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Combinatorial and Geometric 

Optimization problems

Minimum Spanning Tree Shortest Path Knapsack

Minimum j-fat center
Minimum Enclosing Ball



Uncertain Data and Stochastic Model
 Data Integration and Information Extraction

 Sensor Networks; Information Networks

 Probabilistic models in machine learning

Sensor ID Temp.

1 Gauss(40,4)

2 Gauss(50,2)

3 Gauss(20,9)

… …

Probabilistic databases

Probabilistic Models in 

machine learning
Stochastic models in 

operation research



Stochastic Optimization

 Danzig in 1950s (linear programming with stochastic 

coefficients – stochastic programming)

 Depending on how the decision process interacts with the 

uncertainty, we may be able to formulate different versions 

of stochastic optimization problems 

 Estimation (no decision)

 Single-stage

 2-stage

 Multi-stage

 Online (adaptive/non-adaptive))

 Geometric Optimization problems



Stochastic Minimum j-flat Center

 Every point i exists with prob 𝑝𝑖
 Find a j-flat F (an affine subspace of dim j) such that

E[max
𝑖

𝑑(𝑖, 𝐹)] is miminized



Stochastic Minimum Width

 Every point i exists with prob 𝑝𝑖
 Find a direction u such that

E[𝑤(𝑄, 𝑢)] is minimized

In the deterministic setting, the minimum width problem is 

equivalent to min (d-1)-flat center

In stochastic setting, they are different.
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 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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Kernel/Coreset

 Why kernel/Coreset?

 Turn BIG DATA to small data



Esp-kernel

 A powerful notion in computational geometry [Agarwal et al.04]



Esp-kernel

 𝜖-kernel is useful in designing efficient algorithms for many 

CG problems (using the linearization trick, originally used by 

Yao-Yao) 

1. Approximate function extent, 

2. Minimum enclosing ball, 

3. Minimum enclosing cylinder, 

4. Minimum spherical cell, 

5. Minimum cylinder cell

6. ….

 The idea has been extended to numerous other problems: k-

center, k-means, k-median, shape fitting, clustering, matrix 

approximation, submodular functions, connection to 

streaming/sketch



Support Function

 Support Function: 𝑓 𝑃, 𝑢 = sup
𝑝∈𝑃

𝑝, 𝑢

 Width: 𝑤 𝑃, 𝑢 = 𝑓 𝑃, 𝑢 − 𝑓(𝑃,−𝑢)

 We can assume w.l.o.g. that 𝑢 = 1
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Stochastic Points

 How to extend the notion of 𝜖-kernel to stochastic points??

 The directional width is not a number any more! It is a random 

variable.

 Definition 1: Approximate the expectation of the directional 

width for all directions - 𝜖-Exp-Kernel

 Definition 2: Approximate the distribution of the directional 

width for all directions - (𝜖, 𝜏)-Quant-Kernel
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𝜖 -Expectation-Kernel
 Define the expected value of the directional width

 𝜖-exp-kernel S: for any direction u:

In fact, we can choose S to be a constant-sized 

set of deterministic points



𝜖 -Expectation-Kernel

 Question 1: Does such kernel even exist?

 Question 2: How to find it efficiently?

 Question 3: What it is good for?



Minkovski Sum

 For sets A and B

their Minkovski sum 𝐴 + 𝐵 = 𝑎 + 𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}



Minkovski Sum

 An important property of Minkovski Sum

𝑓 𝑃, 𝑢 + 𝑓 𝑄, 𝑢 = 𝑓(𝑃 + 𝑄, 𝑢)

 Another easy property (𝛼 is a real number)

𝑓 𝛼𝑃, 𝑢 = 𝛼𝑓(𝑃, 𝑢)



Minkovski Sum

 An important property of Minkovski Sum

𝑓 𝑃, 𝑢 + 𝑓 𝑄, 𝑢 = 𝑓(𝑃 + 𝑄, 𝑢)

 Another easy property (𝛼 is a real number)

𝑓 𝛼𝑃, 𝑢 = 𝛼𝑓(𝑃, 𝑢)



Existence of 𝜖 -Exp-Kernel 
 Consider the expected value of the support function 

E𝑄 𝑓 𝑄, 𝑢 = ∑Pr Q 𝑓(𝑄, 𝑢)

 E𝑄 𝑓 𝑄, 𝑢 = ∑Pr Q 𝑓 𝑄, 𝑢 = 𝑓(∑Pr 𝑄 𝑄, 𝑢)

Minkovski Sum

……..



Existence of 𝜖 -Exp-Kernel 

 We just show that 

There exists a deterministic convex shape M such that 

𝑤 𝑀, 𝑢 = E𝑄[𝑤(𝑄, 𝑢)]

 Every deterministic convex shape has an 𝜖-kernel of size 𝜖−(𝑑−1)/2

[Agarwal et al ’04]

 So, we have proved the existence! 

 How to construct it efficiently? 

 Let us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)



A Deep Understanding

 Let us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)

 What is the complexity of M (i.e., #vertices)?

 It seems to be exponential…..



A Deep Understanding

 Let us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)

 What is the complexity of M (i.e., #vertices)?

