When LP is the Cure for Your Matching Woes: Improved Bounds for Stochastic Matchings

Jian Li, University of Maryland, College Park

Joint work with Nikhil Bansal (IBM), Anupam Gupta (CMU), Julian Mestre (MPI), Viswanath Nagarajan (IBM), Atri Rudra (SUNY-Buffalo)

Problem Definition

Stochastic Matching [Chen, Immorlica, Karlin, Mahdian, and Rudra. '09]
o Given:

- A probabilistic graph $G(V, E)$.
- Existential prob. p_{e} for each edge e.
- Patience level t_{v} for each vertex v.
- Probing $e=(u, v)$: The only way to know the existence of e.
- We can probe (u, v) only if $t_{u}>0, t_{v}>0$.
- If e indeed exists, we should add it to our matching.
- If not, $t_{u}=t_{u}-1, t_{v}=t_{v}-1$.

Problem Definition

- Output: A strategy to probe the edges
- Edge-probing: an (adaptive or non-adaptive) ordering of edges.
- Matching-probing: k rounds; In each round, probe a matching.
- Objectives:
- Unweighted: Max. E[cardinality of the matching].
- Weighted: Max. E[weight of the matching].

Motivations

- Online dating
- Existential prob. p_{e} : estimation of the success prob. based on users' profiles.

ernarmony Relationship Questionnaire

Section 12: Communication Style

Please use the scale below to rate how well you believe each of the following words generally describes you.

Motivations

- Online dating
- Existential prob. p_{e} : estimation of the success prob. based on users' profiles.
- Probing edge $e=(u, v): u$ and v are sent to a date.

Motivations

- Online dating
- Existential prob. p_{e} : estimation of the success prob. based on users' profiles.
- Probing edge $e=(u, v): u$ and v are sent to a date.
- Patience level: obvious.

Motivations

- Kidney exchange
- Existential prob. p_{e} : estimation of the success prob. based on blood type etc.
- Probing edge $e=(u, v)$: the crossmatch test (which is more expensive and time-consuming).

Our Results

- Previous results for unweighted version [Chen et al. '09]:
- Edge-probing: Greedy is a 4-approx.
- Matching-probing: O(log n)-approx.
- A simple 8-approx. for weighted stochastic matching.
- For edge-probing model.
- can be improved to 5.75 by a more careful analysis.
- An improved 3-approx. for bipartite graphs and 4-approx. for general graphs based on dependent rounding [Gandhi et al. '06].
- For both edge-probing and matching-probing models.
- This implies the gap between the best matching-probing strategy and the best edge-probing strategy is a small const.

Other Results

- Stochastic online matching.
- A set of items and a set of buyer types. A buyer of type b likes item a with probability $p_{a b}$. (G(items, buyer types): Expected graph)
- The buyers arrive online (her type is an i.i.d. r.v.).
- The algorithm shows the buyer (of type b) at most t_{b} items one by one.
- The buyer buys the first item she likes or leaves without buying.
- This generalizes the stochastic online matching problem of [Feldman et al. '09, Bahmani et al. '10, Saberi et al '10] where $p_{e}=\{0,1\}$.
- We have a 7.92-approximation.

Other Results

- Cardinality Constrained Matching in Rounds.
- In each round, we can probe a matching of size $\leq C$.
- An O(1)-approx.
- Chen et al. obtained an $O(\min (k, C))$-approx.
- A new proof for greedy.
- An simple LP-based analysis: 5-approx.
- The analysis by Chen et al. was based on decision trees.

Other Results

- Stochastic k-set packing.
- Generalizing the stochastic matching problem.
- $k=4$.

