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Uncertain Data and Stochastic Model
 Data Integration and Information Extraction

 Sensor Networks; Information Networks

 Probabilistic models in machine learning

Sensor ID Temp.

1 Gauss(40,4)

2 Gauss(50,2)

3 Gauss(20,9)

… …

Probabilistic databases

Probabilistic Models in 

machine learning
Stochastic models in 

operation research



Stochastic Optimization
 Initiated by Danzig (linear programming with stochastic 

coefficients)

 Instead of having a deterministic input, we have a distribution 
of inputs. Goal: optimize the expectation of some functional 
of the objective value.

 Many problems are #P-hard (even PSPACE-hard)

 Focus: polynomial time approximation algorithms

 𝛼-approximation (approximation factor)


𝐴𝐿𝐺

𝑂𝑃𝑇
≤ 𝛼 (minimization problem)



Online Algorithms
 Time =1, 2, 3, …

 At time t, make you decision irrevocably (only know the input up 
to time t)

 Competitive analysis:  
𝐴𝐿𝐺

Offline 𝑂𝑃𝑇
 The competitive ration is typically determined by the worst case 

input sequence  (too pessimistic sometimes)

 Stochastic Online Optimization: Instead of considering the 
worst case, assume that there is a distribution of inputs (especially in 
the era of big data)



Simons Institute

 https://simons.berkeley.edu/
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Problem Definition

Stochastic Matching [Chen, et al. ICALP’09]

 Given:

 A probabilistic graph G(V,E). 

 Existential prob. pe for each edge e.

 Patience level tv for each vertex v.

 Probing e=(u,v): The only way to know the existence of e. 

 We can probe (u,v) only if tu>0,tv>0 .

 If  e indeed exists, we should add it to our matching.

 If not, tu =tu-1 ,tv =tv-1.



Problem Definition

 Output: A strategy to probe the edges

 Edge-probing: an (adaptive or non-adaptive) ordering of edges. 

 Matching-probing: k rounds; In each round, probe a set of disjoint edges

 Objectives:

 Unweighted: Max.  E[ cardinality of the matching].

 Weighted: Max. E[ weight of the matching].

[Bansal, Gupta, L, Mestre, Nagarajan, Rudra ESA’10] best paper
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 Existential prob. pe : estimation of the success prob. based on 

users’ profiles. 



Motivations

 Online dating

 Existential prob. pe : estimation of the success prob. based on 

users’ profiles. 

 Probing edge e=(u,v) : u and v are sent to a date. 



Motivations

 Online dating

 Existential prob. pe : estimation of the success prob. based on 

users’ profiles. 

 Probing edge e=(u,v) : u and v are sent to a date. 

 Patience level: obvious.



Motivations: Kidney Exchange



Motivations: Kidney Exchange

 Pairwise Kidney exchange

 Existential prob. pe : estimation of the success prob. based on 

blood type etc. 

 Probing edge e=(u,v) : the crossmatch test (which is more 

expensive and time-consuming). 



Our Results

 Previous results for unweighted version [Chen et al. ’09]:

 Edge-probing: Greedy is a 4-approx. 

 Matching-probing: O(log n)-approx.

 A simple 8-approx. for weighted stochastic matching.
 For edge-probing model.

 Can be generalized to set packing.

 An improved 3-approx. for bipartite graphs and 4-approx. for 

general graphs based on dependent rounding [Gandhi et al. ’06].

 For both edge-probing and matching-probing models.

 This implies the gap between the best matching-probing strategy and the best edge-

probing strategy is a small const.
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Stochastic online matching

 A set of items and a set of buyer 
types. A buyer of type b likes item a
with probability pab.  
 G(buyer types, items): Expected graph)

 The buyers arrive online. 
 Her type is an i.i.d. r.v. .

 The algorithm shows the buyer (of 
type b)  at most t items one by one.

 The buyer buys the first item she likes 
or leaves without buying.

 Goal: Maximizing the expected 
number of satisfied users.
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Stochastic online matching
 This models the online AdWords allocation problem.

 This generalizes the stochastic online matching problem of [Feldman et 

al. ’09,  Bahmani et al. ’10, Saberi et al ’10] where pe={0,1}.

 We have a 4.008-approximation.



Approximation Ratio

 We compare our solution against the optimal (adaptive) 

strategy (not the offline optimal solution).

 An example:

…

t=1

pe=1/n

E[offline optimal] = 1-(1-1/n)n ≈ 1-1/e

E[any algorithm] = 1/n



A LP Upper Bound

 Variable ye : Prob. that any algorithm probes e. 

At most 1 edge in ∂(v) is matched

At most tv edges in ∂(v) are probed

xe: Prob. e is matched



A Simple 8-Approximation

An edge (u,v) is safe if tu>0,tv>0 and neither u nor v is matched

Algorithm:

 Pick a permutation π on edges uniformly at random  

 For each edge e in the ordering π, do:    

 If e is not safe then do not probe it.    