 It seems to be exponential…..

 But we are going to prove it is polynomial !



A Polynomial  Size Bound

 Consider the existential uncertainty model

 Consider the arrangement 



A Polynomial  Size Bound

 Consider the existential uncertainty model

 Consider the arrangement 

 THM:

Moreover,  each cone C in            corresponds to a vertex in 

M as follows:                 



A Polynomial  Size Bound - Proof
 Fact: For each convex body M, we can divide the space into 

|M| cones, such that each cone 𝐶𝑣 corresponds to a vertex 𝑣
of M and 𝑓 𝑀, 𝑢 = 𝑣, 𝑢 for any 𝑢 ∈ 𝐶𝑣.



A Polynomial  Size Bound - Proof
 Fact: For each convex body M, we can divide the space into 

|M| cones, such that each cone 𝐶𝑣 corresponds to a vertex 𝑣
of M and 𝑓 𝑀, 𝑢 = 𝑣, 𝑢 for any 𝑢 ∈ 𝐶𝑣.

 Hence, for any 𝑢 ∈ 𝐶𝑣

 Conclusion 1:                     is a constant vector for each cone 𝐶𝑣



Proof - Cont

 Now, consider a cone C in

 We show                   is a constant vector for all 



Proof - Cont

 Now, consider a cone C in

 We show                   is a constant vector for all 

 First, we notice that



Proof - Cont

 Now, consider a cone C in

 We show                   is a constant vector for all 

 First, we notice that

 In cone C, the order doesn’t change (So Pr𝑅(𝑣, 𝑢) does not 

change. In particular, it does not depend on u)

 Hence, we can see that 

a constant independent of u



A Polynomial  Size Bound

 is a piecewise constant in

 It is not hard to show the constant is not the same for 

different cones

 Hence, 


𝑛
2

hyperplanes (passing the origin) can divide the d-dim 

space into this many cones

 This can be made constructive: we can spend this amount of 

time to construct M



𝜖 -Expectation-Kernel

 Question 1: Does such kernel even exist?

 Question 2: How to find it efficiently?

 Question 3: What it is good for?



A Nearly Linear Time Algorithm

 Constructing M is expensive (e.g., d=10)

 Can we construct the kernel without constructing M explicitly?

 Yes, we can.

 We can do this in 𝑂(2𝑑𝑛 log 𝑛) time

 A key procedure: 

We are able to find the extreme vertex of M for a given direction in 

𝑂(𝑛 log 𝑛) time. 

The idea follows from our previous proof!



𝜖 -Expectation-Kernel

 Question 1: Does such kernel even exist?

 Question 2: How to find it efficiently?

 Question 3: What it is good for?



Applications

 Function extent

 Duality transform:



Applications

 Each function appears with some probability

 We are interested in the expectation of the extent

 By duality, it is equivalent to the direction width problem!

 By the linearization trick, we can give PTAS for the problem

minimizing the expected areas of the enclosing ball and the 

enclosing annulus in the plane.



Application

 Stochastic Moving Points

 A set of stochastic points, each moving along a polynomial 

trajectory

 By our function extent result, we can show that we can 

construct a constant number of deterministic moving points, 

such that the directional width approximates the expected 

direction width of the stochastic points, for any direction and 

any time!
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Approximate the Distribution

 Want to approximate the distribution for every direction

 (𝜖, 𝜏)-Quant-Kernel:  For every direction u,



Algorithm for Quant-Kernel
Algorithm:

 Take N samples from the stochastic model where

 Compute the 𝜖-kernel 𝐾𝑖 for each sample 𝑄𝑖
 Quant-Kernel = {𝐾1, 𝐾2, … , 𝐾𝑁},each w.p. 1/N

 Proof uses the celebrated VC (Vapnik-Chervonenkis) uniform 
convergence theory + VC-dimension for union of half spaces



Algorithm for Quant-Kernel

 The above result can be improved for existential model:

 A more complicated construction and analysis

 Interesting connections to Tukey Depth and k-Level set



Other Kernel/Coresets

 Approximate Fractional Power [HLPW,ESA16]

 Fractional power kernel S:

 Minimum Enclosing Balls [MSF, SCG’14]

 Minimum j-flat center [HL,SODA’17]

 Minimum k-center [HL,SODA’17]
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Many More Problems

 Geometric optimization

 Nearest neighbor queries

 Range queries

 Hyperplane Separation (SVM) 

 Coresets

 Shape fitting (minimum enclosing ball, minimum j-flat center, 

minimum k-center etc.)

 …….



Conclusion

 Bayesian mechanism design (essentially stochastic optimization problems)

 Learning+Optimization

 We don’t have to first learn the distributions first, and then solve 
the stochastic optimization problem. We can do it together and use 
less samples!

 A fascinating topic with interesting connections to many 
subareas in TCS (counting, coresets, geometry, VC theory, 
bandits, online algorithms, mechanism design,….) and 
probability theory/statistics

 A lot more interesting problems to be studied

 Many open problems

 A Survey:  Jian Li, Yu Liu. Approximation Algorithms for 
Stochastic Combinatorial Optimization Problems. 2016
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