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Uncertain Data and Stochastic Model

® Data Integration and Information Extraction
® Sensor Networks; Information Networks

® Probabilistic models in machine learning
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Stochastic Optimization

* Initiated by Danzig (linear programming with stochastic
coetticients)

* Instead of having a deterministic input, we have a distribution
of inputs. Goal: optimize the expectation of some functional
of the objective value.

® Many problems are #P-hard (even PSPACE-hard)

e Focus: polynomial time approximation algorithms

® (-approximation (approximation factor)

ALG o
< @ (minimization problem)
OPT




Online Algorithms

e Time =1, 2, 3, ...

* At time t, make you decision irrevocably (only know the input up
to time t)
ALG

Offline OPT
® The competitive ration is typically determined by the worst case

* Competitive analysis:
input sequence (too pessimistic sometimes)

* Stochastic Online Optimization: Instead of considering the
worst case, assume that there is a distribution of inputs (especially in

the era of big data)




Simons Institute
® https://simons.berkeley.edu/

Algorithms and Uncertainty

Workshops

alg=:rithms
uncertaint

Algorithms and Uncertainty Boot Camp

Aug. 22— Aug. 26, 2016

Organizers: Avrim Blum (Camegie Mellon University), Anupam Gupta (Carnegie Mellon
University), Robert Kleinberg (Comell University), Stefano Leonardi (Sapienza University
of Rome), Eli Upfal (Brown University), Adam Wierman (California Institute of
Technology)

Optimization and Decision-Making Under Uncertainty

Sep. 19— Sep. 23, 2016

Organizers: Nikhil Bansal (Technische Universiteit Eindhoven; chair), Shipra Agrawal
(Columbia University), Robert Kleinberg (Cornell University), Kamesh Munagala (Duke
University), Jay Sethuraman (Columbia University), Adam Wierman (California Institute of
Technology)

Learning, Algorithm Design and Beyond Worst-Case Analysis

Nov. 14 — Nov. 18, 2016

Organizers: Avrim Blum (Camegie Mellon University; chair), Nir Ailon (Technion Israel
Institute of Technology), Nina Balcan (Carnegie Mellon University), Ravi Kumar (Google),
Kevin Leyton-Brown (University of British Columbia), Tim Roughgarden (Stanford
University)

Aug. 17 - Dec. 16, 2016

Organizers:

Anupam Gupta (Carnegie Mellon University; chair; co-chair), Stefano Leonardi (Sapienza University of Rome;
co-chair), Avrim Blum (Carnegie Mellon University), Robert Kleinberg (Cornell University), Eli Upfal (Brown University),
Adam Wierman (California Institute of Technology).

Long-Term Participants (including Organizers):

Nir Ailon (Technion Israel Institute of Technology). Susanne Albers (Technische Universitdt Mtinchen), Aris
Anagnostopoulos (Sapienza University of Rome), Peter Auer (University of Leoben), Yossi Azar (Tel Aviv University),
Nikhil Bansal (Technische Universiteit Eindhoven), Peter Bartlett (UC Berkeley), Eilyan Bitar (Cornell University), Avrim
Blum (Carnegie Mellon University), Nicold Cesa-Bianchi (University of Milan), Shiri Chechik (Tel Aviv University), Edith
GCohen (Google Research), Artur Czumaj (University of Warwick), Amit Daniely (Google Research), Amos Fiat (Tel Aviv
University), Fabrizio Grandoni (IDSIA), Anupam Gupta (Carnegie Mellon University; chair; co-chair), MohammadTaghi
Hajiaghayi (University of Maryland), Longbo Huang (Tsinghua University), Sungjin Im (UC Merced), Ravi Kannan
(Microsoft Research India), Sampath Kannan (University of Pennsylvania), Anna Karlin (University of Washington),
Robert Kleinberg (Cornell University), Elias Koutsoupias (University of Oxford), Ravi Kumar (Google), Stefano Leonardi
(Sapienza University of Rome; co-chair), Kevin Leyton-Brown (University of British Columbia), Jian Li (Tsinghua
University), Na Li (Harvard University), Katrina Ligett (Hebrew University and Caltech), Aleksander Madry
(Massachusetts Institute of Technology), Yishay Mansour (Tel Aviv University), Ruta Mehta (University of lllinois,
Urbana-Champaign), Jamie Morgenstern (University of Pennsylvania), Kamesh Munagala (Duke University), Viswanath
Nagarajan (University of Michigan), Seffi Naor (Technion Israel Institute of Technology), Kameshwar Poolla (UG
Berkeley), Kirk Pruhs (University of Pittsburgh), Ram Rajagopal (Stanford University), Satish Rao (UC Berkeley),
Benjamin Recht (UC Berkeley), Rhonda Righter (UC Berkeley), Tim Roughgarden (Stanford University), Piotr
Sankowski (University of Warsaw), C. Seshadhri (UC Santa Cruz), Jay Sethuraman (Columbia University), Cliff Stein
(Columbia University), Chaitanya Swamy (University of Waterloo), Marc Uetz (University of Twente), Eli Upfal (Brown
University), Marilena Vendittelli (Sapienza University of Rome), Maria Vlasiou (Eindhoven University of Technology),
Jan Vondrak (Stanford University), Jean Walrand (UC Berkeley), Gideon Weiss (University of Haifa), Adam Wierman
(California Institute of Technology), Bert Zwart (CWI Amsterdam).

