
Generalized Machine Activation Problems ∗

Jian Li † Samir Khuller ‡

Abstract

In this paper we consider a generalization of the ma-
chine activation problem introduced recently [“Energy
efficient scheduling via partial shutdown” by Khuller, Li
and Saha (ACM-SIAM 2010 Symp. on Discrete Algo-
rithms)] where the unrelated parallel machine schedul-
ing problem is studied with machine activation cost.
This is the standard unrelated parallel machine schedul-
ing problem with a machine dependent activation cost
that is incurred, if any job is assigned to the machine.
The problem asks for a choice of machines to activate,
and a schedule of all jobs on the active machines subject
to the makespan constraint. The goal is to minimize the
total activation cost.

Our main generalization consists of a general activa-
tion cost model, where the activation cost for a machine
is a non-decreasing function of its load. We develop a
greedy algorithm that yields a fractional assignment of
jobs, such that at least n− ε jobs are assigned fraction-
ally and the total cost is at most 1 + ln(n/ε) times the
optimum. Combining with standard rounding methods
yields improved bounds for several machine activation
problems.

In addition, we study the machine activation prob-
lem with d linear constraints (these could model
makespan constraints, as well as other types of con-
straints). Our method yields a schedule with machine
activation cost of O(1

ε log n) times the optimum and a
constraint violation by a factor of 2d + ε. This result
matches our previous bound for the case d = 1.

As a by-product, our method also yields a lnn +
1 approximation factor for the non-metric universal
facility location problem for which the cost of opening
a facility is an arbitrary non-decreasing function of
the number of clients assigned to it. This gives an
affirmative answer to the open question posed in earlier
work on universal facility location.

∗Research supported by NSF Awards CCF-0728839 and CCF-

0937865 (HECURA), and a Google Research Award.
†University of Maryland, College Park, MD 20742. E-mail :

lijian@cs.umd.edu.
‡University of Maryland, College Park, MD 20742. E-mail :

samir@cs.umd.edu.

1 Introduction

In this work we consider the generalized machine acti-
vation problem defined as follows. We are given a set M
of m unrelated machines and a set J of n jobs. Let pi,j
and ai,j be the processing time and cost, respectively,
for processing job j on machine i. Given an assignment
of jobs to machines we refer to the load of machine i as
the total processing time of all jobs that are assigned to
machine i. We are also given a non-decreasing, piece-
wise linear and left-continuous machine activation cost
function ωi : R+ → R+ for each machine i ∈ M . A
feasible integral solution is an assignment λ : J → M
of each job to a machine. Let uλ be the machine load
vector under assignment λ, i.e., uλi =

∑
λ(j)=i pi,j .

The cost of a feasible solution λ consists of two
parts: One is the machine activation cost given by∑
i∈M ωi(u

λ
i), while the other is the assignment cost

given by
∑
j∈J aλ(j)j . We call this problem the gen-

eralized machine activation (GMA) problem. We can
use the cost function to model the makespan constraint
T by letting ωi(0) = 0, ωi(x) = ci for 0 < x ≤ T ,
and ωi(x) = ∞ for x > T , where ci is the cost for
opening machine i. We call the problem with such cost
functions the machine activation with assignment cost
(MAAC) problem. Furthermore, if there are no assign-
ment costs, the problem reduces to the basic version of
the machine activation problem which we denote by MA.
(Both the MAAC and MA problems were introduced in
[23].) Besides the capability of capturing the makespan
constraints, this more general activation cost can also be
used to model the situation that many current comput-
ing devices, such as CPUs and disk arrays, have more
flexible power management controls than simple on/off
switches, thus permitting many intermediate levels of
power consumption.

Our first result is a simple greedy algorithm for
GMA that finds a fractional assignment in which at
least n − ε jobs are fractionally assigned with total
cost at most ln n

ε + 1 times the optimum solution
(Theorem 3.1). By applying the rounding scheme
by Shmoys and Tardos [33], we obtain a (2, (1 +
o(1)) lnn) bicriteria approximation for MAAC, where an
(α, β)-approximation means if there exists a schedule
of makespan T and cost C we can find one with

makespan at most αT and cost at most βC. This
improves the (3+ε, O(1

ε lnn))-approximation in [23] and
the (2 + ε, 2 ln(2n/ε) + 5)-approximation in [14]. For
MA, the algorithm reduces to the greedy algorithm for
submodular covering problem and using the Shmoys-
Tardos scheme yields a (2, lnn + 1)-approximation,
matching the results in [23]. Improving the factor of 2
for minimizing makespan is a well known open problem.
We also obtain a (1+o(1))ψ lnn-approximation for GMA
if ωi() satisfies ωi(2x) ≤ ψωi(x) for all i (e.g. for concave
ω, we have ψ = 2).

Typically, a fractional assignment can be obtained
from a generalized flow computation for an instance
of the unrelated machine scheduling problem. In the
special case where assignment costs can be modeled by
a standard flow computation in the given GMA instance,
the same greedy algorithm (with some simplifications)
is able to find a feasible integral assignment and the
total cost is at most lnn+1 times the optimum solution
(Theorem 4.3). The result directly yields an optimal
lnn + 1-approximation for the non-metric universal
facility location (UniFL) problem in which the cost
function for a facility is an arbitrary non-decreasing
function of the number of clients assigned to it. This
answers an open question proposed in [19, 26]. We note
that a logarithmic approximation is essentially optimal
in light of Feige’s result [13]: For any ε > 0, there
is no (1 − ε) lnn-approximation for set cover unless
NP ⊆ DTIME[nO(log logn)].

Note that GMA does not fit into the well studied
submodular covering framework [38]. Bar-Ilan et al. [3]
considered the problem of incorporating the assignment
cost to the submodular covering framework (see Sec-
tion 4.3). Their framework, in which the assignment
cost is captured by a standard network flow computa-
tion, can be used to model a number of network de-
sign problems including the capacitated facility location
problem. Our work extends this work by having a more
general cost function and assignment model, i.e., gener-
alized flows. Our algorithm is simpler than their multi-
phase greedy approach and our bound is also tighter.
We summarize our results in Figure 1.

Our main algorithm is a simple greedy algorithm.
Indeed, in prior work we introduced a greedy framework
[23] in which at each step a new machine is activated.
We would like to activate the machine which has min-
imum cost to benefit ratio. However, computing the
benefit of a machine in this context is a hard problem.
The key idea there is to estimate the benefit by a frac-
tional relaxation and compute a fractional schedule that
is rounded at the end. In this work we significantly
generalize this framework to define a greedy method
that works with fractional activations at each step. In

our analysis, we make extensive use of the conformal
decomposition lemma (for generalized flows, and more
generally for LP solutions), which enables a charging
argument to show the relationship between the cost to
benefit ratio and the optimum. Note that the charging
argument for the basic set cover problem was extended
for several generalizations such as facility location, set
multicover, capacitated set cover [12]. To illustrate the
use of the conformal decomposition lemma, we also give
a short alternate proof of the supermodularity of mini-
mum cost generalized flow. This simplifies the proof by
Fleischer that is based on LP duality [14] 1.

