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Abstract. We study approximation solutions for the densest k-subgraph
problem (DS-k) on several classes of intersection graphs. We adopt the
concept of σ-quasi elimination orders, introduced by Akcoglu et al. [1],
generalizing the perfect elimination orders for chordal graphs, and de-
velop a simple O(σ)-approximation technique for graphs admitting such
a vertex order. This concept allows us to derive constant factor approx-
imation algorithms for DS-k on many intersection graph classes, such
as chordal graphs, circular-arc graphs, claw-free graphs, line graphs of
`-hypergraphs, disk graphs, and the intersection graphs of fat geometric
objects. We also present a PTAS for DS-k on unit disk graphs using the
shifting technique.

1 Introduction

The (connected) densest k-subgraph problem (DS-k) is defined as follows:
Given an undirected graph G = (V,E) with n nodes and m edges and a
positive integer k, find an induced (connected) subgraph with k vertices in
G maximizing the number of edges. Reduction from the maximum clique
problem shows that this problem is NP-hard. The weighted version of DS-
k in which each edge has a positive weight and the goal is to maximize
the sum of edge weights in the induced subgraph is called the heaviest
k-subgraph problem (HS-k).

Considerable work has been done on finding good quality approxima-
tion algorithms for DS-k. The first non-trivial approximation algorithm
by Kortsarz and Peleg achieved an approximation ratio of O(n0.3885) [23].
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Arora et al. [3] used random sampling techniques to obtain a polynomial
time approximation scheme (PTAS) for dense graphs with k = Ω(|V |)
and |E| = Ω(|V |2). Asahiro et al. [4] showed that the greedy method
achieves an approximation ratio of O(nk ).

Feige et al. proposed an n
k -approximation algorithm based on semidef-

inite programming [15] and an nδ-approximation algorithm for some δ <
1
3 [14]. Recently, Bhaskara et al. [7] proposed an O(n1/4+ε) approxima-

tion algorithm that runs in time nO(1/ε). In [11], Demaine et al. gave a
2-approximation algorithm for H-minor-free graphs, for any fixed H. It
is unlikely that there exists a PTAS for general graphs [21].

For some special graph classes and special values of k, better algo-
rithms are known [19, 32, 34]. Maffioli proposed an O(nk2) time algorithm
for connected HS-k on trees [28]. This algorithm can easily be generalized
to solve the unconnected case. Corneil and Pearl gave a polynomial time
algorithm for DS-k on co-graphs, a subclass of perfect graphs [10].

Keil and Brecht developed polynomial time algorithms for HS-k on
graphs with bounded treewidth based on dynamic programming [20]. Li-
azi et al. [25] presented a polynomial time algorithm for DS-k/HS-k on
chains (i.e., graphs with maximum degree 2), and a subclass of proper
interval graphs. They also obtained a PTAS for chordal graphs if the
maximal clique intersection graph is a star, and polynomial time algo-
rithms if the maximal clique intersection graph is a tree of bounded de-
gree [26]. Recently, they showed that a simple greedy algorithm achieves
an approximation factor of 3 for DS-k on chordal graphs [27].

Finding dense subgraphs with upper or lower bounds on their sizes
has also been studied by several researchers [2, 22].

Our Results. In this paper, we focus on DS-k on several intersection graph
classes: chordal graphs, circular-arc graphs, line graphs, disk graphs, and
unit disk graphs. The closely related maximum clique problem is poly-
nomial time solvable on these graph classes, except on disk graphs. Note
that interval graphs are chordal graphs, and chordal graphs are perfect
graphs. Although the maximum clique problem is polynomial time solv-
able on perfect graphs [18], DS-k is NP-hard on perfect graphs, since it
is NP-hard on bipartite graphs [30] and chordal graphs [10]. Connected
DS-k is NP-hard on planar graphs [20]. The complexity status of uncon-
nected DS-k on planar graphs, interval graphs, and proper interval graphs
has been a long-standing open problem [10].