Research Fellows:

llan Cohen (Tel Aviv University), Varun Gupta (University of Chicago), Thomas Kesselheim (Max-Planck-Institute for
Informatics and Saarland University), Marco Molinaro (PUC-Rio de Janeiro; Microsoft Research Fellow), Benjamin
Moseley (Washington University in St. Louis), Debmalya Panigrahi (Duke University), Xiaorui Sun (Columbia University;

Google Research Fellow), Matt Weinberg (Princeton University), Qiaomin Xie (University of lllinois at Urbana-
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Problem Definition

Stochastic Matching [Chen, et al. ICALP’09]

® (Given:
® A probabilistic graph G(VE).
* Existential prob. p, for each edge e.

® Patience level ¢, for each vertex v.

® Probing e=(u,v): The only way to know the existence of e.
® We can probe (u,v) only it t >0,t, >0
® It eindeed exists, we should add it to our matching.

® Iftnot,t, =t -1,t =t-1.




Problem Definition

® Output: A strategy to probe the edges
® Edge-probing: an (adaptive or non-adaptive) ordering of edges.
® Matching-probing: k rounds; In each round, probe a set of disjoint edges

® Objectives:
® Unweighted: Max. E[ cardinality of the matching].
® Weighted: Max. E[ weight of the matching].

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra ESA'10] best paper/




Motivations

¢ Online dating

® Existential prob. p, : estimation of the success prob. based on

) .
users proflles.

Section 12: Communication Style
Please use the scale below to rate how well you believe each of the following words generally describes you,
not at all somewhal vory wol

1. I try to accommodate the other person's eilel el _tlsl sl
position

2. |ty to understand the other person ) : : C O e 3

3. |1ty 1o be respectful of all opinions different OO0 1010 I@IC 0
from my own

4. |1y to resolve the conflict Quickly 2 8 JIOICI® O

)
7
O
)
)
(0
0

5. |try to avoid disagreement




Motivations

¢ Online dating

® Existential prob. p, : estimation of the success prob. based on

) .
users proflles.

® Probing edge e=(u,v) : uand v are sent to a date.

This is the
ugliest blind date
I've ever seen!




Motivations

¢ Online dating

® Existential prob. p, : estimation of the success prob. based on

users’ profiles.
® Probing edge e=(u,v) : uand v are sent to a date.

® Patience level: obvious.

This is the

eeeeeeeeeee




Motivations: Kidney Exchange

Lloyd Shapley

Alvin E. Roth

MEDICINE

JOHNS HOPKINS

HEALTH

Patient Information

‘ Finda Doctor | Appointments | Login to MyChart |

PATIENT CARE RESEARCH EDUCATION

Comprehensive Transplant Center

Living Donors ~ Transplant Team  Referring Physicians ~ News and Events

Home AboutUs Programs
Overview
Auto Islet

Bone Marrow
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Alvin E. Roth in Stockholm 2012

Heart

Kidney / Pancreas

. = Overview

Shapley in 1980

= Incompatible Kidney Transplant
Program

Overview
Paired Kidney Exchange

the NATIONAL BUREAU of ECONOMIC RESEARCH

16 >ted Donation
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H Patients

ransplants

Kidney Exchange

Alvin E. Roth, Tayfun Sonmez, M. Utku Unver

NBER Working Paper No. 10002
Issued in September 2003
NBER Program(s): HE PE

Most transplanted kidneys are from cadavers, but there are also substantial numbers of transplants from
live donors. Recently, there have started to be kidney exchanges involving two donor-patient pairs such
that each donor cannot give a kidney to the intended recipient because of immunological incompatibility,
but each patient can receive a kidney from the other donor. Exchanges are also made in which a donor-
patient pair makes a donation to someone on the queue for a cadaver kidney, in return for the patient in
the pair receiving the highest priority for a compatible cadaver kidney when one becomes available. We
explore how such exchanges can be arranged efficiently and incentive compatibly. The problem resembles
some of the housing' problems studied in the mechanism design literature for indivisible goods, with the
novel feature that while live donor kidneys can be assigned simultaneously, the cadaver kidneys must be
transplanted immediately upon becoming available. In addition to studying the theoretical properties of the
design we propose for a kidney exchange, we present simulation results suggesting that the welfare gains
would be substantial, both in increased number of feasible live donation transplants, and in improved
match quality of transplanted kidneys.