Besides one single makespan constraint, a more
realistic machine may restrict the set of tasks that can
be assigned to it in a variety of other ways. Several
prior works study the problem of combining the degree
constraint (at most a certain number of jobs can be
assigned to a particular machine), or more generally
some linear constraints, into the traditional machine
scheduling problem (e.g. [39, 37, 25, 32]). Motivated by
similar considerations, we study the machine activation
problem with d linear constraints on each machine –
we refer to this problem as Machine Activation with
Linear Constraints (MALC). We show that we can find
a schedule such that the machine activation cost is at
most O(1

ε log n) times the optimum and each constraint
may be violated by at most a factor of 2d+ε. Note that
when d = 1, our result matches the (2 + ε, O(1

ε log n))-
approximation obtained by LP rounding in [23]. Our
algorithm is also based on LP rounding and makes use
of ideas from [25, 23].

1.1 Related Work Our work is closely related to the
submodular covering framework [38]. In an instance of
the problem, we are given a ground set N , with each
element e in N having a cost ce and a nonnegative
monotone submodular function f : 2N → R+ ∪ {0}.
The objective is to find a subset S ⊆ N of the minimum
cost such that f(S) = f(N). It is well known that the
problem admits logarithmic factor approximations [38,
15]. Indeed, the fractional version of MA is can be
cast as a submodular covering problem [23, 14] , by
noticing that maximum generalized flow is submodular
(proved in [14]). However, MAAC and the more general
GMA do not fit into the submodular covering framework
due to the assignment cost. Fleischer [14] defined the
supermodular packing problem and used it to capture
the assignment cost for MAAC. It is not clear to how to

1In the context of network flows, the supermodularity (or

submodularity) has a close relationship with the notions of
substitutes and complements, which have been a subject of study

in operation research community. See the references in [14] for
prior work.

MA MAAC UniFL GSC
previous (2, lnn+ 1) [23] (3 + ε, O(1

ε lnn)) [23]
open [19, 26] O(log nM)[3]

results (2 + ε, ln(n/ε) + 1) [14] (2 + ε, 2 ln(2n/ε) + 5) [14]
our results (2, lnn+ 1) (2, (1 + o(1)) lnn) lnn+ 1 (∗) ln |b|+ 1

Figure 1: Comparison of our results to previous results. n is the number of jobs (or clients). M is the largest
integer in the instance. (∗) If |b| is not bounded by a polynomial of input size, the ratio is (1 + o(1)) ln |b|.

use the the same idea in GMA because of the general
machine cost functions. Fleischer [14] also studied
the completion time version of the machine activation
problem where there is a completion time constraint
instead of of the makespan constraint and obtained a
logarithmic approximation.

A considerable amount of work concerns the prob-
lem of rounding a fractional solution x obtained by
solving the linear-(or convex-)programming relaxation
to an integral one X such that multiple linear con-
straints are satisfied approximately in the rounded so-
lution. Typically, the constraints are a collection of k
linear functions fi and we want to minimize the “dis-
crepancy” terms |fi(x) − fi(X)| for most/all i. If k
is not a constant, the terms usually depend on n or
k [4, 1]. Recently, Saha and Srinivasan [32] used a
random-walk rounding technique to show that there is
an efficient algorithm that returns a b-matching main-
taining the capacity constraints on all machines nodes
and |fi(X)− fi(x)| < `i ∀i where fi is a linear function
defined on edges incident on node i and `i is an upper
bound on the coefficients. This appears to be the first
result that gives a bound independent of n for more
than one constraint per node. MALC can be seen as
a generalization of their problem by having activation
costs for machines and d constraints on each machine.
Our bound on the violation of the constraints is also
independent of n.

There is a huge literature on the facility loca-
tion problem and its many variants. For the unca-
pacitated facility location in metric space, small con-
stant factor approximation algorithms can be obtained
by many approximation algorithmic techniques (e.g.
[34, 21, 9, 2, 20, 10]) The current best approxima-
tion ratio is 1.5 [8]. Guha and Khuller [18] showed
that there is no 1.463 approximation unless NP ⊆
DTIME[nO(log logn)]. Hajiaghayi et al. [19] first stud-
ied the facility location problem with concave facility
cost functions. Mahdian and Pal obtained the first con-
stant approximation for arbitrary non-decreasing facil-
ity cost functions [26] where the problem was named
universal facility location (UniFL). The focus of both
works is the metric case and a logarithmic approxi-
mation for the non-metric case was posed as an open

question. The current best ratio for metric universal
facility location is 6.702 by Vygen [36]. A number of
well-studied problems are very special cases of universal
facility location. These include uncapacitated facility
location, set cover with soft or hard capacities, facility
location with soft constraints [2, 11, 20, 27] or hard ca-
pacities [24, 29, 11, 40], the linear-cost facility location
problem [27, 28], the concave-cost facility location [19]
and the load-distance balancing problem [6].

The special case of MA where the job assignment
can be computed via a max-flow has been also studied
in the context of deploying internet transit access points
in a wireless sensor network [30] and designing a pay-
ment system in a trust network [16]. The algorithms
developed in the above two works are also greedy and
they use a charging argument based on the path decom-
position of flow that is similar to ours in spirit.

2 Preliminaries

Scheduling unrelated machines can be modeled as a gen-
eralized flow problem. We review some basic concepts
about generalized flows. A generalized flow problem is
the same as a standard flow problem, except with a gain
factor γe > 0 on each arc e. This means that if a unit
of flow enters arc e, γe units of flow leave arc e. We say
arc e is a normal arc if γe = 1. The cost of the flow f is∑
e∈E fece where ce is the cost per unit of flow on arc e,

and fe is the flow entering arc e. To see that how a gen-
eralized flow is used to compute a fractional assignment,
we add a sink t to the bipartite graph G = (M ∪ J,E).
We add a normal arc (j, t) for each job j. Each arc (j, t)
has a capacity 1. Each arc (i, j), i ∈ M, j ∈ J has a
capacity pij , gain factor 1/pi,j , and cost cij = aij/pij .
Each node i ∈ M is a flow source and its flow excess is
determined during the execution of our algorithm. The
total fractional number of satisfied jobs is the amount
of flow that the sink t receives and the fractional as-
signment cost is just the cost the corresponding flow.
The gain of a cycle is the product of the gain factors
of arcs in that cycle. A flow generating (flow-absorbing)
cycle is a cycle whose gain factor is larger (smaller) than
one. A bicycle consists of a flow-generating cycle, a flow-
absorbing cycle, and a (possibly trivial) path from the
first cycle to the second. A circulation is a feasible gen-

3

eralized flow on a network where there is no flow excess
or demand at any node. A circuit is a circulation that
sends positive flow only along the arcs of a bicycle or
unit-gain cycle. We shall use the following conformal
decomposition lemma extensively.

Lemma 2.1. ([17]) A generalized circulation f can be
decomposed into circuits g1, . . . , gk with k ≤ |E| such

that f =
∑k
i=1 gi and gi(e) > 0 only if f(e) > 0.

Clearly, the existence of a negative cost circuit in
the residual graph implies that the current circulation
can be improved by pushing flow around the circuit.
The converse of this fact is also true: A generalized
circulation f is optimal if and only if the residual graph
contains no negative cost circuit (e.g. [17]).

