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Online Learning
et=12,..,T

-

\

Choose an action X

(without knowing f)

~

the environment plays f;

4 Observe the reward ft (xt) )

and the feedback (full
information/semi-bandit/

bandit feedback)

/




Online Learning

® Adversarial / Stochastic environment

® Feedback
* full information (Expert Problem): know f;

* semi-bandit (only makes sense in combinatorial setting )

* bandit feedback: only knows the value f;(x¢)

Exploration—EXploitation Tradeoff




The Expert Problem

A special case — coin guessing game

Imagine the adversary chooses a sequence beforehand (oblivious adversary):

TTHHTTHTH......

time 1 2 3 4 T
Expert 1 T T H T T
Expert 2 H T T H H
Expert 3 T T T T T

If the prediction is wrong, cost = 1 for the time slot. Otherwise, cost = -1.

Suppose there is an expert who is really good (who can predict 90% correctly). Can you do
(almost) at least this good?




No Regret Algorithms

® Define regret:

T T
R = th(a:t) — th(a:*)

t=1 =1 _
— argmin,y Y7, e(2)

*

where
® We say an algorithm is “no regret”if Ry = 0o(T) (e.g., Vn)

* Hedge Algorithm (aka mulplicative weighting) [Freund &
Schapire ‘97] can achieve a regret of 0(v/n)

® Deep connection to Adaboost




Universal Portfolio
[Cover 91]

® n stocks
® In each day, the price of each stock will go up or down

® In each day, we need to allocate our wealth between those
stocks (without knowing their actually prices on that day)

® We can achieve almost the same asymptotic exponential
growth rate of wealth as the best constant rebalanced
portfolio chosen in hindsight (i.e., no regret!), using a
continuous version of the multiplicative weight algorithm

® (CRP is no worse than investing the single best stock)




-

Online Learning

A very active research area in machine learning
. Solving certain classes of convex programs

® Connections to stochastic approximation (SGD:
stochastic gradient descent) (Leon Bottoy)

® Connections to Boosting: Combining weak learners into
Strong ones [Freund & Schapire]

® Connections to Differential Privacy: idea of adding
noise/ regularization / Inultiplicative Weight

o Playing repeated games

* Reinforcement learning (connection to Q-learning,
Monte-Carlo tree search)
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Exploration-Exploitation Trade-off

® Decision making with limited information

An “algorithm” that we use everyday
® Initially, nothing/little is known
* Explore (to gain a better understanding)

* Exploit (make your decision)

e Balance between exploration and exploitation
* We would like to explore Widely so that we do not miss really good choices

® We do not want to waste too much resource exploring bad choices (or try to

identify good choices as quickly as possible)




The Stochastic Multi-armed Bandit

® Stochastic Multi-armed Bandit

® Set of N arms

® Each arm is associated with an unknown reward distribution

supported on [0,1] with mean 6;
® Each time, sample an arm and receive the
reward independently drawn from the

reward distribution

classic problems in stochastic control, stochastic
optimization and online learning




MULTI-ARMED BANDIT
ALLOCATION INDICES

Stochastic Multi-armed Bandit I

ohn Gittnn, Kevin Glarebrook

Statistics, medical trials (Bechhofer, 54) ,Optimal control,
Industrial engineering (Koenig & Law, 85), evolutionary
computing (Schmidt, 06), Simulation optimization (Chen, Fu,
Shi 08),Online learning (Bubeck Cesa-Bianchi,12)
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Multiarmed Bandit
Allocation Indices (Wiley
Interscience Series in

Systems and
Optimization)

[Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer,
and Sobel, 68],...., [Even-Dar, Mannor, Mansour, 02]
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06]
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, bl f
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, |
12] [Bubeck, Wang, Viswanatha, 12]....[Karnin, Koren, and Dionorihs su S and
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14] e

vnaid A Bertry

Books:

® Multi-armed Bandit Allocation Indices, John Gittins, Kevin
Glazebrook, Richard Weber, 2011

® Regret analysis of stochastic and nonstochastic multi-armed bandit

problems S. Bubeck and N. Cesa-Bianchi., 2012




The Stochastic Multi-armed Bandit

® Stochastic Multi-armed Bandit (MAB)
MAB has MANY variations!

