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Combinatorial and Geometric
Optimization problems

Minimum Spanning Tree Shortest Path Knapsack

Minimum Enclosing Ball

Minimum j-fat center




Uncertain Data and Stochastic Model

® Data Integration and Information Extraction
® Sensor Networks; Information Networks

® Probabilistic models in machine learning
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Stochastic Optimization

® Danzig in 1950s (linear programming with stochastic

coefficients — stochastic programming)

® Depending on how the decision process interacts with the
uncertainty, we may be able to formulate ditferent versions
of stochastic optimization problems
® Estimation (no decision)
® Single-stage
® )-stage
® Multi-stage
® Online (adaptive/non-adaptive))

® Geometric Optimization problems




Stochastic Minimum j-flat Center

* Every point i exists with prob p;
* Find a j-tlat F (an affine subspace of dim j) such that

E[max d(i, F)] is miminized
i




Stochastic Minimum Width

* Every point i exists with prob p;
® Find a direction u such that

E[w(Q,u)] is minimized

In the deterministic setting, the minimum width problem is
equivalent to min (d-1)-flat center
In stochastic setting, they are different.
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Stochastic Geometry Models

® The position of each point is random (non-i.i.d)
* All pts are independent from each other

* A popular model in wireless networks/spatial prob databases
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Stochastic Geometry Models

® The position of each point is random (non-i.i.d)
* All pts are independent from each other

* A popular model in wireless networks/spatial prob databases
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Locational uncertainty model A realization (aka a possible world)

Prob=0.7*1*0.5*0.5*0.3




Stochastic Geometry Models

® The position of each point is random (non-i.i.d)
* All pts are independent from each other

* A popular model in wireless networks/spatial prob databases

004

03 ® 03 ® °

® 05 0.5

Locational uncertainty model Another realization
Prob=0.3*1*0.4*0.5*0.3
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Kernel/Coreset

® Why kernel/ Coreset?
® Turn BIG DATA to small data




Esp-kernel

* A powerful notion in computational geometry [Agarwal et al.04]

Let w(P,u) be the width of a deterministic n-point set P C R% in a

direction u. An e-kernel S C P s.t. for any direction u,

(1—ew(P,u) <w(S,u) < w(P,u).
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Construction of e-kernels (Chan, 2006; Yu et.al., 2008):

o size: O(e~(4=1)/2),
o time: O(n + e~ (4=3/2)),




Esp-kernel

® ¢-kernel is useful in designing efficient algorithms for many

CG problems (using the linearization trick, originally used by
Yao-Yao)

1.
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Approximate function extent,
Minimum enclosing ball,
Minimum enclosing cylinder,
Minimum spherical cell,

Minimum cylinder cell

® The idea has been extended to numerous other problems: k-

center, k-means, k-median, shape fitting, clustering, matrix

approximation, submodular functions, connection to

streaming/ sketch




Support Function

® Support Function: f(P,u) =sup (p,u)

pPEP
e Width: w(P,u) = f(P,u) — f(P,—u)
® We can assume w.l.o.g. that lul| =1
N o A

m,
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Stochastic Points

e How to extend the notion of €-kernel to stochastic points??

® The directional width is not a number any more! It is a random

variable.

® Definition 1: Approximate the expectation of the directional

width for all directions - € —EXp—Kernel

® Definition 2: Approximate the distribution of the directional
width for all directions - (€, T)-Quant-Kernel
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€ -Expectation-Kernel

® Define the expected value of the directional width

w(P,u) =Egopw(Q,u)]
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® €-exp-kernel S: for any direction u:

(1 —e)w(P,u) <w(S,u) <w(P,u).

In fact, we can choose S to be a constant-sized
set of deterministic points

)




€ -Expectation-Kernel

® Question 1: Does such kernel even exist?
® Question 2: How to find it efficiently?

® Question 3: What it is good for?