Sometimes, it is easy to think of a source (a
sink) as a flow-generating (flow-absorbing) self-loop.
For example, if source s has a flow excess x, we
replace s with a self loop which has a gain factor
2 and capacity x. Therefore, a generalized flow in
our context can be treated as a generalized circulation
and the decomposition lemma is still applicable. In
our algorithm, the machine activation cost is counted
separately from the flow cost, so the cost on these self
loops is zero. We finally note that, in a fractional
assignment, the load of machine i equals to the amount
of flow leaving node i.

3 The Greedy Algorithm

Our main result in this section is the following theorem.

Theorem 3.1. There is a polynomial time approxima-
tion algorithm that can find a fractional assignment such
that at least n−ε jobs are (fractionally) satisfied and the
cost is at most ln(nε)+1 times the optimal cost for GMA.

First, we need some notation and more preparation
on generalized flows. Arc (v, w) has capacity uvw ≥ 0,
gain factor γvw > 0, and per unit flow cost cvw ≥ 0. Let
u ∈ R|M | be the flow excess vector where ui is the flow
excess on machine node i. Let fvw be the flow value
entering arc (v, w). For a flow f , we use c(f) to denote
the cost of the flow, i.e., c(f) =

∑
vw cvwfvw. Note

that ui puts an upper bound on the load of machine i.
Recall that we can think of a machine node i with flow
excess x as a flow-generating self-loop with gain factor
2 and capacity x. We shall also call u capacity vector
sometimes, where ui = uii, the capacity of the self-loop
(i, i). Let G[u] be the generalized flow network with
capacity vector u. We define π(u, ft) to be the optimal
cost of sending at least ft units of flow to t in G[u],
which can be determined by the following LP:

(3.1) π(u, ft) = min.
∑
vw

cvwfvw

Algorithm 1: GMA-GREEDY(G, ε, δ)

u = 0, ft = 0;1

while ft < n− ε do2

Choose machine i and α ≥ 0, β ≥ δ s.t.3

ρ(i, α, β,u, ft) is minimized;4

û = u + αei;5

ft = ft + β;6

u =CLEANUP(û, ft);7

s. t.
∑

w∈δ+(v)

fvw −
∑

w∈δ−(v)

γwvfwv = 0 ∀v ∈ V \ t;

∑
w∈δ−(t)

γwtfwt ≥ ft;

0 ≤ fvw ≤ uvw ∀(v, w)

where δ−(v) = {w | (w, v) ∈ E} and δ+(v) =
{w | (v, w) ∈ E}. This first constraint is the flow
conservation constraint, i.e., the total flow entering a
node equals that leaving the node. The second says
the total flow entering the sink t is at least ft. In this
LP, we use flow-generating self-loops on machine nodes.
Therefore, we do not need any other constraint to model
flow excesses.

In this paper, we assume that π(u, 0) = 0 for any
u � 0 and π(u, ft) ≥ 0 for any u � 0 and ft ≥ 0. It is a
useful fact that π(u, ft) is a nondecreasing function of
ft (a standard property for linear programming).

Let C(u, ft) =
∑
i∈M ωi(ui) + π(u, ft). Define

ρ(i, α, β,u, ft) =
1

β

(
C(u + αei, ft + β)− C(u, ft)

)
for any i ∈ M and α, β > 0, where ei is the ith
elementary vector: ei(i) = 1 and ei(j) = 0 for j 6= i.

Our greedy algorithm starts with u = 0. In each
iteration, we first increase the capacity of some machine
i by α and push β more units of flow to t such that
ρ(i, α, β,u, ft) is minimized. To ensure the algorithm
runs in polynomial time, we require that the increment
β is at least a given parameter δ (δ = 1

poly(n) will be fixed

later). Then, we perform a clean-up procedure which
produces a maximal excess vector which could send as
much flow to the sink with no larger cost (Property 3.1).
This property is useful in the analysis of Lemma 3.4.
The algorithm terminates when the sink t receives more
than n− ε units of flow, i.e., more than n− ε fractional
clients are satisfied. It is easy to see that there are
a polynomial number of iterations. We specify below
how each iteration can be implemented in polynomial
time. We denote the algorithm by GMA-GREEDY
(see Algorithm 1).

Finding the minimum ratio ρ: Now, we elaborate on
how to find the minimum ρ value in each iteration in
polynomial time. For a fixed machine i, it is easy to
see that ρ is the optimal value of the following linear-
fractional program (LFP):

min.
1

β

(
ωi(ui + α)− ωi(ui) +

∑
vw

cvwfvw − π(u, ft)
)

s. t.
∑

w∈δ+(v)

fvw −
∑

w∈δ−(v)

γwvfwv = 0 ∀v ∈ V \ {t};

∑
w∈δ−(t)

γwtfwt ≥ ft + β;

0 ≤ fvw ≤ uvw ∀(v, w) ∈ E \ {(i, i)};
0 ≤ fii ≤ uii + α, α ≥ 0, β ≥ δ

We can assume ωi(ui + α) is a linear function of α.
This is without loss of generality since we can solve the
above FLP for every piece of the function ωi(.) (recall
ω(.) is piecewise linear) and take the minimum. Any

FLP of the form max . cTx+d
eTx+f

s.t.Ax = b,x ≥ 0
can be converted to an equivalent LP by standard
homogenization [7] as follows: W.l.o.g. assume eTx +
f > 0. We introduce a new variable z and let z =

1
eTx+f

. Then, the FLP can be written as max . zcTx +

dz s.t. zAx = zb, zeTx + fz = 1, x ≥ 0. Substituting
zx with new variables y, we get an equivalent linear
program max . cTy + dz s.t. Ay = zb, eTy + fz =
1,y, z ≥ 0.

The CLEANUP procedure: Now, we specify the de-
tails of the CLEANUP procedure. Given û and ft,
the goal of the procedure is to find an excess vector u
such that the following property holds:

Property 3.1. (1) C(u, ft) ≤ C(û, ft); (2) There
does not exist any i ∈ M and α ≥ 0 such that
C(u + αei, ft) < C(u, ft).

In other words, we want to find a maximal excess vector
such that the total cost of sending ft flow to t is no larger
than C(û, ft). The algorithm iterates over all machine
nodes. For each machine node i, the algorithm attempts
to add the maximum amount of excess to ui such that
the total cost does not increase. This amount can be
determined by the following LP:

Algorithm 2: CLEANUP(û, ft)

for each i ∈M do1

Let α be the optimal solution of LP(3.2);2

û = û + αei ;3

Return û;4

(3.2) maximize α, subject to

ωi(ûi + α)− ωi(ûi) +
∑
vw

cvwfvw − π(û, ft) ≤ 0;∑
w∈δ+(v)

fvw −
∑

w∈δ−(v)

γwvfwv = 0 ∀v ∈ V \ {t};

∑
w∈δ−(t)

γwtfwt ≥ ft;

0 ≤ fvw ≤ uvw ∀(v, w) ∈ E \ {(i, i)};
0 ≤ fii ≤ ui + α, α ≥ 0

The first constraint dictates that the cost does not
go up. The last one increase the capacity of the flow-
generating self-loop (i, i) to (ui + α). In Lemma 3.3,
we show that it suffices to increment the excess once for
every machine in order to ensure Property 3.1.

