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Understanding the Behaviors of LLMs

A perspective based on Komolgorov Complexity and Shannon 

Information Theory



Why DL and LLMs Work So Well?
• Tremendous success in practice
• AI models are still big black boxes
• Theory, several exciting recent results (still not so satisfying)

2



Theory of Deep Learning & LLMs
• Theory of DL

• Optimization (new phenomena)

• Algorithm-dependent generalization

• Implicit bias (towards local/global min with interesting properties)

• Understanding useful tricks: Dropout, batchnorm, layernorm, initialization

• Theory of LLM

• Why predicting next token yields intelligence

• Understanding Pretraining, Fine-Tuning and In-Context Learning

• Understanding Scaling Law

• Hallucination and Interpretability 

• Knowledge storage

• CoT, Reasoning

Traditional Optimization and Generalization theories do NOT work any more



• Kaplan Scaling Law (OpenAI)

• Chinchilla Scaling Laws (DeepMind)

𝐸 = 1.69, 𝐴 = 406.4, 𝐵 = 410.

L: the loss 
N: model size; 
D: dataset size (the token number of training data).

𝛼𝑁 ∼ 0.076, 𝑁𝑐 ∼ 8.8 × 1013 (non-embedding parameters)

𝛼𝐷 ∼ 0.095, 𝐷𝑐 ∼ 5.4 × 1013 (tokens)

Scaling Laws



• Hallucination

In Context Learning and Hallucination

• In Context Learning

Generalization in the Pretraining-Finetuning framework



Outline

• LLM Theory 
• Fundamental Ideas from Shannon and Kolmogorov
• Compression and Prediction
• Kolmogorov’s theory
• Data Modeling (a nonparametric model)
• Hallucination and ICL
• Universal Predictor 
• Research Directions



P r e - t r a i n e d  F o u n d a t i o n  M o d e l s



E m e r g e n c e  o f  I n t e l l i g e n c e
智能能力的涌现



Fundamental Ideas from Shannon and Kolmogorov

Shannon, Prediction and Entropy of Printed English (1951)
• He introduced the idea of modeling language as a 

stochastic process.
• Experiments to estimate language entropy 

(perplexity). 
• “Guessing games”
• Directly related to coding and compression

Kolmogorov Complexity (algorithmic information theory)
K(X):= The minimum length of TM that outputs X.

(a fine-grained structure: Kolmogorov structure function)

• Direct connection to compression

• Do not need to know the exact distribution (unlike Shannon’s information theory)

• Downside: incomputable…



Compression and Intelligence
"An Observation on Generalization“ by Ilya Sutskever

Very good talk (watch on youtube : https://www.youtube.com/watch?v=AKMuA_TVz3A)

View compression from Kolmogorov complexity theory

K(X): Kolmogorov complexity of string X
The minimum length of TM that outputs X.

Why next-token prediction is enough for AGI - Ilya Sutskever (OpenAI Chief Scientist) https://www.youtube.com/watch?v=YEUclZdj_Sc

Kolmogorov compressor as the ultimate compressor

https://sumanthrh.com/post/notes-on-generalization/
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Prediction vs Compression 

The training task of a pre-trained large language model (LLM) is "next token 
prediction," so we can naturally view a pre-trained LLM as a next token predictor.

Given an unknown source distribution 𝑃, a predictor is defined as 𝑄:𝑋∗ → ∆𝑁 which 
given the prefix 𝑥<𝑘 as input and outputs the conditional probability distribution 
𝑄(𝑥𝑘 |𝑥<𝑘).

Cross Entropy Loss

In practice, the objective we use to train our LLMs is cross entropy defined as



Prediction vs Compression 

Equivalence of Prediction and Compression

The better we can predict next token, the better we can 
compress the sequence

We will show that if we can achieve a cross-entropy C (per token), 
we can essentially compress the text using C+o(1) bits (per 
token), and vice versa.



Lossy Compression?

DataSet Model Parameters

Machine Learning algorithms

Limitations:   1.Too much loss

2.No Guaranteed Generalization

(Lossy Compressor)

Equivalence of Prediction and Compression



Lossless Compression

DataSet

Model Parameters

(compressor)
Machine Learning algorithms

lossless coding

Equivalence of Prediction and Compression

Data-to-model code

e.g. winzip (a compressor)

One can use LLM as a more powerful compressor



Why lossless compression leads to intelligence

Solomonoff's theory of inductive 
inference(1964): 
“If a universe is generated by an 
algorithm, then observation of 
that universe, encoded as a 
dataset, are best predicted by the 
smallest executable archive of that 
dataset.”

• If the model can lossless compress well,  it should 
have learned real feature in the dataset and will 
generalize well.