Minkovski Sum

® For sets A and B
their Minkovskisum A + B = {a+ b |a € A,b € B}




Minkovski Sum

® An important property of Minkovski Sum

FP.0) +f(QW) = f(P+Q,u)
A o A

w
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® Another easy property (& is a real number)

f(aP,u) = af (P,u)




Minkovski Sum

® An important property of Minkovski Sum

fP,uw+f(Qu) =f(P+Qu
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® Another easy property (& is a real number)

f(aP,u) = af (P,u)




Existence of € -Exp-Kernel

e Consider the expected value of the support function

Eolf(Q,w)] = XPr[Q]f(Q,w)
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Existence of € -Exp-Kernel

® We just show that

There exists a deterministic convex shape M such that

w(M,u) = Eo[w(Q,u)]

® Every deterministic convex shape has an €-kernel of size € —(d-1)/2
[Agarwal et al "04]

®* So, we have proved the existence!

* How to construct it efficiently?

® [ et us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)

- /




A Deep Understanding

® [ et us first try to understand the deterministic convex shape M
(which is the Minkovski sum of exponential convex shapes)
* What is the complexity of M (i.e., #vertices)?

® [t seems to be exponential .....




A Deep Understanding

® Let us first try to understand the deterministic convex shape M
(which is the Minkovski sum of exponential convex shapes)

* What is the complexity of M (i.e., #vertices)?

* [t seems to be exponential.....

® But we are going to prove it is polynomial !

2

O((45)) = O(n*~?)




A Polynomial Size Bound

® Consider the existential uncertainty model

* Consider the arrangement A(T)
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A Polynomial Size Bound

® Consider the existential uncertainty model

* Consider the arrangement A(T)

o THM: |M| = |A(T)]
Moreover, each cone Cin A(I') corresponds to a vertex in
M as follows:

V(M,u)=wv for all u € int C




A Polynomial Size Bound - Proof

® Fact: For each convex body M, we can divide the space into

| M| cones, such that each cone C), corresponds to a vertex U

of Mand f(M,u) = (v, u) for any U € C,.
W) = LD
) Lo




A Polynomial Size Bound - Proof

® Fact: For each convex body M, we can divide the space into

| M| cones, such that each cone C), corresponds to a vertex U

of Mand f(M,u) = (v, u) for any U € C,.

* Hence, for any u € C,

’ ? 32- A
Vi) = {afg\;[j : }je[d] N {ag;jv) }je[d] N { Jgfi = }je[d] -

® Conclusion 1: Vf(M,u) isa constant vector for each cone C,

/




Proof - Cont

® Now, consider a cone C in A(I")

® We show WV f(M,u) isa constant vector forall u € intC




Proof - Cont

® Now, consider a cone C in A(I")

® We show WV f(M,u) isa constant vector forall u € intC

e First, we notice that

F(M,u) = f(P,u) = X pep Pri(v,u) (v, u)

PrR(fv, u) = HU,}WU(l — P’ )P
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Proof - Cont

Now, consider a cone C in A(I")
We show ¥V f(M,u) is a constant vector forall u € intC

First, we notice that
f(M,u) = f(P,u) = Eyep Prii(v, u)(v, u)

Pri(v,u) = [T, (1 = Do)D0

In cone C, the order doesn’t change (So Prf(v, 1) does not

change. In particular, it does not depend on u)

Hence, we can see that

VM, u) = ZPI‘ U, U)V

veP a constant independent of u

/




A Polynomial Size Bound

® Vf(M,u)is a piecewise constant in A(I)

® |t is not hard to show the constant is not the same for

different cones
® Hence, |M| — |A(F)|
° (121) hyperplanes (passing the origin) can divide the d-dim

space into this many cones

2

O((45)) = O(n*)

® This can be made constructive: we can spend this amount of

time to construct M




€ -Expectation-Kernel

® Question 1: Does such kernel even exist?
® Question 2: How to find it efficiently?

® Question 3: What it is good for?




