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PROBLEM DEFINITION

Stochastic Matching [Chen, Immorlica, Karlin, Mahdian, and Rudra. *09]

Given:
A probabilistic graph G(V,E).
Existential prob. p, for each edge e.
Patience level t, for each vertex v.

Probing e=(u,v): The only way to know the existence of e.
We can probe (u,v) only if t >0, t >0
If e indeed exists, we should add it to our matching.
If not, t,=t,-1,t, =t -1.



PROBLEM DEFINITION

Output: A strategy to probe the edges
Edge-probing: an (adaptive or non-adaptive) ordering of edges.
Matching-probing: k rounds; In each round, probe a matching.

Objectives:

Unweighted: Max. E[ cardinality of the matching].
Weighted: Max. E[ weight of the matching].



MOTIVATIONS

o0 Online dating

» Existential prob. p, : estimation of the success prob. based on
users’ profiles.

Section 12: Communication Style
Please use the scale below to rate how well you believe each of the following words generally describes you,
not at all somewhal vory wo!

1. |try to accommodate the other person's Q101018101010
position

2. |iry 1o understand the other person OIOI0 1IC IO S 1'C

3. |1ry to be respectful of all opinions different ONe L : - : &
from my own

4. |1y to resolve the conflict quickly slifsillsiisiiel:_Nis

5. |1ry 1o avoid disagreement : 0 : : : : -




MOTIVATIONS

Online dating

Existential prob. p, : estimation of the success prob. based on
users’ profiles.

Probing edge e=(u,v) : u and v are sent to a date.

This is the
ugliest blind date
I've ever seen!




MOTIVATIONS

Online dating

Existential prob. p, : estimation of the success prob. based on
users’ profiles.

Probing edge e=(u,v) : u and v are sent to a date.
Patience level: obvious.

This is the

eeeeeeeeeee




MOTIVATIONS

o Kidney exchange

» Existential prob. p, : estimation of the success prob. based on
blood type etc.

» Probing edge e=(u,v) : the crossmatch test (which is more
expensive and time-consuming).

Mother
Donor #1 8

Husband
Donor #2

/




OUR RESULTS

Previous results for unweighted version [Chen et al. ’09]:
Edge-probing: Greedy is a 4-approx.
Matching-probing: O(log n)-approx.
A simple 8-approx. for weighted stochastic matching.
For edge-probing model.
can be improved to 5.75 by a more careful analysis.
An improved 3-approx. for bipartite graphs and 4-approx. for
general graphs based on dependent rounding [Gandhi et al. ’06].

For both edge-probing and matching-probing models.

This implies the gap between the best matching-probing strategy and the
best edge-probing strategy is a small const.



OTHER RESULTS

Stochastic online matching.

A set of items and a set of buyer types. A buyer of type b likes item a
with probability p_,. (G(items, buyer types): Expected graph)

The buyers arrive online (her type is an i.i.d. r.v.).
The algorithm shows the buyer (of type b) at most t, items one by one.
The buyer buys the first item she likes or leaves without buying.

This generalizes the stochastic online matching problem of [Feldman et
al.’09, Bahmanietal.’10, Saberi et al "10] where p_,={0,1}.

We have a 7.92-approximation.



OTHER RESULTS

Cardinality Constrained Matching in Rounds.
In each round, we can probe a matching of size <C.
An O(1)-approx.
Chen et al. obtained an O(min(k,C))-approx.

A new proof for greedy.
An simple LP-based analysis: 5-approx.
The analysis by Chen et al. was based on decision trees.



OTHER RESULTS

Stochastic k-set packing.

Generalizing the stochastic matching problem.

k=4.
n 1tems/columns
Capacity vector
e(u,v) _
X, =1 W.p. p, u: X, 1
=0, o.w. 1 - n vertices
v: X,
_____________________________________________________________ __Rackj_ng>_'"-:
u: 1 tl
- 1 t, rn vertices




APPROXIMATION RATIO

© We compare our solution against the optimal (adaptive)
strategy (not the offline optimal solution).

© An example:

t=1
E[offline optimal] = 1-(1-1/n)"= 1-1/e

E[any algorithm] = 1/n




A LP UPPER BOUND

o Variable y, : Prob. that any algorithm probes e.

maximize E We * Te
eck

subject to Z To- 1 YoeV At most 1 edge 1n 0(v) 1s matched

Z Yoty YWEV At most t, edges in d(v) are probed
e v

Te =po- Yo VeEE x,: Prob. e 1s matched
e (2 e

0- ¥y 1 Vee F




A SIMPLE 8-APPROXIMATION

An edge (u,v) is safe if t >0, t >0 and neither u nor v is matched

Algorithm:
Pick a permutation r on edges uniformly at random

For each edge e in the ordering mrt, do:
If e is not safe then do not probe it.
If eis safe then probe it w.p. y/a.