® Goal 1: Minimizing Cumulative Regret (Maximizing Cumulative
Reward)

® Goal 2: (Pure Exploration) Identity the (approx) best K arms (arms
with largest means) using as few samples as possible (Top-K Arm
identification problem)

K=1 (best-arm identification)




A Quick Recap

® The Expert problem
® Feedback: full information

® Costs: Adversarial

® Stochastic Multi-armed bandits
® Feedback: bandit information (you only observe what you play)
® Costs: Stochastic




Upper Confidence Bound

® n stochastic arms (with unknown distributions)

® In each time slot, we can pull an arm (and get an i.i.d. reward

from the reward distribution)

® (Goal: maximize the cumulative reward/minimize the regret

Optimism in the Face of Uncertainty

@ At time t, construct most optimistic estimate for each arm

2logt
Vft 1= flit—1 + (fgﬂ

@ Play arm with max upper bound.

i.e. play /; € argmax{v,t 1}
ie{1,

@ Proof based on Hoeffdmg s inequality

T;(t): how many times we have played arm i up to time t

-




Upper Confidence Bound

* UCB Regret bound (Auer, Cesa-Bianchi, Fischer 02)

e UCB has numerous extensions: KL-UCB, LUCB, CUCB,
CLUCSB, Lil-UCB, .....
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Combinatorial Bandit - SDUCB

® Stochastic Multi-armed Bandit

® Set of . arms

e Each arm is associated with an unknown reward distribution

supported on [0, s]

® Each time, we can play a combinatorial set S of arms and receive

the reward of the set (e.g., reward = m%X X;)
LE
® Goal: minimize the regret

o Application: Online Auction
® Fach arm: a user type — the distribution of the valuation
® Fach time we choose k of them

® The reward is the max valuation

[Chen, Hu, L, Li, Liu, Lu, NIPSl6]/




Combinatorial Bandit - SDCB

e Stochastic Dominate Confidence Bound

* High level idea: For each arm, maintain an estimate
CDF which stochastically dominates the true CDF

® In each iteration, solve the oftline optimization

problem using the estimate CDF as the input (e.g., find

S which maximizes E [m%X X;))
LE




Combinatorial Bandit - SDCB

* Results: Gap-dependent O (InT) regret

21: 2
M?*K EZE Azljfn In(AT") + (%)\_3(5 — 1)+ 1) aMm
(3 B ’

° Gap—independent regret

2

93M \/mK T In(\T) + (?)\_3(5 — 1)+ 1) aMm.
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Best Arm ldentification

® Best-arm Identification: Find the best arm out of n arms,

with means Ur1y, Uin)s--> Kin
® Goal: use as few samples as possible

¢ Formulated by Bechhofer in 1954
® Generalization: find out the top—k arms

* Applications: medical trails, A/B test, crowdsourcing, team
formation, many extensions. ...

® Close connections to regret minimization




® Re gret Minimization

® Maximizing the cumulative reward

oy
)




® Best/ top—k arm identification

® Find out the best arm using as few samples as possible

Your boss:
| want to go to casino tomorrow.
find me the best machine!




on Statistics anc
Applied Probability

Bandit

Applications Problems

¢ (Clinical Trails

. _ ..
One arm — One treatment e NEW ENGLAND

JOURNAL o MEDICINE

ESTABLISHED IN 1812 JULY 7, 2016 VOL.375 NO.1

® One pull — One experiment

Adaptive Randomization of Neratinib in Early Breast Cancer

Hirst. A. S E A. Be

N ENGLJ MED 3751 NEJM.ORG JULY 7, 2016

Tht NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE ”

Adaptive Randomization of Veliparib—
Carboplatin Treatment in Breast Cancer

O.I.O

M.B. Buxtor

MATHEMATICS IN BIOLOGY

NEWS

The New Math of Clinical Trials

Other fields have adopted statistical methods that previous

experience, but the stakes ratchet up when it comes to medical research

Bayesian school of thought. then widely
viewed as an oddity within the field The
Bayesian approach calls for incorporating
Houston, Texas—If statistics were a reli-  Hutchinson Cancer Research Center in  “priors™ —knowledge gained from previous
gion, Donald Berry would be among its  Seattle, Washington. But cnitics and sup- work—into a new experiment. “The
most dogged proselytizers Head of biostatiss  porters alike have a grudging admimation for  Bayesian notion is one of synthesis ... [and]

Don Berry, University of Texas

MD Anderson Cancer Center

tics at the M. D. Anderson Cancer Center
here, he’s dropped all hobbies except reading
bndge columns in the newspaper He sends

Berry's persistence. “He isn't swayed by the
status quo. by people in power in hss field™
says Fran Visco, head of the National Breast

leamming as you go.” says Berry. He found
these qualities immensely appeziing. in part
because they reflect real-life behavior, in-




e

Applications

° Crowdsourcing:

® Workers are noisy

0.95 0.99 0.5
e How to identify reliable workers and exclude unreliable workers ?