3.1 Analysis of the Approximation Ratio We
need a few lemmas. We use R(G, f) to denote the
residual graph of G w.r.t. f and R(u, f) as a shorthand
notation for R(G[u], f). First, we state some simple
facts that will be useful in various places. The proofs
of the first three are straightforward and the fourth can
be easily seen from the first three.

Lemma 3.1. 1. If f is a feasible circulation in G and
f ′ is a feasible circulation in R(G, f). Then, f+f ′

is feasible in G.

2. Suppose f and f ′ are feasible circulations in G.
Then, f − f ′ is a feasible circulation in R(G, f ′)
2.

3. Suppose f , a feasible circulation in G, can be
decomposed to conformal circuits g1, g2, . . . , gk. For
any S ⊆ [k],

∑
i∈S gi is a feasible circulation on G.

4. Suppose f and f ′ are feasible circulations in
G. f − f ′ is decomposed into conformal circuits
g1, g2, . . . , gk. For any S ⊆ [k], f ′ +

∑
i∈S gi and

f −
∑
i∈S gi are feasible circulations in G.

2−1 unit of flow on (v, w) is equivalent to γvw units of flow on
(w, v).

5

Recently, Fleischer showed that π(u) is supermodu-
lar [14]. The proof was based on analyzing the changes
of the dual variables. We provide a simpler direct proof
using conformal decomposition.

Lemma 3.2. (Fleischer [14]) π(., ft) is a supermodular
function. That is, that for any excess vector u, i ∈ M ,
positive scalars α, β, and u′ = u + βej, the following
inequality holds:

π(u, ft)− π(u + αei, ft) ≥ π(u′, ft)− π(u′ + αei, ft).

Proof. We drop the second parameter ft for ease of
notation. Let f, f i, f j , f ij denote the optimal flow
corresponding to π(u), π(u+αei), π(u′) and π(u′+αei),
respectively. Using Lemma 2.1, f̄1 = f j − f can
be decomposed into conformal circuits. First, we can
see all circuits have non-positive cost. Otherwise, by
Lemma 3.1.4, subtracting those with positive costs from
f j results in a feasible flow on G[u + βej] of less cost,
contradicting the optimality of f j . Second, no circuit
has positive flow on any flow-generating loop other than
(j, j) since otherwise we can add those circuits to f and
get a feasible flow of less cost, contradicting that f is
optimal. Repeating the same argument, f̄2 = f ij − f j
can be also decomposed into conformal circuits whose
costs are non-positive and no circuit has positive flow
on any flow generating loop other than (i, i).

f̄1 + f̄2 = f ij − f is a feasible flow on R(u + αei +
βej , f). We decompose f̄1 + f̄2 into conformal circuits
and partition them into two groups. The circuits in the
first group g1 (the second group g2) has positive flow
on the flow generating loop (j, j) ((i, i)). Other circuits
can be assigned to either group arbitrarily. Since f + g1

is a feasible flow on G[u+αei+βej] (by Lemma 3.1.4),
thus on G[u + βej], we have c(g1) ≥ c(f̄1). Therefore,

c(g2) = c(f̄1 + f̄2)− c(g1) ≤ c(f̄2).

Also we can see that f + g2 is a feasible flow on
G[u + αei]. Hence,

π(u + αei)− π(u) ≤ c(g2) ≤ c(f̄2)

=c(f ij)− c(f j) = π(u′ + αei)− π(u′).

This completes the proof �

Lemma 3.3. The excess vector u returned by
CLEANUP(û, ft) satisfies Property 3.1.

Proof. The third constraint in LP(3.2) guarantees that
C(u, ft) does not increase over iterations. This proves
the first part. Now we show the second part. Suppose
the lemma is not true and there exists i ∈M and α > 0

such that C(u + αei, ft) < C(u, ft). We denote the
excess vector obtained right after the ith iteration by
u(i). It is obvious that C(u(i) + αei, ft) > C(u(i), ft)
for any α > 0, since otherwise we would have a larger
optimal value for LP(3.2). Thus, we have that

C(u(i), ft)− C(u(i) + αei, ft) < 0

< C(u, ft)− C(u + αei, ft).

Subtracting ωi(u
(i)
i)−ωi(u(i)

i +α) = ωi(ui)−ωi(ui+α)
from both sides, we can get

π(u(i), ft)−π(u(i) +αei, ft) < π(u, ft)−π(u+αei, ft).

which contradicts the supermodularity of π. �

For any two vectors a and b, we use max(a,b)
to denote the vector (max(a1,b1), . . . ,max(am,bm)).
The following lemma is the key to establishing the
approximation ratio. The statement of the lemma
is somewhat reminiscent of the standard relationship
between the cost-benefit ratio and the optimum for
set cover, which can be shown by a simple charging
argument. However, the charging argument here is not
as straightforward and needs to be done based on a
conformal decomposition.

Lemma 3.4. Suppose u, ft satisfy the second part of
Property 3.1. For any ũ, f̃t such that f̃t − ft ≥ ε, the
following holds:

min
i,α,β≥δ

ρ(i, α, β,u, ft) ≤
(
1 +

nδ

ε

)C(ũ, f̃t)

f̃t − ft
.

Proof. Let f , f̃ be the generalized flows corresponding
to π(u, ft) and π(ũ, f̃t), respectively. Consider the flow
f̃ − f . Apply Lemma 2.1, f̃ − f can be decomposed
into conformal circuits. By Lemma 3.1.2, we can see
that f̃ − f is a feasible flow on R(max(u, ũ), f), so is
any conformal circuit obtained from the decomposition.
Now, we group those circuits as follows. If the circuit
contains the flow-generating self-loop (i, i), we assign it
to group gi. Thanks to the structure of the circuit, each
circuit contains at most one flow-generating self-loop.
We note it may also contain at most one flow-absorbing
self-loop (a negative flow on an flow-generating arc
can be seen as a positive flow on the arc of the
opposite (flow-absorbing) direction). Other circuits
containing no self-loop are assigned arbitrarily. We
also use gi to denote the flow formed by the sum
of the circuits in gi. Let ∆ui = max(ũi,ui) − ui
and ∆ωi = max(ωi(ũi), ωi(ui)) − ωi(ui). Let (gi)t =∑
wt γwtgi(w, t) be the the contribution of gi to the sink

t and S = {i | (gi)t < δ}.

Due to Property 3.1 and the fact that C(u, ft) is
non-decreasing in ft, we can see that ∆ωi + c(gi) must
be nonnegative for every i ∈ M . Therefore, we have
that

C(ũ, f̃t)

f̃t − ft
≥
∑
i ∆ωi + π(ũ, f̃t)− π(u, ft)∑

i(gi)t

=

∑
i

(
∆ωi) + c(gi)

)∑
i∈S(gi)t +

∑
i∈M\S(gi)t

≥
∑
i∈M\S

(
∆ωi) + c(gi)

)∑
i∈M\S(gi)t + nδ

≥
(

1− nδ

ε

)∑
i∈M\S

(
∆ωi) + c(gi)

)∑
i∈M\S(gi)t

≥
(
1− nδ

ε

)
min
i

∆ωi + c(gi)

(gi)t
,

The third inequality holds since
∑
i∈M\S(gi)t + nδ ≥ ε.