Since the complexity status of these problems is unknown, it is worth-
while to consider efficient approximation algorithms for them. We adopt
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the notion of σ-quasi elimination orders, for σ ≥ 1, proposed by Akcoglu
et al. [1], generalizing the perfect elimination orders for chordal graphs.
It turns out that many intersection graph classes mentioned above have
O(1)-quasi elimination orders [35]. This type of vertex order allows us
to derive new approximation algorithms for DS-k. Our main result is
an O(σ)-approximation algorithm for DS-k if the graph has a polyno-
mial time computable σ-quasi elimination order. This immediately implies
constant factor approximation ratios for many intersection graph classes.
These classes include chordal graphs (with σ = 1), circular-arc graphs
(with σ = 2), claw-free graphs (with σ = 2), line graphs of `-hypergraphs
(with σ = `), disk graphs (with σ = 5), unit disk graphs (with σ = 3),
and the intersection graphs of λ-fat objects in d-dimensional space (with
σ = (3λ)d). We also propose a PTAS for DS-k on unit disk graphs based
on the shifting technique [6] combined with a result by Arora et al. [3], if a
disk representation is given. This improves the recent 1.5-approximation
for DS-k on proper interval graphs [5]. Note that the class of proper in-
terval graphs is equivalent to the class of unit interval graphs [31] which
is a subset of the class of unit disk graphs.

2 Preliminaries

For a graph G = (V,E), we denote its vertex set by V (G) = V and its
edge set by E(G) = E. Let n = |V | and m = |E|. We denote the degree
of a vertex v in G by degG(v). For any v ∈ V and subsets S,W ⊆ V ,
let d(v,W ) be the number of edges (v, w) with w ∈ W , and d(S,W ) =∑

u∈S d(u,W ). Let G[S] denote the subgraph of G induced by S ⊂ V .
Let α(G) be the independence number of G, i.e., the size of a maximum
independent set in G. The classic Turán bound states that

α(G) ≥
∑
v∈V

1

deg(v) + 1
≥ n

d̄+ 1

where d̄ is the average degree of the nodes in the graph [33]. For conve-
nience, we rephrase the bound in the following lemma.

Lemma 1. For any graph G, m ≥ n2 − nα(G)

2α(G)
. ut

3 Elimination Orders and Intersection Graphs

If L = (v1, v2, . . . , vn) is an ordering of the vertices in V , we define
PredL(vi) = {vi} ∪ {vj | j < i and (vj , vi) ∈ E}, the predecessors of

3



vi, and SuccL(vi) = {vj | j > i and (vi, vj) ∈ E}, the successors of vi. In
a perfect elimination order, every set PredL(vi) forms a clique (note that
sometimes in the literature it is required that every set SuccL(vi) forms
a clique, instead, which just reverses the order). We can generalize this
definition by allowing some slack. Let σ be a positive integer.

Definition 2. A σ-quasi elimination order (σ-QEO) of G is an ordering
L = (v1, v2, . . . , vn) of the vertices in V such that α(G[PredL(vi)]) ≤ σ
for i = 2, . . . , n.

A perfect elimination order is just a 1-QEO. This notion was intro-
duced by Akcoglu et al. [1] who proposed a σ-approximation for the
weighted maximum independent set problem. Recently, Ye and Borodin
explored many properties of QEOs and initiated a more comprehensive
study on their algorithmic aspects [35]. In particular, they considered
the maximum σ-colorable subgraphs problem, the minimum vertex cov-
ering problem and the minimum vertex coloring problem and obtained
improved approximation algorithms on graphs with O(1)-QEO. Lemma 1
implies that G[PredL(vi)] has at least 1

2σ ·
(|PredL(vi)|

2

)
edges, for every vi

in L, if |PredL(vi)| ≥ 2σ− 1. Note that any induced subgraph of G has a
σ-QEO if G has one. In this paper, we study the following graph classes.