® Test workers by golden tasks (i.e., tasks with known answers)

2 Each test costs money. How to identify the best K workers with minimum amount of

Top—K Arm Identification

Worker Bernoulli arm with mean 6;

(0;: i-th worker’s reliability)

money?

Test with golden task Obtain a binary-valued sample

(correct/wrong) /




Nailve Solution

® c —approximation: the ith arm in our output 1S at most € worse

than the the ith largest arm
* Uniform Sampling
Sample each coin M times
Pick the K coins with the largest empirical means

empirical mean: Hheads/M

How large M needs to be (in order to achieve €-approximation)??

M = O(logn)
So the total number of samples is O(nlogn)




Nailve Solution

Uniform Sampling
* With M=O(logn), we can get an estimate 0; for B; such that
16; — 6;| < € with very high probability (say 1 — %)

® This can be proved easily using Chernoff Bound (Concentration

bound).

® Then, by union bound, we have accurate estimates for all arms
What if we use M=O(1)? (let us say M=10)
® E.g., consider the following example (K=1):
0.9,0.5,0.5, ... , 0.5 (a million coins with mean 0.5)

Consider a coin with mean 0.5,

Pr[All samples from this coin are head]=(1/2)"10

With const prob, there are more than 500 coins whose samples are all heads

/




Can we do better??

® Consider the following example:
0.9,05,05, ....................L. , 0.5 (a million coins with mean 0.5)

Uniform sampling spends too many samples on bad coins.

Should spend more samples on good coins

* However, we do not know which one is good and which is bad......

Sample each coin M=O(1) times.

* If the empirical mean of a coin is large, we DO NOT know whether it
is good or bad

* But if the empirical mean of a coin is very small, we DO know it is bad

(with high probability)




Median/Quantile-Elimination

Fori=1,2,....
Sample each arm M; times  u, : increasing expoentially
Eliminate one quarter arms

Until less 4k arms

When n < 4k, use uniform sampling

We can find a solution with additive error e

Decrease €, until proper termination condition




Our algorithm

Algorithm 1: ME-AS

1 input: I3, ¢, 6, k
2 forp=1/2,1/4,...do

3 | §S=ME(B,¢6, k)

4 | {(a, 0 (a;)) |1 <i<k}=US(S,¢,6, (1 —¢/2)p, k);
5 | if@YS(ax) > 2u then

6 |_ return {ay,...,a; };

Algorithm 2: Median Elimination (ME)

1 input: 5, ¢, 6, u, &
28 =B,¢=¢/16,8) =6/8, py = p,and ¥ = 1;
3 while |Sy| > 4k do

4 sample every arm a € S for Q¢ = (12/€7)(1/pe) log(6k /8¢ ) times;

5 for each arm a € 5y do

6 |_ its empirical value ﬁ(u} = the average of the (}; samples from a;

7 ay,. .., s, =the arms sorted in non-increasing order of their empirical values;
8 35'4.1 = {{J.],..,..qur”g};

9 | e = Beg/4, 001 = 0 /2, ppgr = (1 — €y, and £ = £+ 1;

10 return Sy;

Algorithm 3: Uniform Sampling (US)

1 input: S, e, 0, pg, k

2 sample every arm a € S for (@ = (96/¢2)(1/ps) log(4|S]/d) times;

3 for eacharma € S do

4 |_ its US-empirical value gUs (a) = the average of the () samples from a;

5 ay,...,a)5 = the arms sorted in non-increasing order of their US-empirical values;
6 return {(ay,0"5(ay)), ..., (ax, 05 (ax))}




(worst case) Optimal bounds

Table 1: Comparison of our and previous results (all bounds are in expectation)

problem sample complexity source

upper O(% m log % [14]
k bound

_AS O (&g 5 log5 new
lower Q(E"; log %) [11]
bound Q0 (En? - (18) log§ ew
O(5 .05y log §) [14]
Eggr?fi (eﬂ Toa (B (1 a logflfé})) [16]
kXé 0 (eﬂz 2z (B) (1 t ﬂfiﬂ)) new
lower Q5= (1 — M)) [16]
o Q (eﬂz Oave (B) (1 T log{l/é))) new