Notice that gi is a feasible flow on R(u + ∆uiei, f) by
Lemma 3.1.4. Therefore f + gi is feasible on G[u +
∆uiei] by Lemma 3.1.1 and has (gi)t more units of flow

received by t. Thus ∆ωi+c(gi)
(gi)t

is an upper bound of

minα,β ρ(i, α, β,u, ft). �

Suppose the algorithm terminates at iteration k.
The cost of our solution is SOL ≤

∑k
i=1 ρiβi where

ρi and βi are the minimum ratio and the amount of
flow pushed to t, respectively, in iteration i. Let u∗

be the optimal excess vector and OPT = C(u∗, n).

Consider the differential equation df(x)
dx = ξOPT

n−x . The

solution for this equation is f(x) = ln
(

n
n−x

)
ξOPT for

x < n, under boundary condition f(0) = 0. Let
ξ = 1 + nδ

ε . Consider piecewise function h(x) = ρi

for
∑i−1
j=1 βj ≤ x <

∑i
j=1 βj . It is easy to see that

h(x) ≤ ξOPT
n−x = df(x)

dx from Lemma 3.4. Therefore,

SOL ≤
∫ n−ε

0

h(x)dx+

∫ n

n−ε
ρkdx

≤
∫ n−ε

0

df(x)

dx
dx+

∫ n

n−ε

ξOPT

ε
dx

≤ f(n− ε) + ξOPT.

By letting δ = ε
n2 , we get ξ = (1 +O(1

n)) and

SOL ≤
(

ln
(n
ε

)
+O(1)

)
OPT.

Remark: In fact the same algorithm works even if
the underlying network is a general graph instead of
a bipartite graph. Therefore, we can define GMA to be
the more general problem: We are given a generalized

network where some nodes are machine nodes. Our goal
is to put ui units of flow excess on machine i, for all i,
such that n units of flow can be pushed to the sink t
and the total cost C(u, n) is minimized.

4 Applications

4.1 Machine Activation with Assignment Cost
We run the GMA-GREEDY algorithm for some
ε < 1 fixed later. All machines that have a non-
zero flow excess are activated. Since ωi(x) = ∞
for x > T , the load on each machine is at most T .
Suppose x is the min-cost fractional assignment given
the set of the machines activated by GMA-GREEDY.
In other words, xij = fijγij = fij/pij where f is
the corresponding generalized flow. We then round
the fractional assignment to an integral one using the
scheme by Shmoys and Tardos [33].

The Shmoys-Tardos scheme constructs a bipartite
graph B = (M ′ ∪ J,E) based on f , where J is the set
of jobs and M ′ = {mis | i ∈ M, s = 1, 2, . . . , d

∑
j xije}.

Any matching in B corresponds to an assignment: edge
(mis, j),mis ∈ M ′, j ∈ J is present in the matching
iff we assign job j to machine i. B has the following
properties: (1) There is a fractional matching in B
that has value

∑
ij xij and cost

∑
ij xijcij , (2) For any

integral matching x̄ in B,
∑
s,j pij x̄is,j ≤ T + pmax

for any i. We refer interested readers to [33] for more
details. Since

∑
ij xij > n − ε > n − 1, there exists an

integral matching such that all jobs are matched. The
second property implies that any integral assignment
corresponding to a matching on B has makespan at
most T + pmax. Finally, we can show that the cost
of the integral matching, which is the assignment cost,
is
∑
is,j x̄is,jaij ≤

1
1−ε

∑
ij xijaij . In fact, this can be

easily seen as follows: Let π(x) be the optimal cost of
sending x units of flow from s to t in a standard network
with integral capacities. It is well-known that π can
be computed by repeatedly augmenting the shortest s-t
paths (w.r.t cost). Thus, we can see that π(x) is concave
and piecewise linear and each linear piece is over an
integral interval. Our claim follows the linearity of π(x)
on [n− 1, n]. Therefore, the total cost is

∑
i∈M

ωi(ui) +
∑
is,j

x̄is,jaij ≤
1

1− ε
(∑
i∈M

ωi(ui) +
∑
ij

xijaij
)

≤ 1

1− ε
(
lnn+ ln

1

ε
+O(1)

)
OPT(T).

By letting ε = 1
ln2 n

, we get the following theorem.

Theorem 4.1. We can find a solution, in polynomial
time, to MAAC such that the makespan is at most 2T
and the total cost is at most (1 + o(1)) lnnOPT(T).

7

Using this theorem, we can immediately obtain a
(1 + o(1))ψ lnn-approximation for GMA if ωi() satisfies
ωi(2x) ≤ ψωi(x) for x ≥ 0 and all i. Note that positive
non-decreasing concave functions satisfy the property
for ψ = 2.

For the basic version of the machine activation (MA)
problem without assignment cost, we just set ε = 1
for GMA-GREEDY. Notice that the CLEANUP
procedure is not necessary since there is no flow cost
and opening new machines can only increase the cost.
We do not need to set up any lower bound for β to
guarantee a polynomial running time because there are
at most m iterations. In fact, the algorithm reduces to
the simple greedy algorithm proposed in [23]. Moreover,
since there is no flow cost, we do not need to pay the
extra factor of 1

1−ε and the total opening cost is at most
lnn+ 1 times the optimal solution.

Theorem 4.2. GMA-GREEDY finds in polynomial
time a solution to MA such that the makespan is at most
2T and the total cost is at most (lnn+ 1)OPT(T).

4.2 Universal Facility Location A universal fa-
cility location (UniFL) instance consists of a bipartite
graph B = (M ∪ J ;E), where M is the set of facilities
and J is the set of cities. Each facility is associated
with a non-decreasing function ωi() : Z+ → R+, which
indicates that the facility cost for facility i is ωi(x) if i
serves x cities. There is also a connection cost cij in-
curred if j is assigned to i. We do not assume cijs satisfy
triangle inequality. Our goal is to find an assignment of
all cities to facilities such that the total cost, the sum
of the facility costs and connection costs, is minimized.

For consistence of terminology, we shall just use ma-
chines and jobs in place of facilities and cities respec-
tively. It is easy to see that UniFL is just a special case
of GMA. We notice that once the capacity of each facil-
ity is fixed, the assignment cost can be computed from
a standard network flow computation. Since a network
with integral capacities always has an integral min-cost
flow and the machine cost functions are only defined
on integers, we can restrict the flow increments to only
integers. In fact, the CLEANUP step is also not nec-
essary (will be clear from the analysis). We remark the
greedy algorithm after the simplifications is nothing but
the set-cover greedy, however, no analysis was known
before. Even for the capacitated facility location prob-
lem, a very special case of UniFL, the best known upper
bound is O(log nM) [3] where M is the largest weight of
the instance and the algorithm is a multi-phase greedy
algorithm which is also more complicated than our al-
gorithm UniFL-GREEDY.

