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PROBLEM DEFINITION

Stochastic Matching [Chen, Immorlica, Karlin, Mahdian, and Rudra. ’09]

Given:

 A probabilistic graph G(V,E). 

 Existential prob. pe for each edge e.

 Patience level tv for each vertex v.

Probing e=(u,v): The only way to know the existence of e. 

 We can probe (u,v) only if tu>0, tv>0 .

 If  e indeed exists, we should add it to our matching.

 If not, tu =tu-1 , tv =tv-1.



PROBLEM DEFINITION

Output: A strategy to probe the edges

 Edge-probing: an (adaptive or non-adaptive) ordering of edges. 

 Matching-probing: k rounds; In each round, probe a matching.

Objectives:

 Unweighted: Max.  E[ cardinality of the matching].

 Weighted: Max. E[ weight of the matching].



MOTIVATIONS

 Online dating

 Existential prob. pe : estimation of the success prob. based on 
users’ profiles. 
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MOTIVATIONS

 Online dating

 Existential prob. pe : estimation of the success prob. based on 
users’ profiles. 

 Probing edge e=(u,v) : u and v are sent to a date. 

 Patience level: obvious.



MOTIVATIONS

 Kidney exchange

 Existential prob. pe : estimation of the success prob. based on 
blood type etc. 

 Probing edge e=(u,v) : the crossmatch test (which is more 
expensive and time-consuming). 



OUR RESULTS

 Previous results for unweighted version [Chen et al. ’09]:

 Edge-probing: Greedy is a 4-approx. 

 Matching-probing: O(log n)-approx.

 A simple 8-approx. for weighted stochastic matching.
 For edge-probing model.

 can be improved to 5.75 by a more careful analysis.

 An improved 3-approx. for bipartite graphs and 4-approx. for 
general graphs based on dependent rounding [Gandhi et al. ’06].

 For both edge-probing and matching-probing models.

 This implies the gap between the best matching-probing strategy and the 
best edge-probing strategy is a small const.



OTHER RESULTS

 Stochastic online matching.
 A set of items and a set of buyer types. A buyer of type b likes item a

with probability pab.  (G(items, buyer types): Expected graph)

 The buyers arrive online (her type is an i.i.d. r.v.).

 The algorithm shows the buyer (of type b)  at most tb items one by one.

 The buyer buys the first item she likes or leaves without buying. 

 This generalizes the stochastic online matching problem of [Feldman et 
al. ’09,  Bahmani et al. ’10, Saberi et al ’10] where pe={0,1}.

 We have a 7.92-approximation.



OTHER RESULTS

Cardinality Constrained Matching in Rounds.

 In each round, we can probe a matching of size ≤C.

 An O(1)-approx.

 Chen et al. obtained an O(min(k,C))-approx.

A new proof for greedy.

 An simple LP-based analysis: 5-approx.

 The analysis by Chen et al. was based on decision trees.



OTHER RESULTS

 Stochastic k-set packing.

 Generalizing the stochastic matching problem.

 k=4.
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APPROXIMATION RATIO

 We compare our solution against the optimal (adaptive) 
strategy (not the offline optimal solution).

 An example:

…

t=1

pe=1/n

E[offline optimal] = 1-(1-1/n)n ≈ 1-1/e

E[any algorithm] = 1/n



A LP UPPER BOUND

maximize
X

e2E
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 Variable ye : Prob. that any algorithm probes e. 

At most 1 edge in ∂(v) is matched

At most tv edges in ∂(v) are probed

xe: Prob. e is matched



A SIMPLE 8-APPROXIMATION

An edge (u,v) is safe if tu>0, tv>0 and neither u nor v is matched

Algorithm:

Pick a permutation π on edges uniformly at random  

 For each edge e in the ordering π, do:    

 If e is not safe then do not probe it.    

 If  e is safe then probe it w.p. ye/α.



A SIMPLE 8-APPROXIMATION

Analysis:

Lemma:  For any edge (u,v), at the point when (u,v) is 
considered  under π,  Pr(u loses its patience) ≤1/2α .

Proof: Let U be #probes incident to u and before e.

By the Markov  inequality:
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A SIMPLE 8-APPROXIMATION

Analysis:

Lemma:  For any edge e=(u,v), at the point when (u,v) is 
considered  under π,  Pr(u is matched) ≤1/2α .

Theorem: The algorithm is a 8-approximation.

Proof:  When e is considered, 

Pr(e is not safe) ≤ Pr(u is matched)+ Pr(u loses its patience)+

Pr(v is matched)+ Pr(v loses its patience) ≤ 2/α

Therefore,

E[our solution] = Σe we Pr(e is safe) (ye/ α) pe

≥ (1-2/α) (1/ α) Σe we ye pe ≥ 1/8 OPT  (α=4)

Recall Σe we ye pe is an upper bound of OPT



AN IMPROVED APPROX. – BIPARTITE GRAPHS

Algorithm:
 (x,y) ← Optimal solution of the LP.

 y’ ← Round y to an integral solution using dependent rounding 
[Gandhi et al. 06] and Let E’= {e | y’e=1}.
 (Marginal distribution) Pr(y’e=1)=ye;

 (Degree preservation) DegE’(v) ≤ tv ; (Recall  Σe2(v) ye ≤ tv )

 (Negative Correlation)  Pr(Λe2 S (y’e=1)) ≤ Πe2 S ye .

 Probe the edges in E’ in random order.

For matching-probe model:

 M1, …, Mh ← Optimal edge coloring of E’.

 Probe {M1, …,Mh} in random order.



FINAL REMARKS AND OPEN QUESTIONS

 Quite recently, Adamczyk has proved that the greedy 
algorithm is a 2-approximation for  the unweighted version.

 Better approximations?  (Unweighted: 2; Weighted bipartite: 3; 
Weighted: 4).

 o(k)-approximation for stochastic k-set packing? Or θ(k) is the 
best possible?

 Any lower bound? 



THANKS



AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis (sketch):

Assume we have chosen E’.

Consider a particular edge e=(u,v).

Let B(e,π) be the set of incident edges that appear before e in the 
random order π. 

We claim that
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AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis cont: To see

Consider this random experiment:  For each edge in           , we pick 
a random real in [0,1].  This produces a uniformly random 
ordering. Let r.v. Af= (1-pf) if f goes before e, and Af=1 o.w.

Then, we consider 
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AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis cont:

Define                   to be the optimal value of

We can show                       is convex and 

decreasing on r
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AN IMPROVED APPROX. – BIPARTITE GRAPHS

Analysis cont:
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Marginal Prob.

Convexity.

Negative correlation.



AN IMPROVED APPROX. – GENERAL GRAPHS

Algorithm:

 (x,y) ← Optimal solution of the LP.

 Randomly partition vertices into A and B.

 Run the previous algorithm on the bipartite graph G(A,B).

Thm: It is a 2/ρ(1, pmax)-approximation.

If pmax → 1, the ratio tends to 4. If pmax → 0, the ratio tends 
to 2/(1-1/e) ≈3.15