Top-1 arm (PAC) [Even-Dar et al. 02]
We solve the average (additive) version in [Zhou, Chen, L ICML’14]
We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS’'15] /
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A More General Problem

Combinatorial Pure Exploration

o A general combinatorial constraint on the feasible set of arms

® Best-k-arm: the uniform matroid constraint

® First studied by [Chen et al. NIPS14]

* E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

® We obtain improved bounds for general matroid constaints

® Our bounds even improve previous results on Best-k-arm

[Chen, Gupta, L. COLT'16] /




Application

* A set of jobs
® A set of workers
e Each worker can only do one job

® Each job has a reward distribution

® Goal: choose the set of jobs with the

largest total expected reward

Jobs Workers

Feasible sets of jobs that can be
completed form a transversal matroid




Our Results

o A generalized definition of gap

AM {OPT(M) — OPT(Ms\(e)) e € OPT(M)
© |OPT(M) — (OPT(M(e}) + p1(€)) e & OPT(M)

e Exact identification

° [Chen et al] (Z A2(Iné ' +Inn+In Zees AEQ))

ecsS
® Previous best-k-arm [Kalyanakrishnan]:

O o A[T;,]z(ln 0t + I}, A[E]z))

e Ours: O (Z A% (Ind! +1nk:+ln1nAel))

ecS
® Qur result is even better than previous best-k-arm result

® QOur result matches Karnin’et al. result for best-1-arm




Our Results

® PAC: Strong eps-optimality (stronger than elementwise opt)
® Ours: O(ne 2. (Ink+1Ino 1))
® Generalizes [Cao et al.]|[Kalyanakrishnan et al. ]

® Optimal: Matching the LB in [Kalyanakrishnan et al.]

® PAC: Average eps—optimality
® Ours: O(ne 2(1+1nd'/k)). (under mild condition)
® Generalizes [Zhou et al.]

® Optimal (under mild condition): matching the lower bound in
[Zhou et al.]




Our technique

e What is more interesting is our technique
° Sampling—and—Pruning technique

Originally developed by Karger, and used by Karger, Klein, Tarjan for the
expected linear time MST

* High level idea (for MST)
® Sample a subset of edges (uniformly and random, w.p. 1/100)
® Find the MST T over the sampled edges

® Use T to prune a lot of edges (w.h.p. we can prune a constant

fraction of edges)

® Jterate over the remaining edges




Outline

® Online Learning
® Stochastic Multi-armed Bandits
e UUCB
® Combinatorial Bandits
*Top-k Arm Identification
® Combinatorial Pure Exploration

®Best Arm Identification




Best Arm ldentification

® Some classical results:

® Mannor-Tsitsiklis lower bound:
(E , A g ) Ajip = ppay — By

[t is an instance-wise lower bound
® A PAC algorithm — Median Elimination [Even-Dar et al.]
Find an € —optimal arm using € —2n log 51 samples

The bound is worst-case optimal




Are we done? - a misclaim

Source

Sample Cﬂmplaxity

Even-Dar et al. [ 12]

DA (]1115_' +Inn+In ﬂ.[_l.]l)

Gabillon et al. [16]

n a—z (hus-' +1n al;]“)

i=2 —[i]

Jamieson et al. | 19]

o A (nd l““‘“( )

kalyanakrishnan et al. [23]

>, AR (I + Y, A7)

Jamieson et al. [ 19]

Ind~" - (o' - 30, A2+ 30 &fln&ﬂll)

Karnin et al.|24], Jamieson et al.|20]

(X, A% (6™ + Ay

Mannor-Tsitsiklis lower bound: €2 (Z?:z 5[212 In 5_1)

Farrell's lower bound (2 arms): A[Q] Inln A

Attempting to believe : Karnin’s upper bound is tight
Jamieson et al.: “The procedure cannot be improved in the sense that the number of samples required
to identify the best arm is within a constant factor of a lower bound based on the law of the iterated

logarithm (LIL)”.
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Are we done? - a misclaim

Source Sample Cnmplaxity

Even-Dar et al. [12] DA (]1115_' +Inn+ lnﬂ.[_l.]l)