Algorithm 3: UniFL-GREEDY(G)

u = 0;1

while |u| < n do2

Choose machine i and α ∈ Z+ s.t.3

ρ(i, α,u) = C(u+αei, |u+αei|)−C(u,|u|)
α is4

minimized;
u = u + αei;5

Theorem 4.3. UniFL-GREEDY is a polynomial
time lnn+ 1-approximation for UniFL.

Now, we analyze UniFL-GREEDY for UniFL.
Notice that in our algorithm, once we increase the flow
excess on a node by α, the flow sent to t should also
increase by α. Thus, at any stage, the excess on any
machine node is exhausted, or equivalently, the flow on
the flow-generating self loop matches its capacity, which
may not be true for generalized flows. To capture this
change, we modify the semantics of π(u, ft) to denote
the cost of the optimal flow f in G[u] such that ft flow is
received by t and the machine self-loops are saturated.
In another word, π(u, ft) is the optimal solution of
LP(3.1) with additional constraints fii = ui ∀i. If we
deal with standard network flows, we can use π(u) and
C(u) as shorthand notations for π(u, |u|) and C(u, |u|)
respectively, where |u| =

∑
i ui. Again, we let u∗ be

the excess vector for the optimal solution.
To establish the approximation bound, we need to

show Lemma 4.2 which is an analogue of Lemma 3.4.
The following technical lemma is useful in Lemma 4.2.
For generality, we prove this lemma for generalized
flows, although we only need standard flows in this
subsection.

Lemma 4.1. For any excess vector u and ft < n, there
is an excess vector ũ such that

1. u � ũ � max(u,u∗);

2. π(ũ, n)− π(u, ft) ≤ π(u∗, n).

Proof. Let f ,f∗ be the generalized flows corresponding
to π(u, ft) and π(u∗, n), respectively. First, it is easy to
see that f∗−f is a feasible flow onR(max(u,u∗), f). By
Lemma 2.1, we can decompose f∗− f into circuits. We
partition these circuits into two groups: the first group
contains all circuits with t being their flow-absorbing
cycle and the second contains the rest. Let g and h be
the sum of the circuits in the first and the second groups,
respectively. Roughly speaking, h is a flow going from
loops with positive u∗−u values to loops with negative
u∗ − u values, while g flows from loops with positive

u∗ − u values to t. By Lemma 3.1.4, f + g is a feasible
flow in G[max(u,u∗)]. Let f̃ = f + g. It is obvious
that f̃ sends n units of flow to t. Let ũ be the excess
vector of f̃ , i.e., ũ = {f̃ii}i∈M . The feasibility of f̃
on G[max(u,u∗)] implies ũ � max(u,u∗). Since each
circuit in g contains only one flow-absorbing loop, which
is t, we can see that the excess vector of g, {gii}i∈M � 0.
Thus, ũ = u + {gii}i∈M � u 3.

Now, we only need to check the second requirement.
For contradiction, we suppose π(ũ, n) > π(u∗, n) +
π(u, ft) = c(f∗) + c(f). First we can see that c(g) +
c(h) = c(f∗) − c(f). Therefore, π(ũ, n) ≤ c(f̃) =
c(f + g) = c(f) + c(g) = c(f∗) − c(h). Hence, we have
c(f∗) + c(f) < π(ũ, n) ≤ c(f∗) − c(h) or equivalently
c(f) + c(h) = c(f + h) < 0. But, by Lemma 3.1.4,
f +h is also a feasible flow in G[max(u,u∗)] that has ft
units of flow entering t. Therefore, c(f + h) can not be
negative. The contradiction proves the lemma. �

Using an argument similar to that in Lemma 3.4,
we can show the following lemma. The key difference
is to use the flow obtained from Lemma 4.1, instead of
the optimal flow use in the proof of Lemma 3.4.

Lemma 4.2. For any u such that π(u) < +∞ and
|u| < n, the following holds:

min
i,α

ρ(i, α,u) ≤ C(u∗)

n− |u|
.

Proof. Let f , f̃ be the generalized flows corresponding
to π(u) and π(ũ), respectively, where ũ is the excess
vector obtained in Lemma 4.1. Consider the flow
f̃ − f and apply the conformal decomposition lemma.
We group the obtained circuits in the same way as
in Lemma 3.4. Since ũ ≥ u, each group must be
a collection of (possibly non-simple) paths that carry
some units of flow from a facility (machine) node to the
sink. Therefore, the cost to flow ratio of any such group
can be used as an upper bound of mini,α ρ(i, α,u). The
rest of the proof proceeds the same way as Lemma 3.4.
Note that we do not need to pay the additional factor
involving ε and δ. �

Using Lemma 4.2 and the same argument as in
Section 3, we can easily show Theorem 4.3.

4.3 Generalized Submodular Covering In this
section, we discuss our improvement on the generalized

3By default, we use (i, i) to denote the flow-generating arc. If

we write gii < 0, that means a positive flow on the arc of the
opposite (flow-absorbing) direction.

submodular covering (GSC) problem [3], defined as
follows. The programs of GSC are of the following form.

minimize

m∑
i=1

ωiyi +

q∑
j=1

cjxj

subject to Az � b,where z = (y1, . . . , ym, x1, . . . , xq),

yi ∈ {0, 1}, 0 ≤ xj ≤ uj ∀i, j

Moreover, b consists of nonnegative integers, ωi and
cj are nonnegative and A is a k× (m+q) matrix, where
the entries in the k ×m submatrix A′ are nonnegative
integers and the k × q submatrix A′′ is an “incidence
matrix”. Namely, each column of A′′ contains exactly
one “1”, one “− 1” and “0” elsewhere.

Now, we construct an equivalent GMA instance
which consists of m + k + 1 nodes. The first m nodes
v1, . . . , vm are machines, the last node t is the sink and
each of the rest w1, . . . , wk corresponds to a row in A.
For each vi and wj , there is an arc from vi to wj with
capacity Aj,i. For each wj , there is an arc from wj to t
with capacity bj . For the jth column of A′′, there is an
arc with capacity uj and cost cj from the node wa to
wb if the ath and bth row of that column are −1 and 1
respectively. All arcs are just normal arcs, i.e., the gain
factor is 1. The cost function on machine i is ωi(0) = 0
and ωi(x) = ωi for x > 0. The goal is to open some
machines and push |b| =

∑
j bj units of flow into t such

that the total cost is minimized.
As we remarked in Section 3, our results for GMA

still hold even if the underlying network is a general
graph. In fact, we can just use the greedy algorithm
developed for UniFL, since the assignment cost

∑
j cjxj

in GSC can be also captured by a standard network
flow computation. The only change is to replace n,
the amount of flow needed to send to t, by |b|. If |b|
is polynomial in the input size, the algorithm clearly
runs in polynomial time and the approximation bound
extends trivially.

Theorem 4.4. If |b| is bounded by a polynomial of
the input size, there is a polynomial time ln |b| + 1-
approximation for GSC.

