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Deep Learning Theory

• Tremendous success in practice
• Theory, exciting recent progress (still not so satisfying)
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Deep Learning Mysteries
• Over-parametrized (traditional theories do not work directly)
• Highly Nonconvex, many local/global minima
• Commonly believed that the training algorithms (gradient-based 

algorithms) play important roles (not just the network architectures)
• Optimization
• Algorithm-dependent generalization
• Implicit bias (towards local/global min with interesting 

properties)
• Inductive bias

• Why CNN works so well for image data?
• Many useful tricks

• Dropout, batchnorm, layernorm, initialization
• Existence of Adversarial Examples



Adversarial Examples

• Adversarial examples in deep learning (first found in [Szegedy et al. 13])

• Accuracy drops to nearly zero in the presence of small adversarial perturbations 

• Geometrically, every training sample (as well as testing sample) is very close to 

the decision boundary.

• Very intriguing phenomena (beyond safety issue)

• Robust decision boundary exists (Human is a robust classifier)



Outline

• Implicit Bias
• Margin Maximization for DNN
• Margin and Robustness
• Feature Averaging
• Feature Averaging leads to Nonrobust Solutions
• Relation to Existing Models

• Dimpled Manifold, Nonrobust Features, etc.



• The optimization algorithm may implicitly bias the solutions to global/local

minima with special properties.

• Implicit bias is particularly important in learning deep neural networks as “it 

introduces effective capacity control not directly specified in the objective” 

[Gunasekar et al. 18] (without explicit regularization and early stopping)

• Several such IB have been found (one slide in my graduate course)

•

Implicit Bias



Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: 𝑓𝑤 𝑥 = 𝑤𝑇𝑥.

Loss function: Logistic loss with L2 regularization.
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“find the solutions with smaller norm”

Explicit bias of GD with L2 regularization

𝑤1
𝑇𝑥 = 0 𝑤2

𝑇𝑥 = 0

Solution may not be unique

margin

Theorem (Rosset et al., 2004, informal).
When 𝜆 is small, the global minimizer of ℒ𝜆 𝑤 is close to the SVM solution.

𝑆𝑉𝑀:
min 𝑤 2

s. t. 𝑦𝑖𝑤
𝑇𝑥𝑖 ≥ 1

max-margin linear classifier
(solving the unconstrained optimization = 

the constrained program)

adapted from Kaifeng Lyu’s slides



Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: 𝑓𝑤 𝑥 = 𝑤𝑇𝑥.

Loss function: Logistic loss without L2 regularization.
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Various low-loss solutions exist!

Explicit bias of GD with L2 regularization

𝑤1
𝑇𝑥 = 0 𝑤2

𝑇𝑥 = 0

Solution may not be unique

Implicit without

Theorem [Soudry et al. 2017].
Even without explicit regularization, GD finds the max-margin linear classifier, 
regardless of the initialization. (SVM solution)

Does GD have a similar “implicit bias” on deep neural nets?
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𝑤1
𝑇𝑥 = 0 𝑤2

𝑇𝑥 = 0

Solution may not be unique

Margin Maximization for DNN?

• Margin of 𝑥𝑛, 𝑦𝑛 : 𝑞𝑖(𝜃) = 𝑦𝑖𝑓𝜃(𝑥𝑖)

• Margin: 𝑞𝑚𝑖𝑛 𝜃 = min
1≤𝑖≤𝑛

𝑞𝑖(𝜃)

How to define margin for DNN:

Does GD have a similar “implicit bias” on deep neural nets?



Margin for Homogeneous Neural Nets

𝑥 ∈ ℝ𝑑

𝜃
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Normalized Margin:
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• Theoretically, margin-based generalized bounds are usually ∝
1

𝛾 𝜃
.

• Larger (normalized) margins lead better bounds (although could be loose) [Bartlett et al. 2017; Neyshabur et al. 2018]
• Empirically, large (normalized) margin (properly defined) positively correlates with generalization [Jiang et al. 2020].

“Neural net is 𝐿-homogeneous”:     𝑓𝑐𝜃(𝑥) = 𝑐𝐿𝑓𝜃(𝑥) for any 𝑐 > 0
E.g., 𝐿-layer ReLU networks and CNNs (without bias terms)

NOTE: Only the direction of 𝜃 really matters (for classification).