A Nearly Linear Time Algorithm

* Constructing M is expensive (e.g., d=10)

e Can we construct the kernel without constructing M explicitly?

® Yes, we can.
® We can do this in O(Zdn logn) time
* A key procedure:

We are able to find the extreme vertex of M for a given direction in
O(nlogn) time.
The idea follows from our previous proof!
V(M u)=> Prf(v,up
veP
/




€ -Expectation-Kernel

® Question 1: Does such kernel even exist?
® Question 2: How to find it efficiently?

® Question 3: What it is good for?




Applications

® Function extent

o Duality transform:
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Applications

e Each function appears with some probability
® We are interested in the expectation of the extent

® By duality, it is equivalent to the direction width problem!

® By the linearization trick, we can give PTAS for the problem
minimizing the expected areas of the enclosing ball and the

enclosing annulus in the plane.




Application

® Stochastic Moving Points

® A set of stochastic points, each moving along a polynomial

trajectory

® By our function extent result, we can show that we can
construct a constant number of deterministic moving points,
such that the directional width approximates the expected
direction width of the stochastic points, for any direction and

any time!
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Approximate the Distribution

® Want to approximate the distribution for every direction

N

1T oor

o —> width

* (€,7)-Quant-Kernel: For every direction u,

Prpp [w(P’ u) < (1-— E“).L] — 7 < Prg.s [w(S, u) < .L] < Prpp [w(P, u) < (1 —I—E).’L‘] +7




Algorithm for Quant-Kernel

Algorithm:
* Take N samples from the stochastic model where

N = O(r72e= 4=V ]og(1/e))
* Compute the €-kernel K; for each sample Q;

* Quant-Kernel = {Ky, K, ..., Ky },each w.p. I/N

» Theorem  An (¢,7)-QUANT-KERNEL of size 0 (7_26_3(d_1)/ 2) can be constructed in

0 (m‘ge‘(d‘l)) time, under both ezistential and locational uncertainty models.

® Proof uses the celebrated VC (Vapnik-Chervonenkis) uniform
convergence theory + VC-dimension for union of half spaces




Algorithm for Quant-Kernel

® The above result can be improved for existential model:

» Theorem P is a set of uncertain points in R? with existential uncertainty. Let
A= vep(—=In(l —py,)). There exists an (¢, 7)-QUANT-KERNEL for P, which consists of a
set of independent uncertain points of cardinality mln{O( max{)\2 A1), 0(e@=Dr=2)},
The algorithm for constructing such a coreset runs in O(nlog O(d) n) time.

® A more complicated construction and analysis
® Interesting connections to Tukey Depth and k-Level set
de?"rla'-'- 0
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Other Kernel/Coresets
* Approximate Fractional Power [HLPW,ESA16]

_ 1/r L/r
T, (P, u) Iglea;{(u,. V) E‘élg(u, V)

® Fractional power kernel S:

(1 —e)Epp[T (P,u)] < Eps[T(P,u)] < (1+ &)Epup|T,(P,u)].

® Minimum Enclosing Balls [MSF, SCG’14]
® Minimum j-tlat center [HL,SODA’17]
® Minimum k-center [HL,SODA’17]
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Many More Problems

® Geometric optimization
® Nearest neighbor queries
® Range queries
® Hyperplane Separation (SVM)
® Coresets

® Shape fitting (minimum enclosing ball, minimum j-flat center,

minimum k-center etc.)
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Conclusion

® Bayesian mechanism design (essentially stochastic optimization problems)

® Learning+Optimization
® We don’t have to first learn the distributions first, and then solve

the stochastic optimization problem. We can do it together and use
less samples!

° A fascinating topic with interesting connections to many
subareas in TCS (counting, coresets, geometry, VC theory,
bandits, online algorithms, mechanism design,....) and
probability theory/statistics

® A lot more interesting problems to be studied
® Many open problems

® A Survey: Jian Li,Yu Liu. Approximation Algorithms for
Stochastic Combinatorial Optimization Problems. 2016
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