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Combinatorial and Geometric 

Optimization problems

Minimum Spanning Tree Shortest Path Knapsack

Minimum j-fat center
Minimum Enclosing Ball



Uncertain Data and Stochastic Model
 Data Integration and Information Extraction

 Sensor Networks; Information Networks

 Probabilistic models in machine learning

Sensor ID Temp.

1 Gauss(40,4)

2 Gauss(50,2)

3 Gauss(20,9)

… …

Probabilistic databases

Probabilistic Models in 

machine learning
Stochastic models in 

operation research



Stochastic Optimization

 Danzig in 1950s (linear programming with stochastic 

coefficients – stochastic programming)

 Depending on how the decision process interacts with the 

uncertainty, we may be able to formulate different versions 

of stochastic optimization problems 

 Estimation (no decision)

 Single-stage

 2-stage

 Multi-stage

 Online (adaptive/non-adaptive))

 Geometric Optimization problems



Stochastic Minimum j-flat Center

 Every point i exists with prob 𝑝𝑖
 Find a j-flat F (an affine subspace of dim j) such that

E[max
𝑖

𝑑(𝑖, 𝐹)] is miminized



Stochastic Minimum Width

 Every point i exists with prob 𝑝𝑖
 Find a direction u such that

E[𝑤(𝑄, 𝑢)] is minimized

In the deterministic setting, the minimum width problem is 

equivalent to min (d-1)-flat center

In stochastic setting, they are different.
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 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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Locational uncertainty model



 The position of each point is random (non-i.i.d)

 All pts are independent from each other

 A popular model in wireless networks/spatial prob databases
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Kernel/Coreset

 Why kernel/Coreset?

 Turn BIG DATA to small data



Esp-kernel

 A powerful notion in computational geometry [Agarwal et al.04]



Esp-kernel

 𝜖-kernel is useful in designing efficient algorithms for many 

CG problems (using the linearization trick, originally used by 

Yao-Yao) 

1. Approximate function extent, 

2. Minimum enclosing ball, 

3. Minimum enclosing cylinder, 

4. Minimum spherical cell, 

5. Minimum cylinder cell

6. ….

 The idea has been extended to numerous other problems: k-

center, k-means, k-median, shape fitting, clustering, matrix 

approximation, submodular functions, connection to 

streaming/sketch



Support Function

 Support Function: 𝑓 𝑃, 𝑢 = sup
𝑝∈𝑃

𝑝, 𝑢

 Width: 𝑤 𝑃, 𝑢 = 𝑓 𝑃, 𝑢 − 𝑓(𝑃,−𝑢)

 We can assume w.l.o.g. that 𝑢 = 1
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Stochastic Points

 How to extend the notion of 𝜖-kernel to stochastic points??

 The directional width is not a number any more! It is a random 

variable.

 Definition 1: Approximate the expectation of the directional 

width for all directions - 𝜖-Exp-Kernel

 Definition 2: Approximate the distribution of the directional 

width for all directions - (𝜖, 𝜏)-Quant-Kernel
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𝜖 -Expectation-Kernel
 Define the expected value of the directional width

 𝜖-exp-kernel S: for any direction u:

In fact, we can choose S to be a constant-sized 

set of deterministic points



𝜖 -Expectation-Kernel

 Question 1: Does such kernel even exist?

 Question 2: How to find it efficiently?

 Question 3: What it is good for?



Minkovski Sum

 For sets A and B

their Minkovski sum 𝐴 + 𝐵 = 𝑎 + 𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}



Minkovski Sum

 An important property of Minkovski Sum

𝑓 𝑃, 𝑢 + 𝑓 𝑄, 𝑢 = 𝑓(𝑃 + 𝑄, 𝑢)

 Another easy property (𝛼 is a real number)

𝑓 𝛼𝑃, 𝑢 = 𝛼𝑓(𝑃, 𝑢)



Minkovski Sum

 An important property of Minkovski Sum

𝑓 𝑃, 𝑢 + 𝑓 𝑄, 𝑢 = 𝑓(𝑃 + 𝑄, 𝑢)

 Another easy property (𝛼 is a real number)

𝑓 𝛼𝑃, 𝑢 = 𝛼𝑓(𝑃, 𝑢)



Existence of 𝜖 -Exp-Kernel 
 Consider the expected value of the support function 

E𝑄 𝑓 𝑄, 𝑢 = ∑Pr Q 𝑓(𝑄, 𝑢)

 E𝑄 𝑓 𝑄, 𝑢 = ∑Pr Q 𝑓 𝑄, 𝑢 = 𝑓(∑Pr 𝑄 𝑄, 𝑢)

Minkovski Sum

……..



Existence of 𝜖 -Exp-Kernel 

 We just show that 

There exists a deterministic convex shape M such that 

𝑤 𝑀, 𝑢 = E𝑄[𝑤(𝑄, 𝑢)]

 Every deterministic convex shape has an 𝜖-kernel of size 𝜖−(𝑑−1)/2

[Agarwal et al ’04]

 So, we have proved the existence! 

 How to construct it efficiently? 

 Let us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)



A Deep Understanding

 Let us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)

 What is the complexity of M (i.e., #vertices)?

 It seems to be exponential…..



