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Uncertain Data and Stochastic Model
 Data Integration and Information Extraction

 Sensor Networks; Information Networks

 Probabilistic models in machine learning

Sensor ID Temp.

1 Gauss(40,4)

2 Gauss(50,2)

3 Gauss(20,9)

… …

Probabilistic databases

Probabilistic Models in 

machine learning
Stochastic models in 

operation research



Stochastic Optimization
 Initiated by Danzig (linear programming with stochastic 

coefficients)

 Instead of having a deterministic input, we have a distribution 
of inputs. Goal: optimize the expectation of some functional 
of the objective value.

 Many problems are #P-hard (even PSPACE-hard)

 Focus: polynomial time approximation algorithms

 𝛼-approximation (approximation factor)


𝐴𝐿𝐺

𝑂𝑃𝑇
≤ 𝛼 (minimization problem)



Online Algorithms
 Time =1, 2, 3, …

 At time t, make you decision irrevocably (only know the input up 
to time t)

 Competitive analysis:  
𝐴𝐿𝐺

Offline 𝑂𝑃𝑇
 The competitive ration is typically determined by the worst case 

input sequence  (too pessimistic sometimes)

 Stochastic Online Optimization: Instead of considering the 
worst case, assume that there is a distribution of inputs (especially in 
the era of big data)



Simons Institute

 https://simons.berkeley.edu/
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Problem Definition

Stochastic Matching [Chen, et al. ICALP’09]

 Given:

 A probabilistic graph G(V,E). 

 Existential prob. pe for each edge e.

 Patience level tv for each vertex v.

 Probing e=(u,v): The only way to know the existence of e. 

 We can probe (u,v) only if tu>0,tv>0 .

 If  e indeed exists, we should add it to our matching.

 If not, tu =tu-1 ,tv =tv-1.



Problem Definition

 Output: A strategy to probe the edges

 Edge-probing: an (adaptive or non-adaptive) ordering of edges. 

 Matching-probing: k rounds; In each round, probe a set of disjoint edges

 Objectives:

 Unweighted: Max.  E[ cardinality of the matching].

 Weighted: Max. E[ weight of the matching].

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra ESA’10] best paper
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Motivations

 Online dating

 Existential prob. pe : estimation of the success prob. based on 

users’ profiles. 

 Probing edge e=(u,v) : u and v are sent to a date. 

 Patience level: obvious.
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Motivations: Kidney Exchange

 Pairwise Kidney exchange

 Existential prob. pe : estimation of the success prob. based on 

blood type etc. 

 Probing edge e=(u,v) : the crossmatch test (which is more 

expensive and time-consuming). 



Our Results

 Previous results for unweighted version [Chen et al. ’09]:

 Edge-probing: Greedy is a 4-approx. 

 Matching-probing: O(log n)-approx.

 A simple 8-approx. for weighted stochastic matching.
 For edge-probing model.

 Can be generalized to set packing.

 An improved 3-approx. for bipartite graphs and 4-approx. for 

general graphs based on dependent rounding [Gandhi et al. ’06].

 For both edge-probing and matching-probing models.

 This implies the gap between the best matching-probing strategy and the best edge-

probing strategy is a small const.
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Stochastic online matching

 A set of items and a set of buyer 
types. A buyer of type b likes item a
with probability pab.  
 G(buyer types, items): Expected graph)

 The buyers arrive online. 
 Her type is an i.i.d. r.v. .

 The algorithm shows the buyer (of 
type b)  at most t items one by one.

 The buyer buys the first item she likes 
or leaves without buying.

 Goal: Maximizing the expected 
number of satisfied users.
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Stochastic online matching
 This models the online AdWords allocation problem.

 This generalizes the stochastic online matching problem of [Feldman et 

al. ’09,  Bahmani et al. ’10, Saberi et al ’10] where pe={0,1}.

 We have a 4.008-approximation.



Approximation Ratio

 We compare our solution against the optimal (adaptive) 

strategy (not the offline optimal solution).

 An example:

…

t=1

pe=1/n

E[offline optimal] = 1-(1-1/n)n ≈ 1-1/e

E[any algorithm] = 1/n



A LP Upper Bound

 Variable ye : Prob. that any algorithm probes e. 

At most 1 edge in ∂(v) is matched

At most tv edges in ∂(v) are probed

xe: Prob. e is matched



A Simple 8-Approximation

An edge (u,v) is safe if tu>0,tv>0 and neither u nor v is matched

Algorithm:

 Pick a permutation π on edges uniformly at random  

 For each edge e in the ordering π, do:    

 If e is not safe then do not probe it.    

 If  e is safe then probe it w.p. ye/α.