• Minimal Description Length（MDL）
The best interpretation of a set of data is a description of 
that data that is accurate and as short as possible.

• Occam's Razor : 
Entities should not be multiplied unnecessarily.

Equivalence of Prediction and Compression



Lossless Compression/coding

• Compressor encoder 𝑐: 𝑋∗ → {0,1}∗

• There exists a decoder 𝑑: 𝑅(𝑐) → 𝑋∗ satisfies that 𝑑(𝑐(𝑥1:𝑛)) = 𝑥1:𝑛 .

The goal of lossless compression is to minimize the average code length

𝐿𝑐 = 𝐸𝑥~𝜌[𝑙𝑐(𝑥)]
where 𝑙𝑐 means the bit length of 𝑐(𝑥).



Shannon Sourcing Coding Theorem

https://mbernste.github.io/posts/sourcecoding/



Arithmetic Encoder:
Initially, this interval is 𝐼0 = [0, 1) . 
When encoding 𝑥𝑘, we first partition the previous interval 𝐼𝑘−1 = [𝑙𝑘−1, 𝑢𝑘−1) into 
𝑁sub-intervals 𝐼𝑘(𝑥1), 𝐼𝑘(𝑥2), . . . , one for each letter from X = {𝑥1, . . . , 𝑥𝑁 }. The 
size of sub-interval 𝐼𝑘(𝑦) that represents letter 𝑦 is (𝑢𝑘−1 − 𝑙𝑘−1) · 𝑃( 𝑦 | 𝑥 < 𝑘).

The encoding length of arithmetic encoder is 𝑙𝑐(𝑥1:𝑛) = −[𝑙𝑜𝑔2𝑃(𝑥1:𝑛)] + 1

Using an Autoregressive Predictor to design a Lossless Compressor

e.g., encoding AIXI



Prediction vs Compression 

Shannon’s source coding theorem

Equivalence of Prediction and Compression

The better we can predict next token, the better we can 
compress the sequence

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝐻(𝑃)

Redundancy of code 𝑄𝑐:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ:

KL divergence



Outline

• LLM Theory 
• Fundamental Ideas from Shannon and Kolmogorov
• Compression and Prediction
• Kolmogorov’s theory
• Data Modeling (a nonparametric model)
• Hallucination and ICL
• Universal Predictor 
• Research Directions



Kolmogorov Complexity

Kolmogorov Complexity (algorithmic information theory)
K(X):= The minimum length of TM that outputs X.

(a fine-grained structure: Kolmogorov structure function)

• Direct connection to compression

• In some sense, the ultimate notion of compression

• Do not need to know the exact distribution (unlike Shannon’s information 

theory)

• Downside: incomputable…

Examples:
• abababababababababababababababa....
• 4c1j5b2p0cv4w1x8rx2y39umgw5q85s7...
• 31415926535897932384626433832795...

see the classic book “elements of Information Theory”



Kolmogorov Complexity
Can the following program output K(s)?

Universality of Kolmogorov complexity



Kolmogorov Complexity
• Algorithmic randomness

• What is a random string? A impressible one.
• We say a seq 𝑥1...𝑥𝑛 is algorithmically random if

• Most sequences are random (interesting sequences are rare)

This can be easily seen from the fact that 



Kolmogorov structure function

• Hence the set S∗ captures all the structure within x. 

• The remaining description of x within S∗ is essentially the 
description of the randomness within the string. 

• Hence S* is called the Kolmogorov sufficient statistic for 
x.

sufficiency line

first touch sufficiency line
achieved by S*

minimum sufficient statistics

• Two part code (model-to-data code)



Kolmogorov structure function

• Two part code (model-to-data code)

• Closely related to Scaling Law

• Distinguish structure & random noise 
• a fine-grained hierarchy

• Why a power law shape?

• A characterization of “what should be 
learnt” and “what is learnt first”
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Data Modeling – A Hierarchical Nonparametric Model

A syntax encoder:
(probabilistic) 
grammar

A Hierarchical Nonparametric Model:

• An encoder (syntax, most common knowledge, basic logic): can be captured by a fair 
small-sized probabilistic TM that is fairly easy to learn (low sample complexity). 

• World (factual) Knowledge:  a large body of knowledge, that is constantly growing 
(consider the number of facts, set of proteins, species, chemical substances etc.)



Data Modeling – A Hierarchical Nonparametric Model

World (factual) Knowledge:

A Hierarchical Nonparametric Model:

• An encoder (syntax, most common knowledge, basic logic): can be captured by a fair 
small-sized probabilistic TM that is fairly easy to learn (low sample complexity). 

• World (factual) Knowledge:  a large body of knowledge, that is constantly growing
(consider the number of facts, set of proteins, species, chemical substances etc.)