Now, we briefly sketch the greedy algorithm for the
case when |b| is not polynomially bounded in the GSC
problem. The only change we need to make is that
in Algorithm 3, we restrict the increment α to be an

integer at least max{ |b|−|u|n2 , 1} in each iteration. Using
the same proof as in Lemma 3.4, we can show that

1. if |b| − |u| > n2, then

min
i,α

ρ(i, α,u) ≤
(

1 +
nα

|b| − |u|

) C(u∗)

|b| − |u|
;

9

2. if |b| − |u| ≤ n2, then α = 1 and

min
i,α

ρ(i, α,u) ≤ C(u∗)

|b| − |u|
.

In either case, we have that mini,α ρ(i, α,u) ≤
(

1 +

1
n

)
C(u∗)
|b|−|u| . Hence, the overall approximation ratio is

(1 + 1
n)(ln |b| + 1) = (1 + o(1)) ln |b|. To see the

polynomial running time, we notice that the demand
|b|−|u| decreases by a factor of 1− 1

n2 in each iteration.
Therefore, there are at most − log1− 1

n2
|b| ≈ n2 log |b|

iterations.

Theorem 4.5. There is a polynomial time (1 +
o(1)) ln |b|-approximation for GSC, even when |b| is not
polynomially bounded.

Theorem 4.4 and 4.5 immediately imply tighter ap-
proximations for several network design problems that
can be modeled by GSC, such as the average cost center
problem, the fault tolerant facility location problem and
the (non-metric) capacitated facility location problem.
See [3] for their definitions and how to formulate them
using GSC.

5 Machine Activation with Linear Constraints

In this section, we consider the machine activation
problem where, for each machine, there is a constant
number d of linear constraints. We denote this problem
by MALC. The following integral linear program gives
us the optimum schedule.

(5.3) minimize
∑
i∈M

ωiyi

subject to
∑
j∈J

pijkxij ≤ Tik, ∀i ∈M,k = 1, . . . , d

∑
i∈M

xij = 1, ∀j ∈ J ; xij ≤ yi ∀i, j;

xij , yi ∈ {0, 1} ∀i, j

For each machine i ∈M , we have a constant number d of
linear constraints and we use k to index the constraints.
We force xij = 0 if pijk > Tik for some k. By relaxing
the constraint xij , yi ∈ {0, 1} to xij , yi ∈ [0, 1], we
obtain the linear program relaxation. The main result
of this section is the following:

Theorem 5.1. For any constant ε > 0, there is a
polynomial time randomized algorithm that returns an
integral schedule Xij , Yi, such that (1)

∑
j∈J pijkXij ≤

(2d + ε)Tik for each opened machine i (Yi = 1) and
each 1 ≤ k ≤ d w.p. 1. (2) E[

∑
i∈M ωiYi] ≤

O(1
ε log n)

∑
i∈M ωiyi.

If d = 1, we obtain a (2 + ε, O(1
ε log n))-

approximation for the basic version of MA. This
matches the approximation ratio obtained by the round-
ing scheme in [23].

We need some notations first. Let x̂, ŷ be the
fractional optimal solution. We assume it is a basic
solution, i.e. it corresponds to a vertex of the polytope
of LP(5.3). If x̂ij = ŷi, we say edge (i, j) is tight,
otherwise we call it floating. A job j is called σ-tight
if
∑
i:(i,j) is tight x̂ij ≥ σ. We call the graph induced by

all floating edges the floating graph and denote it by F .
Our algorithm gradually modifies F and x̂ij values.

ŷi values are unchanged throughout. During the itera-
tions, we set floating x̂ij either to ŷi or to 0. F always
contains only floating edges. Let ∂F (i) be the set of
edges incident on node i in F and degF (i) = |∂F (i)|.
Let F [S] denote the subgraph of F induced by the sub-
set S of vertices. If degF (v) = 1, we say node v is a
singleton.

The algorithm consists of three phases. See Algo-
rithm 4 for the details. We can think of σ as a small
constant, e.g., 0.1. Phase 1 contains a repeat loop. The
loop repeatedly does the following: (1) throwing σ-tight
jobs out of F and setting x̂ values to zero for all float-
ing edges incident on it; (2) making all edges incident
on a low degree machine (deg ≤ 2d − 1) or a singleton
job tight. We show in Lemma 5.2, that F has a spe-
cial structure after executing the loop. Then, if the ŷ
value is less than δ for any non-isolated machine node,
we remove its adjacent edges and go back to the repeat
loop. After Phase 1, F has a special structure and all
non-isolated machines have ŷ values at least σ. Phase
2 further modifies the structure of F by making use of
these properties. The details of Phase 2 are provided af-
ter Lemma 5.2. After Phase 2, we have either x̂ij = ŷi
or x̂ij = 0 for all i, j, and all jobs are σ-tight. In Phase
3, we scale up the fractional solution by a factor of 1

σ
and get a instance of set cover where a machine i covers
all jobs j with x̂ij = ŷi. We finally apply a standard
rounding scheme.

Lemma 5.1. Let x̂, ŷ be any vertex solution of LP(5.3).
Throughout the execution of the algorithm, for any
subsets S1 ⊆M and S2 ⊆ J ,

|E(F [S1 ∪ S2])| ≤ d|S1|+ |S2|.

Proof. It suffices to only consider F at the beginning
since we never introduce more floating edges during the
execution. Suppose the lemma is not true. Consider
the following system of linear equations with variables
xi,j , (i, j) ∈ F [S1 ∪ S2]:∑

j∈S2

pijkxij ≤
∑
j∈S2

pijkx̂ij , ∀i ∈ S1, k = 1, . . . , d

Algorithm 4: MALC-LP(G,σ)

Phase 1: repeat1

for each σ-tight job j do2

for each floating edge (i, j) do x̂i,j ← 0;3

for each machine i do4

if degF (i) ≤ 2d− 1 then5

for j ∈ ∂F (i) do x̂ij ← ŷi (label (i, j) type-1);6

for each singleton job j (say (i, j) is floating) do7

x̂ij ← ŷi (label (i, j) type-2) ;8

until F does not change any more;9

if degF (i) 6= 0 and ŷi ≤ σ for some i ∈M then10

for each floating (i, j) do x̂i,j ← 0;11

Go back to Phase 1;12

Phase 2: for each connected component C in F do13

Find a collection of stars, each having a machine center and d job leaves (See below);14

Set all edges in stars tight (label them type-1) and for other edges e ∈ E(C), let x̂e = 0.15

Phase 3: for each machine i do16

Activate i with probability min(lnn
σ · ŷi, 1));17

if i is activated then Assign all jobs j with x̂ij 6= 0 to i;18

∑
i∈S1

xij =
∑
i∈S1

x̂ij , ∀j ∈ S2

Since the number of variables is more than the number
of constraints, the system (denoted by Ax = b) is
under-determined. Let z′ be a nonzero vector in the
null space of A, i.e., Az′ = 0. We denote by x̂′ the
restriction of x̂ restricted to entries in E(F [S1 ∪ S2]).
Since x̂′ is floating, it is easy to see that there exists a
small constant ε > 0 such that x̂′ + εz′ and x̂′ − εz′ are
also floating and satisfy the above equations. Let z be
the extension of z′ by padding zeros to entries not in
E(F [S1 ∪ S2]). It is easy to see that x̂ + εz and x̂′ − εz
are feasible for LP(5.3), which contradicts that x̂ is a
vertex solution. �

Lemma 5.2. If F is nonempty after step 11, each
connected component C of F has the following special
structure: The degree of each machine node is 2d and
the degree of each job node is 2.