FONT SIZE ()@ PRINT THIS PAGE &

share this page: =] E Il B iore

Home > Comprehensive Transplant Center > Programs > Kidney > Incompatible Kidney Transplant
Program

Appointment Request

Refer a Patient

Meet Our Team

Paired Kidney Exchange

Contact Us

+ Whatis a paired kidney exchange?

» How are donor/recipient pairs matched?

+ How long will it take to find a matching donor/recipient pair?
« How does the operation work?

« Can pairs meet?

Make a Gift

What is a Paired Kidney Exchange?

E Follow Us on Facebook

Since 2001, Johns Hopkins Comprehensive Transplant Center has participated in paired kidney
exchanges. A paired kidney exchange, also known as a *kidney swap' occurs when a living kidney
donor is incompatible with the recipient, and so exchanges kidneys with another donor/recipient pair.

Two live donor transplants would occur. Suppose there were two donor/recipient pairs, Donor and

Recipient 1 and Donor and Recipient 2 P




Motivations: Kidney Exchange

e Pairwise Kidney exchange

® Existential prob. p,

blood type etc.

. estimation of the success prob. based on

® Probing edge e=(u,v) : the crossmatch test (which is more

expensive and time-consuming).

Mother
Donor #1

,-’/

" i 8

Husband
Donor #2




Our Results

® Previous results for unweighted version [Chen et al. 09]:
e Edge-probing: Greedy is a 4-approx.
e Matching-probing: O(log n)-approx,

* A simple 8-approx. for weighted stochastic matching.
® For edge-probing model.

® Can be generalized to set packing.
e An improved 3-approx. for bipartite graphs and 4-approx. for

general graphs based on dependent rounding [Gandhi et al. *06].

® For both edge—probing and matching—probing models.
® This implies the gap between the best matching-probing strategy and the best edge-

probing strategy is a small const.
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® Matching-probing: O(log n)-approx.
J A simple 8-approx. for weighted stochastic matching,

® For edge—probing model.
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Stochastic online mat S ‘@

A set of items and a set of buyer
types. A buyer of type b likes item a
with probability p ;.

® G(buyer types, items): Expected graph)

JHIEIDO

The Skincare

The buyers arrive online.
® Her type is an ii.d.r.v. .

The algorithm shows the buyer (of
type b) at most ¢ items one by one.

The buyer buys the first item she likes

or leaves without buying.

Goal: Maximizing the expected
number of satisfied users.

. Expected graph




Stochastic online matching

® This models the online AdWords allocation problem.
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® This generalizes the stochastic online matching problem of [Feldman et
al. 709, Bahmani et al. ’10, Saberi et al "10] where p,={0,1}.

® We have a 4.008-approximation.




Approximation Ratio

® We compare our solution against the optimal (adaptive)

strategy (not the offline optimal solution).

e An example:

t=1
E[offline optimal] = 1-(1-1/n)~= 1-1/e

E[any algorithm] = 1/n




A LP Upper Bound

® Variable y, : Prob. that any algorithrn probes e.

maximize E We * Te

eck
subject to Z z.< 1 YveV At most 1 edge 1n d(v) 1s matched
ecd(v)
Z Ye< t, VeV At most t, edges in 0(v) are probed
e _= v
e€d(v)

To=p.-Yo Ve€EE x,: Prob. e 1s matched
e £ =

0<ye<1 VecE




A Simple 8-Approximation

An edge (u,v) is safe if t,>0,t, >0 and neither u nor v is matched

Algorithm:

® Pick a permutation 7T on edges uniformly at random

® For each edge e in the ordering 7, do:
® If e is not safe then do not probe it.

° If eis safe then probe it w.p.y,/Q.




An Improved Approx. — Bipartite Graphs

Algorithm:
® y «— Optimal solution of the LP.

