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PROBLEM DEFINITION

Stochastic Matching [Chen, Immorlica, Karlin, Mahdian, and Rudra. ’09]

Given:

 A probabilistic graph G(V,E). 

 Existential prob. pe for each edge e.

 Patience level tv for each vertex v.

Probing e=(u,v): The only way to know the existence of e. 

 We can probe (u,v) only if tu>0, tv>0 .

 If  e indeed exists, we should add it to our matching.

 If not, tu =tu-1 , tv =tv-1.



PROBLEM DEFINITION

Output: A strategy to probe the edges

 Edge-probing: an (adaptive or non-adaptive) ordering of edges. 

 Matching-probing: k rounds; In each round, probe a matching.

Objectives:

 Unweighted: Max.  E[ cardinality of the matching].

 Weighted: Max. E[ weight of the matching].
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MOTIVATIONS

 Online dating

 Existential prob. pe : estimation of the success prob. based on 
users’ profiles. 

 Probing edge e=(u,v) : u and v are sent to a date. 

 Patience level: obvious.



MOTIVATIONS

 Kidney exchange

 Existential prob. pe : estimation of the success prob. based on 
blood type etc. 

 Probing edge e=(u,v) : the crossmatch test (which is more 
expensive and time-consuming). 



OUR RESULTS

 Previous results for unweighted version [Chen et al. ’09]:

 Edge-probing: Greedy is a 4-approx. 

 Matching-probing: O(log n)-approx.

 A simple 8-approx. for weighted stochastic matching.
 For edge-probing model.

 can be improved to 5.75 by a more careful analysis.

 An improved 3-approx. for bipartite graphs and 4-approx. for 
general graphs based on dependent rounding [Gandhi et al. ’06].

 For both edge-probing and matching-probing models.

 This implies the gap between the best matching-probing strategy and the 
best edge-probing strategy is a small const.



OTHER RESULTS

 Stochastic online matching.
 A set of items and a set of buyer types. A buyer of type b likes item a

with probability pab.  (G(items, buyer types): Expected graph)

 The buyers arrive online (her type is an i.i.d. r.v.).

 The algorithm shows the buyer (of type b)  at most tb items one by one.

 The buyer buys the first item she likes or leaves without buying. 

 This generalizes the stochastic online matching problem of [Feldman et 
al. ’09,  Bahmani et al. ’10, Saberi et al ’10] where pe={0,1}.

 We have a 7.92-approximation.



OTHER RESULTS

Cardinality Constrained Matching in Rounds.

 In each round, we can probe a matching of size ≤C.

 An O(1)-approx.

 Chen et al. obtained an O(min(k,C))-approx.

A new proof for greedy.

 An simple LP-based analysis: 5-approx.

 The analysis by Chen et al. was based on decision trees.



OTHER RESULTS

 Stochastic k-set packing.

 Generalizing the stochastic matching problem.

 k=4.
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APPROXIMATION RATIO

 We compare our solution against the optimal (adaptive) 
strategy (not the offline optimal solution).

 An example:

…

t=1

pe=1/n

E[offline optimal] = 1-(1-1/n)n ≈ 1-1/e

E[any algorithm] = 1/n



A LP UPPER BOUND

maximize
X

e2E
we ¢xe

subject to
X

e2@(v)

xe · 1 8v 2 V

X

e2@(v)

ye · tv 8v 2 V

xe = pe ¢ye 8e 2 E

0 · ye · 1 8e 2 E

 Variable ye : Prob. that any algorithm probes e. 

At most 1 edge in ∂(v) is matched

At most tv edges in ∂(v) are probed

xe: Prob. e is matched



A SIMPLE 8-APPROXIMATION

An edge (u,v) is safe if tu>0, tv>0 and neither u nor v is matched

Algorithm:

Pick a permutation π on edges uniformly at random  

 For each edge e in the ordering π, do:    

 If e is not safe then do not probe it.    

 If  e is safe then probe it w.p. ye/α.



A SIMPLE 8-APPROXIMATION

Analysis:

Lemma:  For any edge (u,v), at the point when (u,v) is 
considered  under π,  Pr(u loses its patience) ≤1/2α .

Proof: Let U be #probes incident to u and before e.

By the Markov  inequality:

E[U ] =
X

e2@(u)

Pr[ edge e appears before (u; v) in ¼AND e is probed ];

·
X

e2@(u)

Pr[ edge e appears before (u; v) in ¼]¢ye
®
;

=
X

e2@(u)

ye

2®
·

tu

2®
:

Pr[U ¸ tu ] ·
E[U ]

tu
·

1

2®
:



A SIMPLE 8-APPROXIMATION

Analysis:

Lemma:  For any edge e=(u,v), at the point when (u,v) is 
considered  under π,  Pr(u is matched) ≤1/2α .

Theorem: The algorithm is a 8-approximation.

Proof:  When e is considered, 

Pr(e is not safe) ≤ Pr(u is matched)+ Pr(u loses its patience)+

Pr(v is matched)+ Pr(v loses its patience) ≤ 2/α

Therefore,

E[our solution] = Σe we Pr(e is safe) (ye/ α) pe

≥ (1-2/α) (1/ α) Σe we ye pe ≥ 1/8 OPT  (α=4)

Recall Σe we ye pe is an upper bound of OPT



AN IMPROVED APPROX. – BIPARTITE GRAPHS

Algorithm:
 (x,y) ← Optimal solution of the LP.

 y’ ← Round y to an integral solution using dependent rounding 
[Gandhi et al. 06] and Let E’= {e | y’e=1}.
 (Marginal distribution) Pr(y’e=1)=ye;

 (Degree preservation) DegE’(v) ≤ tv ; (Recall  Σe2(v) ye ≤ tv )

 (Negative Correlation)  Pr(Λe2 S (y’e=1)) ≤ Πe2 S ye .

 Probe the edges in E’ in random order.

For matching-probe model:

 M1, …, Mh ← Optimal edge coloring of E’.

 Probe {M1, …,Mh} in random order.



FINAL REMARKS AND OPEN QUESTIONS

 Quite recently, Adamczyk has proved that the greedy 
algorithm is a 2-approximation for  the unweighted version.

 Better approximations?  (Unweighted: 2; Weighted bipartite: 3; 
Weighted: 4).

 o(k)-approximation for stochastic k-set packing? Or θ(k) is the 
best possible?

 Any lower bound? 



THANKS



AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis (sketch):

Assume we have chosen E’.

Consider a particular edge e=(u,v).

Let B(e,π) be the set of incident edges that appear before e in the 
random order π. 

We claim that
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AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis cont: To see

Consider this random experiment:  For each edge in           , we pick 
a random real in [0,1].  This produces a uniformly random 
ordering. Let r.v. Af= (1-pf) if f goes before e, and Af=1 o.w.

Then, we consider 
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AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis cont:

Define                   to be the optimal value of

We can show                       is convex and 

decreasing on r
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AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis cont:
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AN IMPROVED APPROX. – GENERAL GRAPHS

Algorithm:

 (x,y) ← Optimal solution of the LP.

 Randomly partition vertices into A and B.

 Run the previous algorithm on the bipartite graph G(A,B).

Thm: It is a 2/ρ(1, pmax)-approximation.

If pmax → 1, the ratio tends to 4. If pmax → 0, the ratio tends 
to 2/(1-1/e) ≈3.15