• Can’t be captured by a fixed 

parametric model

• Modeled by Pitman-Yor Chinese 

Restaurant Process (PY-CRP)

𝜃1 𝜃2 𝜃3 𝜃5𝜃4



Pitman-Yor Chinese Restaurant Process (PY-CRP)

• Preferential attachment

• leads to a power-law distribution



• Kaplan Scaling Law (OpenAI)

• Chinchilla Scaling Laws (DeepMind)

𝐸 = 1.69, 𝐴 = 406.4, 𝐵 = 410.

L: the loss 
N: model size; 
D: dataset size (the token number of training data).

𝛼𝑁 ∼ 0.076, 𝑁𝑐 ∼ 8.8 × 1013 (non-embedding parameters)

𝛼𝐷 ∼ 0.095, 𝐷𝑐 ∼ 5.4 × 1013 (tokens)

Scaling Laws



A Coding Game

• Suppose 𝑃𝜃 is a distribution indexed by 𝜃.

• Bayesian setting: there is a prior 𝜋 over 𝜃

• The player would like to model 𝑃𝜃 using 𝑄

• Observe x1...xn one by one

• Minimize the following log-loss

minimize the bayesian code length 
(cross-entropy)



A Coding Game

Connection of redundancy and  mutual information

Bayesian Redundancy:



Understanding Scaling Law

Theorem (informal): Under the above data generative model and unlimited model size, we can prove 
that the Bayesian predictor (or Maximum Likelihood predictor in large data regime) has the following 
loss 

Irreducible loss 
(pure randomness)

Loss incurred by 
learning the syntax 

encoder

Loss incurred by 
learning the 

knowledge (power law)

• Related to Heap’s Law (Heaps, 1978) an empirical relationshipstating that the vocabulary size grows sublinearly 
with the size of a corpus N ,and Zipf’s Law (Zipf, 2016).

Under the Bayesian prediction framework, one can show that the minimum Bayesian redundancy is equal to the 
mutual information (between the data and prior)



Controlled experiments
Methodology popularized by Allen-Zhu and Li in a series of papers “Physics of LLMs” -1,2,3

Ethological approach

Physics

Controlled experiments
“LLM monkeys”

bioS dataset: we generate profiles for 400,000 individuals. Each profile contains six 
attributes: date of birth, birth city, university, major, employer, and employer city

“Gracie Tessa Howell wasborn in Camden, NJ. He studied Biomedical Engineering and worked at 
UnitedHealth Group. He entered the world on April 15, 2081, and is employed in Min-netonka. He is 
an alumnus/alumna of Buena Vista College.”



Data Scaling Law

learn syntax for all frequencies

higher frequency data learnt first



Model Scaling Law

Redundancy for the ith knowledge cluster:

Model scaling law (total redundancy) can be captured by the following 
optimization problem 

can be solved using KKT condition introduced in the last class



Model Scaling Law

The solution of the optimization problem

Under the same data model, we have a theory of model scaling law (inspired by 
Kolmogorov structure function)

Empirical results



Model Scaling Law

• For data generated from a uniform 
distribution, the loss

• curve significantly deviates from a power law

• It may be advantageous to have power-law-
distributed data. 

• The model can gradually learn knowledge in 
the order of frequency

• More effective than the uniform case, where 
no one element stands out and the model 
lacks guidance on what to prioritize.



Understanding Instruction Fine-Tuning
• Instruction fine-tuning: 

• Replace the encoder with another one (change the 

way the knowledge is encoded)

• The knowledge component stays the same

We can show the loss for Instruction fine-tuning can be 
bounded as (𝑛′ is the size of Instruction F-T data)

Practical Implication: Instruction F-T is more useful for generation according to the instruction, but less 
effective for injecting new knowledge 

Knowledge in pretrained 
phase is retained

Redundancy incurred by learning the 
new encoder



Hallucination and ICL
• Causes of hallucination on (factual knowledge)

• Insufficient samples to learn the fact
• Insufficient model size (related to model scaling law)
• Confusing/ambiguous prompt
• Conflicting knowledge in training data

• Other hallucinations (not covered, future work)

• Explaining In-Context Learning (Bayesian view)
• Consider 𝑃 𝑛𝑒𝑥𝑡 𝑡𝑜𝑘𝑒𝑛 𝑝𝑟𝑜𝑚𝑝𝑡)
• Prompt increase the posterior probability of 

the relevant table

Encoder

➢ Prompt: “Explain ………” 
➢ Answer: …….
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Universal Predictor: Solomonoff's theory 
• Dartmouth Summer Research Conference on Artificial Intelligence, where 