Chordal graphs. G is a chordal graph if it does not contain an induced
cycle of length k, for any k ≥ 4. Chordal graphs are exactly the intersec-
tion graphs of subtrees in a tree. A graph is chordal if and only if it has
a perfect elimination order [17].

Circular-arc graphs. A circular-arc graph is the intersection graph of arcs
of a circle. Circular-arc graphs are not always chordal, for example any
chordless cycle of length greater than four is a circular-arc graph. It is
easy to see that any circular-arc graph has a 2-QEO.

Line graphs. A graph L is the line graph of the (hyper-)graph G if L is
the intersection graph of the (hyper-)edges of G.

Claw-free graphs. A graph G is claw-free if it excludes K1,3 as an induced
subgraph. Claw-free graphs generalize line graphs, which initially moti-
vated the study of claw-free graphs. They have many nice properties, for
example, claw-free graphs always have a perfect matching and we can
find a maximum independent set in polynomial time. However, it is NP-
hard to compute a largest clique in a claw-free graph. For a survey on
more results on claw-free graph, see [24], for example. Conveniently, any
ordering of the vertices of a claw-free graph is a 2-QEO.

4



(Unit) Disk graphs. G is a (unit) disk graph if it is the intersection graph
of a set of closed (unit) disks in the plane. The disk representation spec-
ifies the centers and radii of the disks. If the disks are not given, the
recognition problem of (unit) disk graphs is NP-hard [9]. Disk graphs
are a two-dimensional generalization of interval graphs. However, in gen-
eral, they are neither planar nor perfect. Some NP-hard problems become
tractable on unit disk graphs (e.g., the maximum clique problem [8]), and
some problems admit significantly better approximation algorithms (e.g.,
there is a PTAS for the maximum independent set problem on unit disk
graphs [29] and on arbitrary disk graphs [13]). Ye and Borodin showed
that any (unit) disk graph has a (3-QEO) 5-QEO [35].

Fat intersection graphs. Practical instances of geometric problems often
deal with objects of “reasonable” shape. One way to formalize this is the
notion of fat objects. There are several different definitions of fat objects
in computational geometry literature (e.g., see [12]). In this paper, we say
a d-dimensional convex object K is λ-fat, for some parameter λ ≥ 1 (the
fatness), if the ratio between the radii of B+

K and B−K is at most λ, where
B+
K is a smallest sphere containing K and B−K is a largest sphere contained

in K. Examples of objects of bounded fatness are spheres (fatness 1),
cubes (fatness

√
d), and ellipsoids with bounded aspect ratio.

A fat intersection graph is the intersection graph of a set of fat objects.
For example, disk graphs are fat intersection graphs.

Lemma 3. Every fat intersection graph of λ-fat convex objects in d-
dimensional space has an O((3λ)d)-QEO.

Proof. We sort the vertices of the graph in non-increasing order of the
largest disk contained in each corresponding fat object. Then, for each
vertex vi, α(G[PredL(vi)]) = O((3λ)d). Since similar ideas have been
used before in the literature on algorithms for fat objects (e.g., see [12]),
we omit the details of the proof. ut

4 Approximating DS-k on Graphs with σ-QEO

In this section, we present a constant factor approximation technique
for DS-k on chordal graphs and fat intersection graphs. We focus on
presenting the general framework and do not emphasize on fine-tuning
the parameters for the smallest possible approximation factor. We use the
maximum density subgraph problem, which is polynomial time solvable,
as a key subroutine.
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4.1 The Maximum Density Subgraph Problem (MDSP)

The maximum density subgraph problem (MDSP) is defined as follows:
Given a graph G = (V,E,w) with non-negative vertex weights w : V →
R+ ∪ {0}, find an induced subgraph H = (W,F ) maximizing the density

ρ(H) =

∑
v∈W w(v) + |F |
|W |

.