A SIMPLE 8-APPROXIMATION

Analysis:

Lemma: For any edge (u,v), at the point when (u,v) is
considered under i, Pr(u loses its patience) <1/2a .

Proof: Let U be #probes incident to u and before e.
E|[U] = Z Pr|edge e appears before (u,v) in m AND e is probed |,

e€o(u)
Z Pr|edge e appears before (u,v) in 7] - %7
eco(u)
_ Z Ye ty
200 2o
e€o(u)

EU] 1
ty 200

By the Markov inequality: Pr[U >¢,] -



A SIMPLE 8-APPROXIMATION

Analysis:

Lemma: For any edge e=(u,v), at the point when (u,v) is
considered under i, Pr(uis matched)<1/2a .

Theorem: The algorithm is a 8-approximation.
Proof: When e is considered,
Pr(e is not safe) < Pr(u is matched)+ Pr(u loses its patience)+
Pr(v is matched)+ Pr(v loses its patience) < 2/o
Therefore,
E[our solution] =5, w, Pr(e is safe) (y./ a) p,
>(1-2/a)(1/a) 2, w,y,p,21/8 OPT (a=4)

Recall 2, w, y, p, is an upper bound of OPT }




AN IMPROVED APPROX. — BIPARTITE GRAPHS

Algorithm:
(x,y) €& Optimal solution of the LP.

y’ €& Round y to an integral solution using dependent rounding
[Gandhi et al. 06] and Let E’={e | y’ ,=1}.

(Marginal distribution) Pr(y’,=1)=y,,

(Degree preservation) Deg,(v) <'t,; (Recall 2, ., V. <t,)

(Negative Correlation) Pr(A.c s(y'e=1)) <1, - sV, -
Probe the edges in E” in random order.

For matching-probe model:
M, ..., M, & Optimal edge coloring of E".
Probe {M,, ...,M,} in random order.



FINAL REMARKS AND OPEN QUESTIONS

Quite recently, Adamczyk has proved that the greedy
algorithm is a 2-approximation for the unweighted version.

Better approximations? (Unweighted: 2; Weighted bipartite: 3;
Weighted: 4).

o(k)-approximation for stochastic k-set packing? Or 8(k) is the
best possible?

Any lower bound?



THANKS




AN IMPROVED APPROX. — BIPARTITE GRAPHS

Analysis (sketch):
Assume we have chosen F’.
Consider a particular edge e=(u,v).

Let B(e,it) be the set of incident edges that appear before e in the
random order 1.

Pr[e is safe | E'] Z]EW{ H (1—py¢) | E’};
feB(e,m)

We claim that

Ea[ 11 (1—z9f)|15”]=/01 I 1-=ps)da.

feB(e,0) feop (e)



AN IMPROVED APPROX. — BIPARTITE GRAPHS

Analysis cont: To see EU[ T @-»pp) E’] :/1 Il (1—aps)da.
0

f€B(e,0) f€0gp (e)

Consider this random experiment: For each edge in 9g (e), we pick
a random real in [0,1]. This produces a uniformly random
ordering. Let rv. A= (1-p;) if f goes before e, and A=1 o.w.

1
Then, we consider E| H Af]=/0 E[ H Afya,e:a:]dx

f€Og (e) f€0g (e)



AN IMPROVED APPROX. — BIPARTITE GRAPHS

Analysis cont:
Define p(r, pmax) to be the optimal value of

1
maximize :/ H (1 —apy)de

0 fedpi(e)
subject to Z pf- T
f€py (8) [

0 - Pf* Pmax-

We can show ,0(7“, pmax) is convex and

decreasingon r .




AN IMPROVED APPROX. — BIPARTITE GRAPHS

Analysis cont:

E[ALG]

Zwepe

Prle € F']

.Prle wassafe | e € E]

\

Marginal Prob.

—

rexity.

10n.




AN IMPROVED APPROX. — GENERAL GRAPHS

Algorithm:
(x,y) €& Optimal solution of the LP.
Randomly partition vertices into A and B.
Run the previous algorithm on the bipartite graph G(A,B).

Thm:Itisa 2/p(1, p,,.,)-approximation.

If p,.« = 1, the ratio tends to 4. If p,,, = O, the ratio tends
to 2/(1-1/e) =3.15



