
Jian Li 

Institute for Interdisciplinary Information Sciences  

Tsinghua University

Muti-armed Bandits,Online Learning and Sequential Prediction

2016 NDBC



Outline

Online Learning

 Stochastic Multi-armed Bandits

UCB

Combinatorial Bandits

Top-k Arm Identification

Combinatorial Pure Exploration

Best Arm Identification



Online Learning

 𝑡 = 1,2,… , 𝑇

Choose an action 𝑥𝑡
(without knowing 𝑓𝑡)

Observe the reward 𝑓𝑡(𝑥𝑡)
and the feedback (full 

information/semi-bandit/ 

bandit feedback)

the environment plays 𝑓𝑡



Online Learning

 Adversarial / Stochastic environment

 Feedback 

• full information (Expert Problem): know 𝑓𝑡
• semi-bandit (only makes sense in combinatorial setting )

• bandit feedback: only knows the value 𝑓𝑡(𝑥𝑡)
• Exploration-Exploitation Tradeoff



The Expert Problem

time 1 2 3 4 … T

Expert 1 T T H T … T

Expert 2 H T T H … H

Expert 3 T T T T … T

….

A special case – coin guessing game

Imagine the adversary chooses a sequence beforehand (oblivious adversary):

TTHHTTHTH……

If the prediction is wrong, cost = 1 for the time slot. Otherwise, cost = -1.

Suppose there is an expert who is really good (who can predict 90% correctly). Can you do 

(almost) at least this good?



No Regret Algorithms
 Define regret:

 We say an algorithm is “no regret” if 𝑅𝑇 = 𝑜(𝑇) (e.g., 𝑛)

 Hedge Algorithm (aka mulplicative weighting) [Freund & 
Schapire ‘97] can achieve a regret of O( 𝑛)
 Deep connection to Adaboost



Universal Portfolio
[Cover 91]

 n stocks

 In each day, the price of each stock will go up or down

 In each day, we need to allocate our wealth between those 
stocks (without knowing their actually prices on that day) 

 We can achieve almost the same asymptotic exponential 
growth rate of wealth as the best constant rebalanced 
portfolio chosen in hindsight (i.e., no regret!), using a 
continuous version of the multiplicative weight algorithm

 (CRP is no worse than investing the single best stock) 



Online Learning

A very active research area in machine learning

 Solving certain classes of convex programs 

 Connections to stochastic approximation (SGD: 
stochastic gradient descent) [Leon Bottou]

 Connections to Boosting: Combining weak learners into 
strong ones [Freund & Schapire]

 Connections to Differential Privacy: idea of adding 
noise/ regularization / multiplicative weight

 Playing repeated games

 Reinforcement learning (connection to Q-learning, 
Monte-Carlo tree search)
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Exploration-Exploitation Trade-off

 Decision making with limited information

An “algorithm” that we use everyday

 Initially, nothing/little is known 

 Explore (to gain a better understanding)

 Exploit (make your decision)

 Balance between exploration and exploitation

 We would like to explore widely so that we do not miss really good choices

 We do not want to waste too much resource exploring bad choices (or try to 

identify good choices as quickly as possible)



The Stochastic Multi-armed Bandit

 Stochastic Multi-armed Bandit

 Set of 𝑛 arms

 Each arm is associated with an unknown reward distribution 

supported on [0,1] with mean 𝜃𝑖
 Each time, sample an arm and receive the

reward independently drawn from the 

reward distribution 

classic problems in stochastic control, stochastic 

optimization and online learning



Stochastic Multi-armed Bandit

 Statistics，medical trials (Bechhofer, 54) ,Optimal control，
Industrial engineering (Koenig & Law, 85), evolutionary 
computing (Schmidt, 06), Simulation optimization (Chen, Fu, 
Shi 08),Online learning (Bubeck Cesa-Bianchi,12)

 [Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer, 
and Sobel, 68],…., [Even-Dar, Mannor, Mansour, 02] 
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06] 
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, 
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, 
12] [Bubeck, Wang, Viswanatha, 12]….[Karnin, Koren, and 
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14]

 Books:  

 Multi-armed Bandit Allocation Indices, John Gittins, Kevin 
Glazebrook, Richard Weber, 2011

 Regret analysis of stochastic and nonstochastic multi-armed bandit 
problems S. Bubeck and N. Cesa-Bianchi., 2012

 ……



The Stochastic Multi-armed Bandit

 Stochastic Multi-armed Bandit (MAB)

MAB  has MANY variations!