• Margin of 𝑥𝑛, 𝑦𝑛 : 𝑞𝑖(𝜃) = 𝑦𝑖𝑓𝜃(𝑥𝑖)

• Margin: 𝑞𝑚𝑖𝑛 𝜃 = min
1≤𝑖≤𝑛

𝑞𝑖(𝜃)

• Lyu, L. 2020. ICLR 2020 oral.



Implicit Bias: Margin Maximization
• Consider the gradient flow

Clarke subdifferential

Theorem: Smooth normalized margin increases monotonically.

Smoothed normalized margin 
(change min to softmin)

Extension to certain non-homogeneuous NN by Chatterji, Long, Bartlett.



Theorem (Lyu, L. 2020., Ji, Telgarsky 2020.) The direction 𝜽

converges and for the limit direction of 𝜽, 𝜽/𝒒𝐦𝐢𝐧
𝜽

𝟏/𝑳
is 

a KKT point of (P).

Max-Margin Problem: (P) Classical SVM

First order (necessary) condition for a local optimal solution in a constrained 
optimization problem

Implicit bias: Margin Maximization



Experiments

• Constant LR: Gradient very small, loss decreases very slowly 

• We can increase the learning rate! (based on the loss)

• SGD with Loss-based Learning Rate.
• Training loss so small. modify Tensorflow to deal with numerical issues
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Robustness

The robust accuracy
(the percentage of data with robustness ≥ 𝝐)

Hence, training longer is slightly useful in improving the robustness.



Margin and Robustness

𝑤1
𝑇𝑥

= 0
𝑤2
𝑇𝑥 = 0

Max-margin = robustness

This picture may be 
misleading (especially in 
high dim)

The Dimpled Manifold Model of Adversarial Examples in Machine Learning

It seems that we have solved the robustness problem (via margin 
maximization)..But of course we haven’t!
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Implicit Bias of GD

• On one hand, GD leads to good standard accuracy
• On the other hand, the KKT properties (the implicit bias of 

GD) force the network to find non-robust solution 
• But KKT properties are abstract and hold only for limiting case

Double-edged sword of GD (Frei, Vardi, Bartlett, Srebro 24)

• We perform a more intuitive, fine-grained, and finite time analysis of 

GD process:

• A new form of implicit bias: Feature Averaging

• While there exist many discriminative features capable of 

classifying data, GD tends to learn the average/combination of 

these features

• One of major causes of nonrobustness
Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks. Manuscript. 
Joint work with Binghui Li, Zhixuan Pan, Kaifeng Lyu



Theoretical Setup
Data distribution:  
• 𝐷𝑏𝑖𝑛𝑎𝑟𝑦 on 𝑅𝑑 × {−1, 1} that consists of 𝑘 clusters

• positive and negative clusters are balanced
• A sample (x,y) in Cluster i: 

• x sampled from the Gaussian with mean µ(𝑖) ∈ 𝑅𝑑 and covariance 𝜎2𝐼𝑑
• y are labeled by {−1, 1} depending it is a positive or negative cluster

• µ(𝑖) for all 𝑖 ∈ 𝑘  are orthogonal and µ 𝑖 = Θ( 𝑑) (can be relaxed slightly)

2-Layer Relu network:
• For simplicity, fix the second layer

µ(1)

µ(2)

µ(3)

µ(4)

• Loss function (logistic loss):

• Initialization:

• Gradient Descent (choose small LR):



Robust solution exists

• It is easy to show a robust solution exists with robust radius O( 𝑑)

• Let each neuron deal with one cluster

• Use the bias term b to filter out intra/inter cluster noise

Construction similar to that in [Vardi et al. 22] and [Frei et al. 24]

µ(1)

µ(2)

µ(3)

µ(4)

w3,1 ∝ µ(3)
𝑏 = −2

If the input is a point in cluster 3, then
the 3rd neuron will be activated, and 
other neurons are not activated

−1 −1−11 1 1



GD learns Average Features
Lemma: (Weight Decomposition) During training, we can decompose the weight w
as linear combination of the features (and some noise)

Theorem: (Feature Averaging) For sufficiently large d, suppose we train the model 
using the gradient descent. After 𝑇 = Θ(𝑝𝑜𝑙𝑦(𝑑)) iterations, with high probability 
over the sampled training dataset S, the weights of model 𝑓𝜃(𝑇) satisfy

I. The model achieves perfect standard accuracy:

II. GD learns averaged features:

Large coeffs for 
the same class

Large coeffs are almost the same

Other coeffs are negligible



GD learns Average Features
The theorem resolves the conjecture proposed by Min and Vida, ICML 2024 (under 
slightly different setting)