Solomonoff was one of the original 10 invitees

• A formal framework for universal inductive inference based on Kolmogorov 
complexity and Bayesian inference

• A universal prior distr 𝑚(𝑥) over all strings

• To predict future data, given a sequence 𝑥 observed so far, and a prediction 𝑦 (next 
token), the conditional probability is the posterior

• The Solomonoff predictor is universal:



Universal Predictor: Solomonoff's theory 
• Hypothesis: modern LLMs is a (rough) approximation of Solomonoff’s

predictor.
• We can explain various behaviors of LLMs using this theory

• Drawbacks
• Unfortunately, Solomonoff’s predictor is again incomputable.
• Solomonoff’s predictor ignores the following important aspects

• the model size constraint

• Architecture constraints of transformer (can not represent certain function composition)

• Some (even simple) TMs are not efficiently learnable (XOR problem, one way functions etc.)

• We should refine Solomonoff's theory to take account of the above 
(computational and statistical) barriers



Research Questions (LLM theory)
• Theory on more general data generative model 
(beyond syntax and factual knowledge models)

• Kolmogrov’s theory can be a good guideline
• Refined Universal Predictor (Solomonoff’s) Model
• Methodology: Physics of LLMs (controlled experiments)
• Scaling law, ICL, instruction following, emergence etc.

• Data <----> Skills
• Data importance
• High quality synthetic data (motivated from theory) 

• Detecting Hallucination/Safety issues (from activation pattern 
etc.)



Discussions

Compression vs AGI ? （Sutskever’s view)

Ilya Sutskever “an observation of generalization”



Discussions
Compression vs AGI ?  (Sutskever’s view)

Ilya Sutskever “an observation of generalization”
Compression ≠ AGI!!

压缩即智能 （这个深刻的句子是有局限性的！）

Compression = Intelligence in inductive inference

压缩即推理智能

压缩无法产生探索智能 (基于探索的创造力）

Compression by itself cannot reflect exploration of physical world and 
mathematical/logical reasoning, in my opinion 



Discussions

Compression vs AGI ?

Ilya Sutskever “an observation of generalization”Compression = Intelligence in inductive inference

Compression by itself cannot reflect exploration of physical world and mathematical/logical reasoning

我觉得”压缩即智能“只在inductive inference范畴下是对得。没有capture智能体主动探索explore环境
（和理论）和收集数据的过程。

我很难把explore环境的刺激动力用compression描述出来。一个牵强的说法：为了更好的predict next 
token，需要主动探索世界发现规律，然后predict next token和压缩有关系。

当然探索得到了数据，分析总结这些数据，来发现规律，需要的就是更好的压缩这些数据。

压缩即智能指的是获得数据后的智能过程，但是什么驱动探索，我觉得用压缩解释不了。也就是Ilya 
talk里有个图光minimize perplexity到不了AGI。



Discussion: RL and Reasoning
这个观点上我觉得reward is enough那个paper观点更根本。

智能产生的更根本的原因是无限的世界对有限资源智能体
在特定情况下给与reward，有限资源智能体目标就是更有
效的获得这些reward。that is all。为了获得reward，去
explore，获得的data通过compress首先产生了intelligent的
对世界的认识，然后又intelligent的behavior，然后再更好
的收集数据。

比如寻找math proof这个事情，和人类认识世界类似，我说
的那个proof构成的无限的图里有无数人类目前不关心的定
理（比如一个有1000个条件的定理），目前这些个点上没
有啥reward。目前的数据（有reward的）只cover其中很小
的proportion。这个reward是目前人类数学家赋予的（这个
reward function和数学研究里面的一些主义相关，比如直觉
主义的，比如审美，还有数学是否需要和现实世界连接，
还是存粹的推理 （von Neumann, Tao）。

But do we really need RL?? RL vs SFT on smartly collected data



Theoretical AGI: 

AIXI(Artificial Intelligence exploration Institute)

• Environment Model: Assume the environment can be represented as a 

probability distribution 𝑃(𝑜𝑡+1, 𝑟𝑡+1|𝑎𝑡 , ℎ𝑡) where 𝑜𝑡+1 is the observation at 

time 𝑡 + 1, 𝑟𝑡+1 is the reward at time 𝑡 + 1, 𝑎𝑡 is the action at time 𝑡,  ℎ𝑡 is the 

history up to time 𝑡.
• Prediction: AIXI uses the Solomonoff predictor to estimate future observations 

and rewards.

• Decision making: AIXI selects the action that maximizes the expected 

cumulative reward.

Marcus Hutter. “Universal Artificial Intellegence - Sequential Decisions Based on Algorithmic Probability.” Springer,2005.
http://hutter1.net/ai/suaibook.pdf



Thanks
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