 Goal 1: Minimizing Cumulative Regret (Maximizing Cumulative 

Reward)

 Goal 2: (Pure Exploration) Identify the (approx) best K arms (arms 

with largest means) using as few samples as possible (Top-K Arm 

identification problem)

 K=1 (best-arm identification)



A Quick Recap

 The Expert problem

 Feedback: full information

 Costs: Adversarial 

 Stochastic Multi-armed bandits

 Feedback: bandit information (you only observe what you play)

 Costs: Stochastic



Upper Confidence Bound

 n stochastic arms (with unknown distributions)

 In each time slot, we can pull an arm (and get an i.i.d. reward 

from the reward distribution)

 Goal: maximize the cumulative reward/minimize the regret

𝑇𝑖 𝑡 : how many times we have played arm i up to time t



Upper Confidence Bound

 UCB Regret bound (Auer, Cesa-Bianchi, Fischer 02)

 UCB has numerous extensions: KL-UCB, LUCB, CUCB, 

CLUCB, Lil-UCB, …..

𝐺𝑎𝑝: Δ𝑖 = 𝜇1 − 𝜇𝑖

𝑅𝑇 =෍

𝑖=2

𝑛
log 𝑛

Δ𝑖
+ (1 +

𝜋2

3
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Combinatorial Bandit - SDUCB
 Stochastic Multi-armed Bandit

 Set of 𝑛 arms

 Each arm is associated with an unknown reward distribution 
supported on [0, s]

 Each time, we can play a combinatorial set S of arms and receive 
the reward of the set (e.g., 𝑟𝑒𝑤𝑎𝑟𝑑 = max

𝑖∈𝑆
𝑋𝑖 )

 Goal: minimize the regret

 Application: Online Auction

 Each arm: a user type – the distribution of the valuation

 Each time we choose k of them

 The reward is the max valuation 

[Chen, Hu, L, Li, Liu, Lu, NIPS16]



Combinatorial Bandit - SDCB

 Stochastic Dominate Confidence Bound

 High level idea: For each arm, maintain an estimate 

CDF which stochastically dominates the true CDF

 In each iteration, solve the offline optimization 

problem using the estimate CDF as the input (e.g., find 

S which maximizes E[max
𝑖∈𝑆

𝑋𝑖]) 



Combinatorial Bandit - SDCB

 Results: Gap-dependent 𝑂(ln𝑇) regret

 Gap-independent regret
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Best Arm Identification
 Best-arm Identification: Find the best arm out of n arms, 

with means 𝜇[1], 𝜇[𝑛],.., 𝜇[𝑛]
 Goal: use as few samples as possible

 Formulated by Bechhofer in 1954

 Generalization: find out the top-k arms

 Applications: medical trails, A/B test, crowdsourcing, team 
formation, many extensions….

 Close connections to regret minimization



 Regret Minimization

 Maximizing the cumulative reward



 Best/top-k arm identification

 Find out the best arm using as few samples as possible

Your boss: 

I want to go to casino tomorrow.

find me the best machine!



Applications

 Clinical Trails

 One arm – One treatment

 One pull – One experiment

Don Berry, University of Texas 

MD Anderson Cancer Center



Applications
 Crowdsourcing:

 Workers are noisy 

 How to identify reliable workers and exclude unreliable workers ? 

 Test workers by golden tasks  (i.e., tasks with known answers)

 Each test costs money. How to identify the best 𝐾 workers with minimum amount of 

money? 
Top-𝑲Arm Identification 

Worker Bernoulli arm with mean 𝜃𝑖
(𝜃𝑖: 𝑖-th worker’s reliability)

Test with golden task Obtain a binary-valued sample 

(correct/wrong)

0.95 0.99 0.5



Naïve Solution

 𝜖-approximation: the ith arm in our output is at most 𝜖 worse 

than the the ith largest arm

 Uniform Sampling

Sample each coin M times

Pick the K coins with the largest empirical means

empirical mean:  #heads/M

How large M needs to be (in order to achieve 𝜖-approximation)??

So the total number of samples is O(nlogn)
𝑀 = 𝑂(log 𝑛)



Naïve Solution

Uniform Sampling

 With M=O(logn), we can get an estimate 𝜃𝑖
′ for 𝜃𝑖 such that 

𝜃𝑖 − 𝜃𝑖
′ ≤ 𝜖 with very high probability (say 1 −

1

𝑛2
)

 This can be proved easily using Chernoff Bound (Concentration 

bound). 