Average features
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Average Features are Non-robust Features

Thm: For the weights in a feature-averaging solution, for any choice of bias b, the 

model has nearly zero 𝛿−robust accuracy for any robust radius 𝛿 = 𝜔( 𝑑/𝑘)

(Recall that a robust solution exists with robust radius O( 𝑑) )

Intuition: for average features, most same-class neurons will be activated, resulting a 
much larger gradient norm (even though the margin 𝑦𝑖𝑓(𝑥𝑖) is similar to that in a 
robust solution)

−1 −1−11 1 1

large small



Robust and Nonrobust Solutions

µ(1)

µ(2)µ(3)

µ(4) µ(5) µ(6)

µ(7)

GD tends to find such 
decision boundary

More robust solution
One neural handle one individual class



Robust and Nonrobust Solutions

µ(1)

µ(2)µ(3)

µ(4) µ(5) µ(6)

µ(7)

GD tends to find such 
decision boundary

More robust solution
One neural handle one individual class

This provides a theoretical analysis of the phenomena 
described in dimpled manifold hypothesis in our setting



Experiments

Each element in the matrix, located at position 

(i, j) is the average cosine value of the angle 

between the weight vector of ith neuron and 

the feature vector 𝜇𝑗 of the j-th feature.

We create a binary classification task from the CIFAR-10 

dataset



Outline

• Implicit Bias
• Margin Maximization for DNN
• Margin and Robustness
• Feature Averaging
• Feature Averaging leads to Nonrobust Solutions
• Relation to Existing Models

• Dimpled Manifold, Nonrobust Features, etc.



Connection to Simplicity Bias

Shah et al. [2020]

black: max-margin
orange: linear

One can show GD on a 2-layer NN (with small init) finds a 
linear classifier theoretically.
(A linear classifier only maximize the margin locally. Clearly it 
is not a global margin maximizer)

Lyu et al. Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias

The Pitfalls of Simplicity Bias in Neural Networks



Connection to Nonrobust Features 

Ilyas et al. Adversarial Examples 
Are Not Bugs, They Are Features

µ(1)

µ(2)µ(3)

µ(4) µ(5) µ(6)

µ(7)

Individual cluster centers are robust features. But GD learns the avg of them, 
which is a nonrobust feature



Connection to lower bound examples in [Li et al. 22]

Li et al. Why robust generalization in deep learning is difficult: Perspective of expressive power.

[Li et al. 22] presented a binary classification example in which a simple linear classifier can achieve perfect 
clean accuracy, but nearly zero robust accuracy, and a robust classifier exists (but with much larger VC-
dimension) 

Nonrobust
feature

µ(1)

µ(2)µ(3)

µ(4) µ(5) µ(6)

µ(7)



Final Remarks

Detailed feature-level supervisory label is useful
• We also show if one is provided detailed feature level label, a similar 2-

layer NN can learn feature decoupled solutions (which is more robust)

• Human is more robust to small perturbations
• No adv training for human
• Adv training is slow (can we use std training to get a robust model?)
• More detailed and structured supervisory information for human
• Such labeling in large scale is possible in the era of multi-model LLM 



Thanks
Jian Li  李建

lapordge@gmail.com
Wechat id: lapordge
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Robustness

• Robustness

• Robustness and normalized margin

• If q is 𝛽-Lipschitz, it is easy to see that  (see e.g.,[Sokolic et al., 2017])

• So larger normalized margin perhaps implies better robustness


	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7: Explicit bias of GD with L2 regularization
	幻灯片 8: Explicit bias of GD with L2 regularization
	幻灯片 9
	幻灯片 10
	幻灯片 11: Margin for Homogeneous Neural Nets
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20: Theoretical Setup
	幻灯片 21: Robust solution exists
	幻灯片 22: GD learns Average Features
	幻灯片 23: GD learns Average Features
	幻灯片 24
	幻灯片 25: Average Features are Non-robust Features
	幻灯片 26: Robust and Nonrobust Solutions
	幻灯片 27: Robust and Nonrobust Solutions
	幻灯片 28: Experiments
	幻灯片 29
	幻灯片 30: Connection to Simplicity Bias
	幻灯片 31: Connection to Nonrobust Features 
	幻灯片 32: Connection to lower bound examples in [Li et al. 22]
	幻灯片 33: Final Remarks
	幻灯片 34
	幻灯片 35