An Improved Approx. – Bipartite Graphs

Algorithm:

 y← Optimal solution of the LP.

 y’ ← Round y to an integral solution using dependent rounding [Gandhi et al. 

JACM06] and Let E’= {e | y’e=1}.

 (Marginal distribution) Pr(y’e=1)=ye;

 (Degree preservation) DegE’(v) ≤ tv ; (Recall  Σe in (v) ye ≤ tv )

 (Negative Correlation).

 Probe the edges in E’ in random order.

for any

o THM: it is a 3-approximation for bipartite graphs
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Stochastic Probing 
 A general formulation [Gupta and Nagarajan, IPCO13]

 Input:

 Element e has weight 𝑤𝑒, prob of being active 𝑝𝑒
 Outer packing constraints (what you can probe)

 Downward closed (e.g., deg constraints)

 Inner packing constraints (what your solution should be)
 Downward closed (e.g., matchings)

 We can adaptively probe the elements. If a probed element is active, 
we have to choose it irrevocably. 

 Goal: Design an adaptive policy which maximizes the total weight 
of active probed elements



Contention Resolution Scheme

A very general and powerful rounding scheme [Chekuri et al. STOC11, SICOMP14]:

• Given a fractional point x in a polytope (the LP relaxation)

• We can do independent rounding (𝑋𝑖 ← 1 with prob 𝑥𝑖)
• But this can’t guarantee feasibility 

• (b,c)-CR scheme rounds x to an feasible integer solution s.t.

Pr 𝑋𝑖 ← 1 ≥ 𝑏𝑐𝑥𝑖

Many combinatorial constraints admit good CR schemes, such as 

matroids, intersection of matroids (matching), knapsack etc.



Algorithm

 LP upper bound:



Algorithm

 Online content resolution scheme [Feldman et al. SODA16]

 Connection to Prophet inequalities, Bayesian Mechanism 

Design
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Bayesian Online Selection
 Motivated by Bayesian Mechanism Design

 Input:
 A set of elements

 Each element is associated with a random value 𝑋𝑒 (with known 
distribution) 

 We can adaptively observe the elements one by one

 Once we see the true value of 𝑋𝑒, we can decide to choose it or not 
(main difference from stochastic probing: first see the value)

 A combinatorial inner packing constraint as well

 Goal: Design an adaptive policy which maximizes the expected 
total value of chosen elements

 We can use CR scheme to solve this problem as well [Feldman et al. 
SODA16]



Prophet Inequality [Krengel et al. 78]

 A special case of BOS, an important problem in optimal 

stopping theory

 Input:

 A set of elements

 Each element is associated with a random value 𝑋𝑒 (with known 

distribution) 

 We can choose one value

 Goal: Design an adaptive policy which maximizes the expected 

value of the chosen element



Prophet Inequality

 Prophet inequality:

 Algorithm: 

 compute a threshold value 𝑇 = E[max
𝑖

𝑋𝑖]/2 and accept the first 

element whose weight exceeds this threshold

 Optimality:  1/2 is tight
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Stochastic Knapsack

 A knapsack of capacity C

 A set of items, each having a fixed profit

 Known: Prior distr of size of each item.

 Each time we choose an item and place it in the knapsack 

irrevocably

 The actual size of the item becomes known after the decision  

 Knapsack constraint: The total size of accepted items <= C

 Goal: maximize E[Profit] 

[L, Yuan STOC13]



Motivation 

 Stochastic Scheduling

 Jobs, each having an uncertain length, and a fixed profit

 You have C hours

 How to (adaptively) schedule them (maximize E[profit])

Jobs:

Running time:

Profits: 20$ 5$ 10$ 50$

C=5 hours



Stochastic Knapsack

Previous work

 5-approx [Dean, Goemans, Vondrak. FOCS’04]

 3-approx [Dean, Goemans, Vondrak. MOR’08]

 (1+𝜖, 1+𝜖)-approx [Bhalgat, Goel, Khanna. SODA’11]

 2-approx [Bhalgat 12]

 8-approx (size&profit correlation, cancellation)

[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS’11] 

Our result:

(1+𝜖, 1+𝜖)-approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)



Stochastic Knapsack
 Decision Tree

Item 1

Exponential size!!!! (depth=n)
How to represent such a tree? Compact solution?

Size=𝜖 Size=3𝜖Size=10𝜖
Size=1-𝜖

Item 2 Item 3 Item 7

…
..



Stochastic Knapsack

 By discretization, we make some simplifying assumptions:

 Support of the size distribution: （0, 𝜖, 2𝜖, 3𝜖, …… , 1）.

Still way too many possibilities, how 
to narrow the search space?