® y’<— Round y to an integral solution using dependent rounding [Gandhi et al.
JACMO6] and Let E’= {e | y’,=1}.
® (Marginal distribution) Pr(y’,=1)=y,;
® (Degree preservation) Degp(v) S ¢, ; (Recall 2, ;) 4.)7.5¢,)
® (Negative Correlation). Prl A\

Z.=1)] < || Prz. =1). forany §c 8(u).
eES ecs

® Probe the edges in E’ in random order.

o THM: it is a 3-approximation for bipartite graphs
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Stochastic Probing

° A general formulation [Gupta and Nagarajan, [PCO13]
® Input:
® Element e has weight W, , prob of being active p,

® Outer packing constraints (what you can probe)

Downward closed (e.g., deg constraints)

® Inner packing constraints (what your solution should be)

Downward closed (e.g., matchings)

® We can adaptively probe the elements. If a probed element is active,
we have to choose it irrevocably.

¢ Goal: Design an adaptive policy which maximizes the total Weight
of active probed elements




Contention Resolution Scheme

A very general and powerful rounding scheme [chekuri et al. STOC11, SICOMP14]:
« Given a fractional point x in a polytope (the LP relaxation)
* We can do independent rounding (X; < 1 with prob x;)
« But this can’t guarantee feasibility
* (b,c)-CR scheme rounds x to an feasible integer solution s.t.
Pr[X; « 1] = bcx;

Definition (CR Scheme) A (b, ¢)-balanced CR scheme w for a downwards-closed set system T

1s a scheme such that for any x € Pr, the scheme returns a set w(I) C I = R(bx) with the following
property:

1. n(I) € Z;

2. Prlien(I) | € I] > c for every element 1.

Many combinatorial constraints admit good CR schemes, such as
matroids, intersection of matroids (matching), knapsack etc.




Algorithm

® LP upper bound:

Maximize warg
eEV
st. T, =py., YVeeV
T € P(Zin)
y € P(Tout)

Solve the LP relaxation and obtain the optimal LP solution (z., ye);
Pick I C 2V by choosing each e € V independently with probability by,;
Let P = mout(1);
Order elements in P according to the permutation given by the ordered CR scheme iy;
fori=1— |P| do
if SU{ei} € Zi, then
\\ Probe e; ;

oo =] & o R Q0 kRO

If e; is active, let S+ SU{e;} ;




Algorithm

Theorem Consider an instance of the stochastic probing problem. Suppose the following hold:
1. There is a (b, cout)-CR scheme mout for P(Tout);
2. There is a monotone (b, ciy) ordered CR scheme my for P(Zin);

Then, there is a polynomial time approxrimation algorithm which can achieve an approrimation
factor of b(cout + cin — 1)-

® Online content resolution scheme [Feldman et al. SODA16]

® Connection to Prophet inequalities, Bayesian Mechanism

Design




® Stochastic Online Optimization

® Stochastic Matching

e Stochastic Probing
® Bayesian Online Selection/ Prophet inequality
® Stochastic Knapsack

® Conclusion




Bayesian Online Selection

e Motivated by Bayesian Mechanism Design
® Input:
® A set of elements

® Each element is associated with a random value X, (with known
distribution)

® We can adaptively observe the elements one by one

® Once we see the true value of X, we can decide to choose it or not
(main difference from stochastic probing: first see the value)

® A combinatorial inner packing constraint as well

® Goal: Design an adaptive policy which maximizes the expected
total value of chosen elements

® We can use CR scheme to solve this problem as well [Feldman et al.
SODA16]




PrOphet Inequa“ty [Krengel et al. 78]

* A special case of BOS, an important problem in optimal
stopping theory

® Input:
® A set of elements

® Each element is associated with a random value X, (with known
distribution)

® We can choose one value

e Goal: Design an adaptive policy which maximizes the expected

value of the chosen element




Prophet Inequality

* Prophet inequality:

* Algorithm:
e compute a threshold value T = E|max X;]/2 and accept the first
i

element whose Weight exceeds this threshold

® Optimality: 1/2 is tight
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Stochastic Knapsack

A knapsack of capacity C
A set of items, each having a fixed profit

Known: Prior distr of size of each item.