Approximation Ratio

- We compare our solution against the optimal (adaptive) strategy (not the offline optimal solution).
- An example:

$\mathrm{E}[$ offline optimal $]=1-(1-1 / \mathrm{n})^{\mathrm{n}} \approx 1-1 / \mathrm{e}$
$\mathrm{E}[$ any algorithm] $=1 / \mathrm{n}$

A LP Upper Bound

- Variable y_{e} : Prob. that any algorithm probes e.

$$
\begin{array}{rlr}
\operatorname{maximize} & \sum_{e \in E} w_{e} \cdot x_{e} & \\
\text { subject to } & \sum_{e \in \partial(v)} x_{e} \cdot 1 \quad \forall v \in V \quad \text { At most } 1 \text { edge in } \partial(v) \text { is matched } \\
& \sum_{e \in \partial(v)} y_{e} \cdot t_{v} \forall v \in V \quad \text { At most } t_{v} \text { edges in } \partial(v) \text { are probed } \\
& x_{e}=p_{e} \cdot y_{e} \forall e \in E & \\
& 0 \cdot x_{e} \cdot 1 \quad \text { Prob. } e \text { is matched } \\
& \forall e \in E &
\end{array}
$$

A SIMPLE 8-Approximation

An edge (u, v) is safe if $t_{u}>0, t_{v}>0$ and neither u nor v is matched

Algorithm:

- Pick a permutation π on edges uniformly at random
- For each edge e in the ordering π, do:
- If e is not safe then do not probe it.
- If e is safe then probe it w.p. y_{e} / α.

A SIMPLE 8-APPROXIMATION

Analysis:

Lemma: For any edge (u, v), at the point when (u, v) is considered under π, $\operatorname{Pr}(\mathrm{u}$ loses its patience) $\leq 1 / 2 \alpha$.
Proof: Let U be \#probes incident to u and before e.

$$
\mathbb{E}[U]=\sum_{e \in \partial(u)} \operatorname{Pr}[\text { edge } e \text { appears before }(u, v) \text { in } \pi \text { AND } e \text { is probed }],
$$

- $\sum_{e \in \partial(u)} \operatorname{Pr}[$ edge e appears before (u, v) in $\pi] \cdot \frac{y_{e}}{\alpha}$,

$$
=\sum_{e \in \partial(u)} \frac{y_{e}}{2 \alpha} \cdot \frac{t_{u}}{2 \alpha} .
$$

By the Markov inequality: $\quad \operatorname{Pr}\left[U \geq t_{u}\right] \cdot \frac{\mathbb{E}[U]}{t_{u}} \cdot \frac{1}{2 \alpha}$.

A Simple 8-Approximation

Analysis:

Lemma: For any edge $e=(u, v)$, at the point when (u, v) is considered under π, $\operatorname{Pr}(u$ is matched) $\leq 1 / 2 \alpha$.
Theorem: The algorithm is a 8 -approximation.
Proof: When e is considered,
$\operatorname{Pr}($ e is not safe $) \leq \operatorname{Pr}(u$ is matched $)+\operatorname{Pr}(u$ loses its patience $)+$

$$
\operatorname{Pr}(v \text { is matched })+\operatorname{Pr}(v \text { loses its patience }) \leq 2 / \alpha
$$

Therefore,
E[our solution] $=\Sigma_{e} w_{e} \operatorname{Pr}\left(e\right.$ is safe) $\left(y_{e} / \alpha\right) p_{e}$

$$
\geq(1-2 / \alpha)(1 / \alpha) \Sigma_{e} w_{e} y_{e} p_{e} \geq 1 / 8 \text { OPT }(\alpha=4)
$$

An Improved Approx. - Bipartite Graphs

Algorithm:

$\circ(x, y) \leftarrow$ Optimal solution of the LP.
$\circ y^{\prime} \leftarrow$ Round y to an integral solution using dependent rounding [Gandhi et al. 06] and Let $E^{\prime}=\left\{e \mid \mathrm{y}^{\prime}{ }_{e}=1\right\}$.

- (Marginal distribution) $\operatorname{Pr}\left(\mathrm{y}^{\prime}{ }_{e}=1\right)=\mathrm{y}_{\mathrm{e}}$;
- (Degree preservation) $\operatorname{Deg}_{E^{\prime}}(v) \leq t_{v} ;\left(\right.$ Recall $\left.\Sigma_{e \in \mathcal{O}(\pi)} y_{e} \leq t_{v}\right)$
- (Negative Correlation) $\operatorname{Pr}\left(\wedge_{e \in \mathcal{S}}\left(\mathrm{y}_{\mathrm{e}}^{\prime}=1\right)\right) \leq \Pi_{e \in \mathcal{S}} \mathrm{~V}_{\mathrm{e}}$.
- Probe the edges in E^{\prime} in random order.