Gabillon et al. [16] " a[l] (5" + al;f)

Jamieson et al. [ 19] Ty &[{] (]né '+Inln ( =2 &B]‘!))

kalyanakrishnan et al. [23] Yoo ﬂ.[_{]z (]n S+, .&l_.]“)

Jamieson et al. [19] Indo" - (1n g~ 30, A+ Y, A AL
Karnin et al.[24], Jamieson et al.[20] >, AL (N +InnA;)

This paper (Thm 2.5) [Z ﬂ._‘a (]nL’F '+ Inln min(n, Ay }) + .&[2]‘; Inln &[2]]
This paper (clustered instances) Thm B.22 21—2 Ay 2 Iné~ "'+ ﬂ.[zjz Inln &[_z]

Mannor-Tsitsiklis lower bound: €2 (Z?:z ﬂﬁf In 5_1)
Farrell's lower bound (2 arms): A[Q] Inln A

Attempting to believe : Karnin’s upper bound is tight

 Of course, to co wclose the roblem, we nggd to show the
remaining gener

isclaim? i




New Upper and Lower Bounds

® Our new upper bound (strictly better than Karnin’s)

—2 —1 " —2 — " — : —
O(A[Q] Inln A + Z:@:g Agno Lt Z@':Q A[i]z In In min(n, A[i]l))

Farrell's LB M-T LB Inlnn term seems strange........

[Chen, Li. ArXiv 15] /




New Upper and Lower Bounds

® Our new upper bound (strictly better than Karnin’s)

—2 —1 " —2 — " — : —
O(A[Q] Inln A + Z:@:g Agno Lt Z@':Q A[i]z In In min(n, A[i]l))

Farrell's LB M-T LB Inlnn term seems strange........

® [t turns out the Inlnn term is fundamental.

® Our new lower bound (not instance-wise)

Q (2?22 A[;ﬁ Inln n)




Open Question

® (almost) Instance optimal algorithm for best arm

Hi= > Ay
weG;
H, H, Hs H, Hg Hg H;

4o | | o | | | |

[ [ [ [ i | .
A g1 e—2 e=3 et e=5 o6 a7 o

® Gap Entropy:  Ent(/) = Z pilogp; . pi = H;/ ZHj.
G #0 J

® Gap Entropy Conjecture:
® An instance-wise lower bound £(1,8) = O (H(I)(Ind~" + Ent(I))) .
H(I) = Z?:z A[;]z-

°® An algorithm with sample complexity:

O (C(I, 5) + A2 Inln A[—Q;) |




Thanks.

lapordge@gmail.com




Reference

¢ [book] Cesa-Bianchi, Nicolo, and Gabor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

e Auer. Using Confidence Bounds for Exploitation-Exploration Trade-offs, JIMLR2002

e Leon Bottou, Online Learning and Stochastic Approximations

e T Cover, Universal Portfolios. Mathematical finance, 1991

e Farrell. Asymptotic behavior of expected sample size in certain one sided tests. The Annals of Mathematical Statistics 1964
e E. Even-Dar, S. Mannor, and Y. Mansour. Pac bounds for multi-armed bandit and markov decision processes. In COLT 2002
e S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit problem. JMLR, 2004

e Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed bandits. In ICML, 2013

¢ K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. li'ucb: An optimal exploration algorithm for multi-armed bandits. COLT, 2014
e S.Chen,T. Lin, I. King, M. R. Lyu, and W. Chen. Combinatorial pure exploration of multi-armed bandits.In NIPS, 2014

e Y. Zhou, X. Chen, and J. Li. Optimal pac multiple arm identification with applications to crowdsourcing. In ICML 2014

e W.Cao,J. Li, Y. Tao, and Z. Li. On top-k selection in multi-armed bandits and hidden bipartite graphs. In NIPS 2015

e L. Chen, J. Li. On the Optimal Sample Complexity for Best Arm Identification, ArXiv, 2016

e L. Chen, A. Gupta, and J. Li. Pure exploration of multi-armed bandit under matroid constraints. In COLT2016.

e W.Chen, W. Hu, F. Li, J. Li, Y. Liu, P. Lu. Combinatorial Multi-Armed Bandit with General Reward Functions, In NIPS 2016.

Some materials about MW from Daniel Golovin’s slides; Some material about UCB from Sumeet Katariya’s slides

- /