This problem can be solved optimally in O(nm log(n
2

m )) time by a re-
duction to the parametric maximum flow algorithm [16] which produces

an induced subgraph H = (W,F ) maximizing
∑

e∈F w(e)∑
v∈W w(v) , where w is a

weight function on the vertices and edges (we set the weights of all origi-
nal vertices and edges to 1; then we create a sibling with weight zero for
each vertex in V , connected to the original vertex by an edge of weight
w(v)).

Note that w(v)+degH(v) ≥ ρ, for each vertex v ∈W , for any optimal
MDSP solution H = (W,F ) with maximum density ρ. This is because
we could delete from H all vertices violating this inequality to obtain an
induced subgraph of higher density.

4.2 A Constant Factor Approximation Framework

In this subsection, we show how to compute an O(σ)-approximation for
DS-k on any graph G = (V,E) for which we can efficiently compute a
σ-quasi elimination order.

At a high level, our framework works as follows. If we solve MDSP on
G with w(v) = 0 for all v ∈ V and obtain a subgraph H of k′ vertices,
then H is also an optimal DS-k′ solution. If H is smaller than the sought
DS-k solution (i.e., k′ < k), then we repeat the MDSP algorithm on the
remaining vertices of G and combine the solution with H (Phase 1). If
H is larger (i.e., k′ > k), then we select some vertices in H to satisfy the
cardinality constraint without losing too much density (Phase 2).

Let G? = (V ?, E?) be an optimal DS-k solution on G = (V,E) with

density ρ? = |E?|
|V ?| . Without loss of generality assume ρ? ≥ 8σ; otherwise,

we can trivially get an O(σ)-approximation.

Phase 1: Growing Ut. Let V0 = V , E0 = E, and w0(v) = 0 for all
v ∈ V0. Starting with i = 0, let Gi+1 be obtained from Gi by removing the
vertices and adjacent edges of an optimal MDSP solution Hi = (Wi, Fi)
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of Gi = (Vi, Ei, wi) of density ρi, where wi(v) = d(v, Ui−1) for v ∈ Vi. Let
Ui = ∪ij=0Wj be the set of all removed nodes, and ni = |Ui|. We stop at

the first time t such that nt ≥ k
2 . If nt ≤ k, then we return Ut plus some

arbitrary k − nt nodes from Vt+1 as our DS-k approximation.

Lemma 4. If nt ≤ k, then Ut is a 4-approximation for DS-k on G.

Proof. If G[Ut ∩V ?] has at least |E
?|
2 edges, then Ut is a 2-approximation

for DS-k on G. If not, then let Ii = Ui ∩ V ? and Ri = V ? \ Ii, for all i.

Since |E(It)| = |E(Ut ∩ V ?)| < |E?|
2 , we have for i ≤ t

ρi =
|Fi|+ d(Ui−1,Wi)

|Wi|
≥ |E(Ri−1)|+ d(Ui−1, Ri−1)

|Ri−1|

≥ |E(Ri−1)|+ d(Ii−1, Ri−1)

|Ri−1|
≥ |E(Ri−1)|+ d(Ii−1, Ri−1)

k

=
|E?| − |E(Ii−1)|

k
≥ |E

?| − |E(It)|
k

≥ |E
?|

2k
=
ρ?

2
.

Hence,

|E(Ut)| ≥
∑
i≤t

(ρi · |Ui|) ≥ min
i≤t
{ρi} ·

∑
i≤t
|Ui| ≥ min

i≤t
{ρi} · k/2 ≥

|E?|
4

. ut

Phase 2: Shrinking Ut. If nt > k, then we must delete some vertices
from Ut without decreasing the density too much. We first compute a
σ-quasi elimination order L = {v1, . . . , vnt} for Ut. If some vertex in L
has a large predecessor set in this order, then we are done, as shown by
Lemma 5.

Lemma 5. If there is a vertex v ∈ Ut with |PredL(v)| ≥ k
2 , then we

can efficiently find a subgraph of k
2 vertices in PredL(v) that is an O(σ)-

approximation for DS-k on G.