 If  e is safe then probe it w.p. ye/α.



An Improved Approx. – Bipartite Graphs

Algorithm:

 y← Optimal solution of the LP.

 y’ ← Round y to an integral solution using dependent rounding [Gandhi et al. 

JACM06] and Let E’= {e | y’e=1}.

 (Marginal distribution) Pr(y’e=1)=ye;

 (Degree preservation) DegE’(v) ≤ tv ; (Recall  Σe in (v) ye ≤ tv )

 (Negative Correlation).

 Probe the edges in E’ in random order.

for any

o THM: it is a 3-approximation for bipartite graphs
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Stochastic Probing 
 A general formulation [Gupta and Nagarajan, IPCO13]

 Input:

 Element e has weight 𝑤𝑒, prob of being active 𝑝𝑒
 Outer packing constraints (what you can probe)

 Downward closed (e.g., deg constraints)

 Inner packing constraints (what your solution should be)
 Downward closed (e.g., matchings)

 We can adaptively probe the elements. If a probed element is active, 
we have to choose it irrevocably. 

 Goal: Design an adaptive policy which maximizes the total weight 
of active probed elements



Contention Resolution Scheme

A very general and powerful rounding scheme [Chekuri et al. STOC11, SICOMP14]:

• Given a fractional point x in a polytope (the LP relaxation)

• We can do independent rounding (𝑋𝑖 ← 1 with prob 𝑥𝑖)
• But this can’t guarantee feasibility 

• (b,c)-CR scheme rounds x to an feasible integer solution s.t.

Pr 𝑋𝑖 ← 1 ≥ 𝑏𝑐𝑥𝑖

Many combinatorial constraints admit good CR schemes, such as 

matroids, intersection of matroids (matching), knapsack etc.



Algorithm

 LP upper bound:



Algorithm

 Online content resolution scheme [Feldman et al. SODA16]

 Connection to Prophet inequalities, Bayesian Mechanism 

Design



 Stochastic Online Optimization

 Stochastic Matching

 Stochastic Probing

Bayesian Online Selection/Prophet inequality

 Stochastic Knapsack

Conclusion



Bayesian Online Selection
 Motivated by Bayesian Mechanism Design

 Input:
 A set of elements

 Each element is associated with a random value 𝑋𝑒 (with known 
distribution) 

 We can adaptively observe the elements one by one

 Once we see the true value of 𝑋𝑒, we can decide to choose it or not 
(main difference from stochastic probing: first see the value)

 A combinatorial inner packing constraint as well

 Goal: Design an adaptive policy which maximizes the expected 
total value of chosen elements

 We can use CR scheme to solve this problem as well [Feldman et al. 
SODA16]



Prophet Inequality [Krengel et al. 78]

 A special case of BOS, an important problem in optimal 

stopping theory

 Input:

 A set of elements

 Each element is associated with a random value 𝑋𝑒 (with known 

distribution) 

 We can choose one value

 Goal: Design an adaptive policy which maximizes the expected 

value of the chosen element



Prophet Inequality

 Prophet inequality:

 Algorithm: 

 compute a threshold value 𝑇 = E[max
𝑖

𝑋𝑖]/2 and accept the first 

element whose weight exceeds this threshold

 Optimality:  1/2 is tight
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Stochastic Knapsack

 A knapsack of capacity C

 A set of items, each having a fixed profit

 Known: Prior distr of size of each item.

 Each time we choose an item and place it in the knapsack 

irrevocably

 The actual size of the item becomes known after the decision  

 Knapsack constraint: The total size of accepted items <= C

 Goal: maximize E[Profit] 

[L, Yuan STOC13]



Motivation 

 Stochastic Scheduling

 Jobs, each having an uncertain length, and a fixed profit

 You have C hours

 How to (adaptively) schedule them (maximize E[profit])

Jobs:

Running time:

Profits: 20$ 5$ 10$ 50$

C=5 hours



Stochastic Knapsack

Previous work

 5-approx [Dean, Goemans, Vondrak. FOCS’04]

 3-approx [Dean, Goemans, Vondrak. MOR’08]

 (1+𝜖, 1+𝜖)-approx [Bhalgat, Goel, Khanna. SODA’11]

 2-approx [Bhalgat 12]

 8-approx (size&profit correlation, cancellation)

[Gupta, Krishnaswamy, Molinaro, Ravi. FOCS’11] 

Our result:

(1+𝜖, 1+𝜖)-approx (size&profit correlation, cancellation)

2-approx (size&profit correlation, cancellation)



Stochastic Knapsack
 Decision Tree

Item 1

Exponential size!!!! (depth=n)
How to represent such a tree? Compact solution?

Size=𝜖 Size=3𝜖Size=10𝜖
Size=1-𝜖

Item 2 Item 3 Item 7

…
..