For matching-probe model:

- $M_{1}, \ldots, M_{h} \leftarrow$ Optimal edge coloring of E^{\prime}.
- Probe $\left\{M_{1}, \ldots, M_{h}\right\}$ in random order.

Final Remarks and Open Questions

- Quite recently, Adamczyk has proved that the greedy algorithm is a 2 -approximation for the unweighted version.
- Better approximations? (Unweighted: 2; Weighted bipartite: 3; Weighted: 4).
- o(k)-approximation for stochastic k-set packing? $\operatorname{Or} \theta(\mathrm{k})$ is the best possible?
- Any lower bound?

THANKS

An Improved Approx. - Bipartite Graphs

Analysis (sketch):
Assume we have chosen E^{\prime}.
Consider a particular edge $e=(u, v)$.
Let $B(e, \pi)$ be the set of incident edges that appear before e in the random order π.

$$
\operatorname{Pr}\left[e \text { is safe } \mid E^{\prime}\right] \geq \mathbb{E}_{\pi}\left[\prod_{f \in B(e, \pi)}\left(1-p_{f}\right) \mid E^{\prime}\right] ;
$$

We claim that

$$
\mathbb{E}_{\sigma}\left[\prod_{f \in B(e, \sigma)}\left(1-p_{f}\right) \mid E^{\prime}\right]=\int_{0}^{1} \prod_{f \in \partial_{E^{\prime}}(e)}\left(1-x p_{f}\right) \mathrm{d} x .
$$

An Improved Approx. - Bipartite Graphs

Analysis cont: To see $\mathbb{E}_{\sigma}\left[\prod_{f \in B(e, \sigma)}\left(1-p_{f}\right) \mid E^{\prime}\right]=\int_{0}^{1} \prod_{f \in ब_{F^{\prime}}(e)}\left(1-x p_{f}\right) \mathrm{d} x$.
Consider this random experiment: For each edge in $\partial_{E^{\prime}}(e)$, we pick a random real in $[0,1]$. This produces a uniformly random ordering. Let r.v. $A_{f}=\left(1-p_{f}\right)$ if f goes before e , and $A_{f}=1$ o.w.

Then, we consider $\underset{f}{\mathbb{E}}\left[\prod_{f \in \partial_{E^{\prime}}(e)} A_{f}\right]=\int_{0}^{1} \mathbb{E}\left[\prod_{f \in \mathcal{E}_{E^{\prime}}(e)} A_{f} \mid a_{e}=x\right] \mathrm{d} x$

An Improved Approx. - Bipartite Graphs

Analysis cont:

Define $\rho\left(r, p_{\max }\right)$ to be the optimal value of

$$
\begin{aligned}
& \operatorname{maximize}= \int_{0}^{1} \prod_{f \in \partial_{E^{\prime}}(e)}\left(1-x p_{f}\right) \mathrm{d} x \\
& \text { subject to } \sum_{f \in \partial_{E^{\prime}}(e)} p_{f} \cdot r \\
& 0 \cdot p_{f} \cdot p_{\max } .
\end{aligned}
$$

We can show $\rho\left(r, p_{\text {max }}\right)$ is convex and decreasing on r

An Improved Approx. - Bipartite Graphs

Analysis cont:

$\mathbb{E}[\mathrm{ALG}]=\sum w_{e} p_{e} \operatorname{Pr}\left[e \in E^{\prime}\right] \cdot \operatorname{Pr}[e$ was safe $\mid e \in \widehat{E}]$

Marginal Prob.

Pexity.
ion.

An Improved Approx. - General Graphs

Algorithm:

$\circ(x, y) \leftarrow$ Optimal solution of the LP.

- Randomly partition vertices into A and B.
- Run the previous algorithm on the bipartite graph $G(A, B)$.

Thm: It is a $2 / \rho\left(1, \mathrm{p}_{\max }\right)$-approximation.
If $p_{\text {max }} \rightarrow 1$, the ratio tends to 4 . If $p_{\text {max }} \rightarrow 0$, the ratio tends to $2 /(1-1 / \mathrm{e}) \approx 3.15$