 Block Adaptive Policies: Process items block by block

Items 

1,5,7

Items 

2,3
Items 

3,6
Items 

6,8,9

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶)

Item 2 Item 3 Key Properties:
(1) Depth=O(1)
(2) Degree=O(1)
So #nodes=O(1)
Note: O(1) depends on 𝜖

Block Adaptive Policies



Items 

1,5,7

Items 

2,3
Items 

3,6
Items 

6,8,9

Item 2 Item 3 Key Properties:
(1) Depth=O(1)
(2) Degree=O(1)
So #nodes=O(1)
Note: O(1) depends on 𝜖

Still exponential many possibilities, even in a single block

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶)

Block Adaptive Policies

 Block Adaptive Policies: Process items block by block



Poisson Approximation

 Each heavy item consists of a singleton block

 Light items:
 Using the Poisson Approximation Technique

 Generate a signature for each block

 If two blocks have the same signature, their size distributions are 
similar

 So, enumerate Signatures! (instead of enumerating subsets)



Le Cam’s theorem (rephrased):

n r.v. 𝑋𝑖 (with common support (0,1,2,3,4,…)) with signature

𝐬𝐠𝑖 = (Pr 𝑋𝑖 = 1 , Pr 𝑋𝑖 = 2 ,… )

Let 𝐬𝐠 = σ𝑖 𝐬𝐠

𝑌𝑖 are i.i.d. r.v. with distr 𝐬𝐠/ 𝐬𝐠 1

𝑌 follows the compound Poisson distr (CPD) corresponding to sg

𝑌 = σ𝑖=1
𝑁 𝑌𝑖 where 𝑁 ∼ Poisson( 𝐬𝐠 1)

Then,   Δ σ𝑋𝑖 , 𝑌 ≤ σ𝑝𝑖
2 where 𝑝𝑖 = Pr[𝑋𝑖 ≠ 0]

Variational distance:

Δ 𝑋, 𝑌 = σ𝑖 | Pr 𝑋 = 𝑖 − Pr[𝑌 = 𝑖] |

Poisson Approximation



Poisson Approximation

 Le Cam’s theorem: Δ σ𝑋𝑖 , 𝑌 ≤ σ𝑝𝑖
2

 Ob: If 𝑆1 and 𝑆2 have the same signature, then they 
correspond to the same CPD

 So if σ𝑖∈𝑆1
𝑝𝑖
2 and σ𝑖∈𝑆2

𝑝𝑖
2 are sufficiently small, the 

distributions of 𝑋(𝑆1) and 𝑋(𝑆2) are close

 Therefore, enumerating the signature of light items 
suffices (instead of enumerating subsets)



 Outline: Enumerate all block structures with a 

signature associated with each node

(0.4,1.1,0,…)

(0,1,1,2.2,…)

(5,1,1.7,2,…)

(1.1,1,1,1.5,…)

(1,1,2,…)

(0,1.4,1.2,2.1,…)

(0,0,1.5,2,…)

- O(1) nodes

- Poly(n) possible
signatures for each node

- So total #configuration  
=poly(n)

Algorithm



2. Find an assignment of items to blocks that matches all 

signatures 

– (this can be done by standard dynamic program)

Algorithm



2. Find an assignment of items to blocks that matches all 

signatures 

– (this can be done by standard dynamic programming)

Item 1

(0.2,0.04,0…..)

(0.2,0.04,0.1…..)

(0.1,0,0…..)

(0.1,0.2,0.1…..)

(0.15,0,0…..)

(0.15,0.2,0.22…..)

Item 2 Item 3
(0.4,1.1,0,…)

(0,1,1,2.2,…)

(5,1,1.7,2,…)

(1.1,1,1,1.5,
…)

(1,1,2,
…)

(0,1.4,1.2,2.1,…)

(0,0,1.5,2,…)

On any root-leaf path, each item appears at most once

Algorithm

Item 4 Item 5 Item 6
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Conclusion

 Many interesting problems in the stochastic models

 Lots of open problems

 Deep connection to many other areas of TCS: LP primal-dual, 

online learning, game theory and mechanism design, counting, 

coreset, computational geometry

 BUT, very few researchers from China

 A survey paper:

 Approximation Algorithms for Stochastic Combinatorial 

Optimization Problems. Jian Li and Yu Liu. Journal of the 

Operations Research Society of China. 2016



Thanks
lapordge@gmail.com

Survey:  Approximation Algorithms for Stochastic Combinatorial Optimization Problems. 

Jian Li and Yu Liu. Journal of the Operations Research Society of China. 2016

Weibo: 李建THU     

Webchat: lapordge