Stochastic Knapsack

 By discretization, we make some simplifying assumptions:

 Support of the size distribution: （0, 𝜖, 2𝜖, 3𝜖, …… , 1）.

Still way too many possibilities, how 
to narrow the search space?



 Block Adaptive Policies: Process items block by block

Items 

1,5,7

Items 

2,3
Items 

3,6
Items 

6,8,9

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶)

Item 2 Item 3 Key Properties:
(1) Depth=O(1)
(2) Degree=O(1)
So #nodes=O(1)
Note: O(1) depends on 𝜖

Block Adaptive Policies



Items 

1,5,7

Items 

2,3
Items 

3,6
Items 

6,8,9

Item 2 Item 3 Key Properties:
(1) Depth=O(1)
(2) Degree=O(1)
So #nodes=O(1)
Note: O(1) depends on 𝜖

Still exponential many possibilities, even in a single block

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶)

Block Adaptive Policies

 Block Adaptive Policies: Process items block by block



Poisson Approximation

 Each heavy item consists of a singleton block

 Light items:
 Using the Poisson Approximation Technique

 Generate a signature for each block

 If two blocks have the same signature, their size distributions are 
similar

 So, enumerate Signatures! (instead of enumerating subsets)



Le Cam’s theorem (rephrased):

n r.v. 𝑋𝑖 (with common support (0,1,2,3,4,…)) with signature

𝐬𝐠𝑖 = (Pr 𝑋𝑖 = 1 , Pr 𝑋𝑖 = 2 ,… )

Let 𝐬𝐠 = σ𝑖 𝐬𝐠

𝑌𝑖 are i.i.d. r.v. with distr 𝐬𝐠/ 𝐬𝐠 1

𝑌 follows the compound Poisson distr (CPD) corresponding to sg

𝑌 = σ𝑖=1
𝑁 𝑌𝑖 where 𝑁 ∼ Poisson( 𝐬𝐠 1)

Then,   Δ σ𝑋𝑖 , 𝑌 ≤ σ𝑝𝑖
2 where 𝑝𝑖 = Pr[𝑋𝑖 ≠ 0]

Variational distance:

Δ 𝑋, 𝑌 = σ𝑖 | Pr 𝑋 = 𝑖 − Pr[𝑌 = 𝑖] |

Poisson Approximation



Poisson Approximation

 Le Cam’s theorem: Δ σ𝑋𝑖 , 𝑌 ≤ σ𝑝𝑖
2

 Ob: If 𝑆1 and 𝑆2 have the same signature, then they 
correspond to the same CPD

 So if σ𝑖∈𝑆1
𝑝𝑖
2 and σ𝑖∈𝑆2

𝑝𝑖
2 are sufficiently small, the 

distributions of 𝑋(𝑆1) and 𝑋(𝑆2) are close

 Therefore, enumerating the signature of light items 
suffices (instead of enumerating subsets)



 Outline: Enumerate all block structures with a 

signature associated with each node

(0.4,1.1,0,…)

(0,1,1,2.2,…)

(5,1,1.7,2,…)

(1.1,1,1,1.5,…)

(1,1,2,…)

(0,1.4,1.2,2.1,…)

(0,0,1.5,2,…)

- O(1) nodes

- Poly(n) possible
signatures for each node

- So total #configuration  
=poly(n)

Algorithm



2. Find an assignment of items to blocks that matches all 

signatures 

– (this can be done by standard dynamic program)

Algorithm



2. Find an assignment of items to blocks that matches all 

signatures 

– (this can be done by standard dynamic programming)

Item 1

(0.2,0.04,0…..)

(0.2,0.04,0.1…..)

(0.1,0,0…..)

(0.1,0.2,0.1…..)

(0.15,0,0…..)

(0.15,0.2,0.22…..)

Item 2 Item 3
(0.4,1.1,0,…)

(0,1,1,2.2,…)

(5,1,1.7,2,…)

(1.1,1,1,1.5,
…)

(1,1,2,
…)

(0,1.4,1.2,2.1,…)

(0,0,1.5,2,…)

On any root-leaf path, each item appears at most once

Algorithm

Item 4 Item 5 Item 6
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Conclusion

 Many interesting problems in the stochastic models

 Lots of open problems

 Deep connection to many other areas of TCS: LP primal-dual, 

online learning, game theory and mechanism design, counting, 

coreset, computational geometry

 BUT, very few researchers from China

 A survey paper:

 Approximation Algorithms for Stochastic Combinatorial 

Optimization Problems. Jian Li and Yu Liu. Journal of the 

Operations Research Society of China. 2016



Thanks
lapordge@gmail.com

Survey:  Approximation Algorithms for Stochastic Combinatorial Optimization Problems. 

Jian Li and Yu Liu. Journal of the Operations Research Society of China. 2016

Weibo: 李建THU     

Webchat: lapordge