 Then, by union bound, we have accurate estimates for all arms

What if we use M=O(1)?  (let us say M=10)

 E.g., consider the following example (K=1):

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5)

 Consider a coin with mean 0.5,

Pr[All samples from this coin are head]=(1/2)^10

 With const prob,  there are more than 500 coins whose samples are all heads



Can we do better??
 Consider the following example:

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5)

 Uniform sampling spends too many samples on bad coins.

 Should spend more samples on good coins 

 However, we do not know which one is good and which is bad……

 Sample each coin M=O(1) times.

 If the empirical mean of a coin is large, we DO NOT know whether it 

is good or bad

 But if the empirical mean of a coin is very small, we DO know it is bad 

(with high probability)



Median/Quantile-Elimination

For i=1,2,….

Sample each arm 𝑀𝑖 times

Eliminate one quarter arms

Until less 4k arms

𝑀𝑖 ∶ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦

When n ≤ 4𝑘，use uniform sampling

Decrease 𝜖，until proper termination condition

We can find a solution with additive error  𝜖



Our algorithm



(worst case) Optimal bounds

Top-1 arm (PAC) [Even-Dar et al. 02]

We solve the average (additive) version in [Zhou, Chen, L ICML’14]

We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS’15] 
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A More General Problem

Combinatorial Pure Exploration

 A general combinatorial constraint on the feasible set of arms

 Best-k-arm: the uniform matroid constraint 

 First studied by [Chen et al. NIPS14]

 E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

 We obtain improved bounds for general matroid constaints

 Our bounds even improve previous results on Best-k-arm

[Chen, Gupta, L. COLT’16]



Application

 A set of jobs

 A set of workers

 Each worker can only do one job

 Each job has a reward distribution

 Goal: choose the set of jobs with the 

largest total expected reward

Jobs Workers

Feasible sets of jobs that can be 

completed form a transversal matroid



Our Results

 A generalized definition of gap

 Exact identification

 [Chen et al.] 

 Previous best-k-arm [Kalyanakrishnan]:

 Ours:

 Our result is even better than previous best-k-arm result

 Our result matches Karnin’et al. result for best-1-arm



Our Results

 PAC: Strong eps-optimality (stronger than elementwise opt)

 Ours:

 Generalizes [Cao et al.][Kalyanakrishnan et al.]

 Optimal: Matching the LB in [Kalyanakrishnan et al.]

 PAC: Average eps-optimality

 Ours:                                      (under mild condition)

 Generalizes [Zhou et al.]

 Optimal (under mild condition): matching the lower bound in

[Zhou et al.]



Our technique

 What is more interesting is our technique

 Sampling-and-Pruning technique

 Originally developed by Karger, and used by Karger, Klein, Tarjan for the 

expected linear time MST

 High level idea (for MST)

 Sample a subset of edges (uniformly and random, w.p. 1/100)

 Find the MST T over the sampled edges

 Use T to prune a lot of edges (w.h.p. we can prune a constant 

fraction of edges)

 Iterate over the remaining edges
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Best Arm Identification

 Some classical results:

 Mannor-Tsitsiklis lower bound:

It is an instance-wise lower bound

 A PAC algorithm – Median Elimination [Even-Dar et al.]

 Find an 𝜖-optimal arm using 𝜖−2𝑛 log 𝛿−1 samples

 The bound is worst-case optimal 



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
Jamieson et al.: “The procedure cannot be improved in the sense that the number of samples required 

to identify the best arm is within a constant factor of a lower bound based on the law of the iterated 

logarithm (LIL)”. 



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
• Of course, to completely close the problem, we need to show the 

remaining generalization from Farrell’s LB to n arms:  ∑Δ[𝑖]
−2loglogΔ[𝑖]

−1



New Upper and Lower Bounds

 Our new upper bound (strictly better than Karnin’s)

Farrell’s LB M-T LB lnlnn term seems strange……..

[Chen, Li. ArXiv 15]



New Upper and Lower Bounds

 Our new upper bound (strictly better than Karnin’s)

 It turns out the lnlnn term is fundamental.

 Our new lower bound (not instance-wise)

Farrell’s LB M-T LB lnlnn term seems strange……..



Open Question

 (almost) Instance optimal algorithm for best arm

 Gap Entropy:

 Gap Entropy Conjecture:

 An instance-wise lower bound 

 An algorithm with sample complexity:

𝑒−1 𝑒−2 𝑒−3 𝑒−4 𝑒−5 𝑒−6 𝑒−7Δ

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7



Thanks.
lapordge@gmail.com
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