Each time we choose an item and place it in the knapsack

irrevocably

The actual size of the item becomes known after the decision

Knapsack constraint: The total size of accepted items <= C

Goal: maximize E[Profit]

[L, Yuan STOCL13] /




Jobs:

Running time: (\ : /ﬂ\ \"
| 1| Al

-

Profits:

Motivation

e Stochastic Scheduling
® Jobs, each having an uncertain length, and a fixed profit
® You have C hours

® How to (adaptively) schedule them (maximize E[profit])

# calc.py - a Python calculator
I tkinter iy *

# the main ¢

155 Cald()

lef init_ (self):
self.total =0
self.current =
self.new_num = True
self.op_pending = False
ml!.u:) ; : 918 3

36 9

self.eq_flag = False

20% 5% 10$

lass

~| G
w o

o w| w
o




Stochastic Knapsack

Previous work
® 5-approx [Dean, Goemans, Vondrak. FOCS 04]
® 3-approx [Dean, Goemans, Vondrak. MOR’08]
* (1+€, 1t€)-approx [Bhalgat, Goel, Khanna. SODA"11]
® 2-approx [Bhalgat 12]
® 8-approx (size&profit correlation, cancellation)
[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS"11]

Our result:

(1t€, 1+€)-approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)




Stochastic Knapsack

® Decision ITree

Exponential size!!!! (depth=n)
How to represent such a tree? Compact solution?




Stochastic Knapsack

® By discretization, we make some simplifying assumptions:

® Support of the size distribution:

Still way too many possibilities, how
to narrow the search space?




Block Adaptive Policies

* Block Adaptive Policies: Process items block by block

Key Properties:
(1) Depth=0(1)
(2) Degree=0(1)
/\NdGSZOﬂ)
Note: O(1) depends on ¢

- 8

LEMMA: [Bhalgat, Goel, Khanna. SODA'11] There is a block adaptive
policy that is nearly optimal (under capacity (1 + €)C)

- /




Block Adaptive Policies

* Block Adaptive Policies: Process items block by block

Key Properties:
(1) Depth=0(1)

(2) Degree=0(1)
So #nodes=0(1)
Note: O(1) depends on €

I\ /] -A-'---‘——-‘__" r N NN AN A4 41 1 |
- A

LE nere1s-a plocCk
policy that IS nearly optlmal (under capacity (1 + e)C)

- /




Poisson Approximation

e Each heavy item consists of a singleton block

* Light items:
® Using the Poisson Approximation Technique
® Generate a signature for each block
® If two blocks have the same signature, their size distributions are
similar

® So, enumerate Signatures! (instead of enumerating subsets)




Poisson Approximation

Le Cam’s theorem (rephrased):

nr.v. X; (with common support (0,1,2,3,4,...)) with signature
S8, = (PI‘[XL — 1],PI‘[X,: = 2] ) )

Letsg = ).;sg
Y; arei.i.d. r.v. with distr sg/|sg|,
Y follows the compound Poisson distr ( CPD) corresponding to sg

Y = 3N, Y; where N ~ Poisson(|sg|,)

Then, AQX;,Y) < Zplz where p; = Pr[X; # 0]

Variational distance:
AX,Y) = Zi | Pr[X =i] — Pr[Y =i]|




Poisson Approximation

e Le Cam’s theorem: A} X;,Y) < Zplz

® Ob: If §7 and S, have the same signature, then they
correspond to the same CPD

* Soif )¢ S, piz and )¢ s, pl-z are sufficiently small, the
distributions of X (87) and X(S,) are close

® Therefore, enumerating the signature of light items
suffices (instead of enumerating subsets)




(1.1,1,1,1.5,...)

-

Algorithm

e Qutline: Enumerate all block structures with a

signature associated with each node

(0.4,1.1,0,...)

(5,1,1.7,2,...) (0,0,15,2,...)

(1,1,2,...) (0,1,1,2.2,...)

O(1) nodes

Poly(n) possible
signatures for each node

So total #configuration
=poly(n)




Algorithm

2. Find an assignment of items to blocks that matches all

signatures

— (this can be done by standard dynamic program)




Algorithm

2. Find an assignment of items to blocks that matches all

signatures

— (this can be done by standard dynamic programming)
ltem 1 ltem m

ltem 4 ltem 5 It

/_\b

T i

\_ Onany root-leaf path, each item appears at most once

/
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Conclusion

® Many interesting problems in the stochastic models
e [ ots of open problems

® Deep connection to many other areas of TCS: LP primal-dual,
online learning, game theory and mechanism design, counting,

coreset, computational geometry

® BUT, very few researchers from China

o A survey paper:

® Approximation Algorithms for Stochastic Combinatorial
Optimization Problems. Jian Li and Yu Liu. Journal of the

Operations Research Society of China. 2016
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lapordge@gmail.com

Weibo: 2= THU
Webchat: lapordge

Survey: Approximation Algorithms for Stochastic Combinatorial Optimization Problems.
Jian Li and Yu Liu. Journal of the Operations Research Society of China. 2016




