, m

Class 1

Class 2

m

Good Decision Boundary:
Linear case (SVM)



Smoothed Normalized Margin

• Margin of 𝑥𝑛, 𝑦𝑛 :
• Margin:

• We hope the margin to be large (smaller loss, better classification)

• But the margin can approach to infinity (due to homogeneity) 



Smoothed Normalized Margin

• Margin of 𝑥𝑛, 𝑦𝑛 :
• Margin:

• We hope the margin to be large (smaller loss, better classification)

• But the margin can approach to infinity (due to homogeneity) 

• So we consider the normalized margin (only consider the direction since the 

direction is enough to determine the prediction, due to homogeneity):

Maximize 𝑚

subject to
𝑦𝑖 𝑤

𝑇𝑥𝑖 + 𝑏

| 𝑤 |
≥
𝑚

2
∀𝑖



Smoothed Normalized Margin

• But the normalized margin is difficult to analyze 

• Consider smoothed normalized margin (change min to softmin)

• One can easily show

• So, as 𝜌 → +∞, we have ෤𝛾 → ҧ𝛾.

• In fact, we will show 𝜌 → +∞.
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Our Results
• Consider the gradient flow

• Assume that we have fitted the training data at time 𝑡0.

Clarke subdifferential

Theorem 1: SNM increases monotonically.



Our Results

Theorem 2: For every limit point of the direction ෡𝜽,

෡𝜽/𝒒𝐦𝐢𝐧
෡𝜽

𝟏/𝑳
is a KKT point of (P).

Max-Margin Problem: (P) Classical SVM

First order (necessary) condition for a local optimal solution in a constrained 
optimization problem

Comparing to an independent recent work [Nacson et al. 19], we use much weaker assumptions.
They have some other results. E.g., convergence to “lexicographic max-margin” solution. 



Our Results

Corollary: For every limit point of the direction ෠𝜃 is along the 

max-margin direction for the Kernel SVM with neural 

tangent kernel (NTK, introduced in [Jacot et al. 2018])

Kernel SVM:



Experiments

CNN, MNIST, constant learning rate
conv-32 with filter size 5×5, max-pool, conv-64 with filter size 3×3, max-pool, fc-1024, fc-10

Standard architecture used in MNIST Adversarial Examples Challenge

Normalized Margin 
increases (slowly)



Experiments

• Constant LR: Gradient very small, loss decreases very slowly

• We can increase the learning rate! (based on the loss)

• SGD with Loss-based Learning Rate.
• Training loss so small. We even have to modify Tensorflow to deal with numerical issues
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Robustness

• Adversarial examples in deep learning (first found in [Szegedy et al. 13])

• Accuracy drops to nearly zero in the presence of small adversarial perturbations 

• Geometrically, every training sample (as well as testing sample) is very close to 

the decision boundary.



Robustness

• Robustness

• Robustness and normalized margin

• If q is 𝛽-Lipschitz, it is easy to see that  (see e.g.,[Sokolic et al., 2017])

• So larger normalized margin perhaps implies better robustness



Robustness

The robust accuracy
(the percentage of data with robustness ≥ 𝝐)

Hence, training longer may be useful in improving the robustness.
Hopefully, it can be used in combination with other methods (data augmentation, 
regularization, ensemble, robust optimization etc.) (future work)
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Concluding Remarks

• Generalization of SGLD:
• Bayes-stability framework
• Generalization error 

• Connection to the sum of gradient variance over the training 
trajectory

• Data dependent: can explain the random label experiment
• Implicit bias of GD

• GD maximizes the normalized margin
• Equivalent to kernel SVM (with Neural Tangent Kernel)
• Training longer can potentially improve robustness



Open Problems

“Conjecture”: 
If the landscape of the loss function is “nice”, SGLD generalizes.

Handling discrete noise like in SGD
The noise structure of SGD is ill-conditioned (very different from 
isotropic Gaussian noise)

Mini-batch and Dropout help (make the noise less ill-conditioned)
But SGD is fairly good even without extra noise (Zhu et al. 19) 

Picture from [Li et al.]
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