Proof. Let A = PredL(v). Since |A| ≥ k
2 ≥ ρ? ≥ 2σ − 1, the σ-quasi

elimination order property implies that G[A] has at least 1
2σ ·

(|A|
2

)
edges

by Lemma 1. We randomly and uniformly choose a subset B of the k
2

vertices in A. Then, G[B] has an expected number of Θ( 1
σ ) ·Θ(k2) edges:

∑
e∈E(A)

k

2|A|
· k

2|A|
≥ k2

16σ
· (1− 1

|A|
) ≥ 1

σ
· (k

2

16
− k

8
) .

It is straightforward to derandomize this algorithm using the condi-
tional probability technique. We omit the details. ut
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If no vertex v in L has a predecessor set of size at least k
2 , then we

must work a bit harder to find a dense subgraph.

Lemma 6. If there is no vertex v ∈ Ut with |PredL(v)| ≥ k
2 , then we

can efficiently find a subset of Ut of size at most k that is an O(σ)-
approximation for DS-k on G.

Proof. From the remark at the end of Subsection 4.1, we see that for any
vertex v ∈ Ut, either (1) |SuccL(v)| > ρt

2 , or (2) |PredL(v)| ≥ ρt
2 . We

now process the vertices of Ut in the reverse order of L, i.e., beginning
at vnt . If a vertex satisfies condition (1) above, then we take it. If it
satisfies condition (2), then we take it together with a certain subgraph
of high-degree vertices of its predecessor set (see Lemma 7 below).

We stop if we have collected at least k
2 vertices. In every step, we

either add a single vertex v or a subset of its predecessors to the solution.
Since no vertex has a predecessor set of size at least k

2 , we select at most
k vertices in total, i.e., we obtain a feasible solution SOL for DS-k.

In G[SOL], each vertex v has a degree either at least ρt
2 if it was

selected by condition (1), or |PredL(v)|−14σ ≥ ρt−2
8σ if it was selected by

condition (2). Thus,

|SOL| = 1

2

∑
v∈SOL

deg(v) ≥ ρt − 2

8σ
· k ≥ ρ? − 4

8σ
· k = O(

1

σ
) · |E?| .

ut

Lemma 7. If |PredL(v)| ≥ ρt
2 for some vertex v, then we can efficiently

identify a non-empty subset H of PredL(v) such that every vertex in G[H]

has a degree at least |PredL(v)|−14σ .

Proof. We repeatedly delete a vertex of degree less than |PredL(v)|−1
4σ .

Since |PredL(v)| ≥ ρt
2 ≥

ρ?

4 ≥ 2σ, G[PredL(v)] contains at least 1
2σ ·(|PredL(v)|

2

)
edges, and thus we cannot delete all vertices (and their edges)

of PredL(v). ut

Theorem 8. If G has a polynomial time computable σ-QEO, then we
can efficiently compute an O(σ)-approximation for DS-k on G. ut

It is known that a σ-QEO can be constructed in O(σ2nσ+2) time if
there is one [35]. In particular, we can find an O(1)-QEO in polynomial
time. Combined with Theorem 8, we obtain the claimed results on inter-
section graphs.
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Corollary 9. There is an O(1)-approximation algorithm for DS-k on the
following intersection graph classes, even if the intersection models are
not given as input: chordal graphs, circular-arc graphs, claw-free graphs,
line graphs of `-hypergraphs (with ` = O(1)), disk graphs (with σ = 5),
unit disk graphs (with σ = 3), and the intersection graphs of λ-fat objects
in d-dimensional space (with λ = O(1) and d = O(1)). ut

5 A PTAS for DS-k on Unit Disk Graphs

A PTAS for DS-k on unit disk graphs can be obtained by a standard
shifting technique [6], combined with a result by Arora et al. [3]. This
technique was also used to develop a PTAS for the maximum indepen-
dent set problem on unit disk graphs [29]. We give a brief sketch of our
algorithm. The following lemma indicates how to combine the optimal so-
lutions for HS on independent subgraphs into a global optimal solution.