A Deep Understanding

 Let us first try to understand the deterministic convex shape M

(which is the Minkovski sum of exponential convex shapes)

 What is the complexity of M (i.e., #vertices)?

 It seems to be exponential…..

 But we are going to prove it is polynomial !



A Polynomial  Size Bound

 Consider the existential uncertainty model

 Consider the arrangement 



A Polynomial  Size Bound

 Consider the existential uncertainty model

 Consider the arrangement 

 THM:

Moreover,  each cone C in            corresponds to a vertex in 

M as follows:                 



A Polynomial  Size Bound - Proof
 Fact: For each convex body M, we can divide the space into 

|M| cones, such that each cone 𝐶𝑣 corresponds to a vertex 𝑣
of M and 𝑓 𝑀, 𝑢 = 𝑣, 𝑢 for any 𝑢 ∈ 𝐶𝑣.



A Polynomial  Size Bound - Proof
 Fact: For each convex body M, we can divide the space into 

|M| cones, such that each cone 𝐶𝑣 corresponds to a vertex 𝑣
of M and 𝑓 𝑀, 𝑢 = 𝑣, 𝑢 for any 𝑢 ∈ 𝐶𝑣.

 Hence, for any 𝑢 ∈ 𝐶𝑣

 Conclusion 1:                     is a constant vector for each cone 𝐶𝑣



Proof - Cont

 Now, consider a cone C in

 We show                   is a constant vector for all 



Proof - Cont

 Now, consider a cone C in

 We show                   is a constant vector for all 

 First, we notice that



Proof - Cont

 Now, consider a cone C in

 We show                   is a constant vector for all 

 First, we notice that

 In cone C, the order doesn’t change (So Pr𝑅(𝑣, 𝑢) does not 

change. In particular, it does not depend on u)

 Hence, we can see that 

a constant independent of u



A Polynomial  Size Bound

 is a piecewise constant in

 It is not hard to show the constant is not the same for 

different cones

 Hence, 


𝑛
2

hyperplanes (passing the origin) can divide the d-dim 

space into this many cones

 This can be made constructive: we can spend this amount of 

time to construct M



𝜖 -Expectation-Kernel

 Question 1: Does such kernel even exist?

 Question 2: How to find it efficiently?

 Question 3: What it is good for?



A Nearly Linear Time Algorithm

 Constructing M is expensive (e.g., d=10)

 Can we construct the kernel without constructing M explicitly?

 Yes, we can.

 We can do this in 𝑂(2𝑑𝑛 log 𝑛) time

 A key procedure: 

We are able to find the extreme vertex of M for a given direction in 

𝑂(𝑛 log 𝑛) time. 

The idea follows from our previous proof!



𝜖 -Expectation-Kernel

 Question 1: Does such kernel even exist?

 Question 2: How to find it efficiently?

 Question 3: What it is good for?



Applications

 Function extent

 Duality transform:



Applications

 Each function appears with some probability

 We are interested in the expectation of the extent

 By duality, it is equivalent to the direction width problem!

 By the linearization trick, we can give PTAS for the problem

minimizing the expected areas of the enclosing ball and the 

enclosing annulus in the plane.



Application

 Stochastic Moving Points

 A set of stochastic points, each moving along a polynomial 

trajectory

 By our function extent result, we can show that we can 

construct a constant number of deterministic moving points, 

such that the directional width approximates the expected 

direction width of the stochastic points, for any direction and 

any time!
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Approximate the Distribution

 Want to approximate the distribution for every direction

 (𝜖, 𝜏)-Quant-Kernel:  For every direction u,



Algorithm for Quant-Kernel
Algorithm:

 Take N samples from the stochastic model where

 Compute the 𝜖-kernel 𝐾𝑖 for each sample 𝑄𝑖
 Quant-Kernel = {𝐾1, 𝐾2, … , 𝐾𝑁},each w.p. 1/N

 Proof uses the celebrated VC (Vapnik-Chervonenkis) uniform 
convergence theory + VC-dimension for union of half spaces



Algorithm for Quant-Kernel

 The above result can be improved for existential model:

 A more complicated construction and analysis

 Interesting connections to Tukey Depth and k-Level set



Other Kernel/Coresets

 Approximate Fractional Power [HLPW,ESA16]

 Fractional power kernel S:

 Minimum Enclosing Balls [MSF, SCG’14]

 Minimum j-flat center [HL,SODA’17]

 Minimum k-center [HL,SODA’17]
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Many More Problems

 Geometric optimization

 Nearest neighbor queries

 Range queries

 Hyperplane Separation (SVM) 

 Coresets

 Shape fitting (minimum enclosing ball, minimum j-flat center, 

minimum k-center etc.)

 …….



Conclusion

 Bayesian mechanism design (essentially stochastic optimization problems)

 Learning+Optimization

 We don’t have to first learn the distributions first, and then solve 
the stochastic optimization problem. We can do it together and use 
less samples!

 A fascinating topic with interesting connections to many 
subareas in TCS (counting, coresets, geometry, VC theory, 
bandits, online algorithms, mechanism design,….) and 
probability theory/statistics

 A lot more interesting problems to be studied

 Many open problems

 A Survey:  Jian Li, Yu Liu. Approximation Algorithms for 
Stochastic Combinatorial Optimization Problems. 2016
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