Lemma 10. Let G be a graph with connected components G1, . . . , Gp. If
we can efficiently solve HS-` on all Gi, for any `, then we can efficiently
solve HS-` on G, for any `.

Proof. Let OPT (G, `) denote an optimal solution of HS-` on G. Then,
OPT (∪ji=1Gi, `) can be computed by the following dynamic program, for
any j and `:

OPT (∪ji=1Gi, `) = max
x
{OPT (∪j−1i=1Gi, x) +OPT (Gj , `− x)} .

ut

We may assume that the given disks have diameter one and the disk
centers do not have integral coordinates. Let h be a constant to be fixed
later. For all 0 ≤ i, j ≤ k−1, we define Di,j to be the set of disks obtained
by removing all disks intersecting a vertical line x = i+ha for some integer
a or a horizontal line y = j + hb for some integer b.

Let OPT (G, k) be an optimal DS-k solution for G. We can show that∑h−1
i=0

∑h−1
j=0 |OPT (G, k)∩Di,j | ≥ (h−2)2 · |OPT (G, k)|. Therefore, there

exist i, j such that |OPT (Di,j , k)| ≥ |OPT (G, k) ∩ Di,j | ≥ (1 − 2
h)2 ·

|OPT (G, k)|. By choosing h = 2/ε, we see that maxi,j |OPT (Di,j , k)| is
a (1 − ε)-approximation. Now, we have reduced DS-k on G to comput-
ing OPT (Di,j , k). In the following, we will give a PTAS for computing
OPT (Di,j , k). This gives us a PTAS for DS-k on G.
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Di,j may consist of several connected components, each of which is
contained in an h × h square. Let C be one of the components with nc
vertices. An h×h square can be covered by (h+1)2+h2 = 2h2+2h+1 unit
disks. Thus, C can be covered by no more than 2h2+2h+1 disjoint cliques,
since a set of disks whose centers lie in a common unit circle induces a
clique. Therefore, one of these cliques contains no less than nc

2h2+2h+1
vertices. If k ≤ nc

2h2+2h+1
, then OPT (C, k) is a clique. If k > nc

2h2+2h+1
,

the size of a maximum independent set in C is no more than 2h2 +2h+1.

By Lemma 1, C contains Θ(n
2
c
h2

) edges. Since h is a constant, we can use
the algorithm in [3] to obtain a PTAS for problem instances with Θ(n2c)
edges and satisfying k = Θ(nc). Now, by Lemma 10, we have a PTAS for
computing OPT (Di,j , k).

We note that similar ideas can be used to obtain a PTAS for unit
square intersection graphs. Erlebach et al. [13] used a new subdivision of
the plane and the shifting strategy to obtain a PTAS for the maximum
independent set problem and the vertex cover problem for disk graphs.
However, it is not clear whether their methods can be applied to obtaining
a PTAS for DS-k on disk graphs.

6 Conclusions

In this paper, we studied approximation algorithms for the densest k-
subgraph (DS-k) problem on several classes of intersection graphs. One
of our main contributions is a simple O(σ)-approximation framework for
graphs admitting σ-QEOs, which leads to improved approximation DS-k
algorithms for these graph classes.

One future research direction is to find more algorithmic applications
for σ-QEO. It is worthwhile noting that after the MDSP preprocessing
phase, our algorithm is essentially based on local decisions guided by the
vertex ordering. This is similar to the approximation algorithms for var-
ious graph problems developed in [1, 35]. Therefore, we conjecture that
there might be a deeper reason to explain this, or even a unified charac-
terization of the problem structures that allows us to apply certain local
decision-based approximation algorithms on graphs with QEOs.

Note that all graph classes we considered have σ-quasi elimination
orders with some constant σ ≥ 1. Thus, another direction of research is
to identify other graph classes with a σ-QEO such that σ is o(n1/4) (this
ensures an approximation better than O(n1/4) for DS-k [7]).
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