Proof. Consider an connected component C of F at
the beginning of Phase 2. Suppose C consists of mC

machines and nC jobs. Obviously, each machine node
in C has degree at least 2d and each job node has
degree at least 2. Hence, |E(C)| ≥ 1

2 (2dmC + 2nC).
However, the number of constraints induced by C is
dmC + nC (d linear constraints for each machine and
1 assignment constraint for each job). By Lemma 5.1,
we have that E(C) ≤ dmC + nC . Therefore, we have

that E(C) = dmC + nC , which is possible only if
degF (i) = 2d for all i ∈ M ∩ C and degF (j) = 2 for
all j ∈ J ∩ C. �

Now, we describe the details of Phase 2. Consider a
connected component C with nC machine nodes and
mC job nodes. We augment C to a network flow
instance with source s and sink t. For each machine
node i ∈ C, there is an edge (s, i) with capacity d and
for each job node j ∈ C, there is an edge (j, t) with
capacity 1. Each edge in F has capacity 1. Then we
find a maximum s-t flow. We only need to show there is
a flow f of value dnC . Indeed, f(i, j) = 0.5 ∀(i, j) ∈ F ,
f(s, i) = d ∀i and f(j, t) = 1 ∀j is a feasible flow of
value dnC . Since all capacities are integral, there is an
integral flow of the same value. And the integral flow
corresponds to exactly nC stars, each having a machine
as its center and d jobs as its leaves.

Lemma 5.3. After Phase 2, we have that (1) Each
machine node is incident on at most 2d−1 type-1 edges;
(2) All job nodes are σ-tight; (3) For each type-2 edge
(i, j), x̂ij ≥ 1− 2σ.

Proof. The first property is trivial. Now, we show the
second. After Phase 2, for each (i, j), x̂ij is either 0
or ŷi. All σ-tight nodes detected in step 3 is obviously
σ-tight afterwards. For each non-isolated machine node
i in F , yi ≥ σ after Phase 1. Therefore, we can see

11

that all non-isolated job nodes in F are σ-tight after
Phase 2. Therefore, the only possibility that a job j is
not σ-tight is that the x̂ values for many of its incident
edges are set to be zero in step 11. Suppose we are in
step 11 and just changed x̂ij to 0. By Lemma 5.2, we
know that degF (j) = 2. Suppose i and i′ are the two
machines adjacent to i in F . Since j is not σ-tight yet,
x̂ij + x̂i′j ≥ 1 − σ. We also know that xij ≤ yi < σ.
Hence x̂i′j ≥ 1 − 2σ. Then, j becomes a singleton job
afterwards and x̂i′j is set to be yi′ in step 10. Since
ŷi′ ≥ x̂i′j ≥ 1− 2σ ≥ σ, j becomes σ-tight.

There are two possibilities that a job j becomes a
singleton and gets caught in step 7. We just described
the first one. The other one happens due to more and
more edges incident on j become tight in the repeat
loop. However, since j is still not σ-tight, x̂ij must be
larger than 1− σ for the only floating edge (i, j). Thus
we have shown the third property. �

With Lemma 5.3, we can show that even we assign
to machine i all jobs j with non-zero x̂ij values, we can
satisfy the linear constraints on i approximately. The
bound for total cost can be seen by realizing the ŷ values
is (roughly) a fractional solution for a set cover LP.
Proof of Theorem 5.1: We first show that by assign-
ing to i all jobs j with x̂ij = ŷj , we do not violate the
linear constraints too much. We say an edge (i, j) is
type-0 if it is initially tight. From Lemma 5.3, it is easy
to see that∑
j∈J

pijkXij =
∑

j:(i,j) is type-0

pijk +
∑

j:(i,j) is type-1

pijk+

∑
j:(i,j) is type-2

pijk

≤ (2d− 1)Tik +
1

ŷi

∑
j:(i,j) is type-0

pijkx̂ij+

1

(1− 2σ)ŷi

∑
j:(i,j) is type-2

pijkx̂ij

≤ (2d− 1 +
1

1− 2σ
)Tik

for each opened machine i and each 1 ≤ k ≤ d with
probability 1. The second inequality follows from that
pijk ≤ Tik for any (i, j) where x̂ij 6= 0 while the last
holds since

∑
i pijkx̂ij ≤ Tikŷi.

Since every job is σ-tight after Phase 2, we have∑
i

x̂ij =
∑

i:x̂ij 6=0

ŷi ≥ σ, ∀j ∈ J.

By scaling ŷ up by a factor of 1
σ , we obtained a

fractional solution to the standard set cover problem.

It is standard to show that all jobs can be covered
with high probability and the expected cost is at most
O(log n) times

∑
i∈M ωi

ŷi
σ

4. By setting σ = O(ε), we
complete the proof. �

At the end of the section, we would like to mention
that if ωi = 0 for all i ∈ M and LP(5.3) is feasible, we
can get an algorithm that produces an integral assign-
ment such that the linear constraints are violated by at
most a factor of d+ 1, by using the rounding scheme in
Karp et al. [22]. See the details in Appendix C.

6 Conclusion

We presented a natural greedy algorithm for the gener-
alized machine activation problem. The result leads to
tighter approximations for several versions of the ma-
chine activation problem considered in [23, 14] and the
generalized submodular cover problem in [3]. Our re-
sult also implies optimal lnn+1-approximation for non-
metric universal facility location (UniFL) problem, thus
giving an affirmative answer to the open question in
[19, 26].

One of our technical tools is the elementary con-
formal decomposition lemma. It is worth noting that a
similar decomposition lemma also holds for general LP
where a circuit is replaced by a basic solution with min-
imum support [31]. To illustrate usage of the lemma,
we provide another proof of the supermodularity of the
minimum cost generalized flows. In the proof, we apply
the decomposition lemma to the solution of the dual
LP which is not a flow anymore (See Appendix A).
The lemma may be useful in analyzing algorithms for
other problems or generalizing the current idea to wider
classes of LP-based problems.

References

[1] S. Arora, A. Frieze, and H. Kaplan. A new round-
ing procedure for the assignment problem with appli-
cations to dense graph arrangement problems. Mathe-
matical programming, 92(1):1–36, 2002.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mu-
nagala, and V. Pandit. Local search heuristic for
k-median and facility location problems. In STOC,
page 29, 2001.

[3] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized
submodular cover problems and applications. TCS,
250(1-2):179–200, 2001.

[4] J. Beck and T. Fiala. Integer-making theorems. Dis-
crete Applied Mathematics, 3(1-8), 1981.

4In fact, most algorithms for covering integer program based
on rounding the fractional solution can be used here to get the

logarithmic bound (or even better in special cases), e.g., [5, 35].
Our choice is simply for ease of exposition.

[5] D. Bertsimas and R. Vohra. Rounding algorithms
for covering problems. Mathematical Programming,
80(1):63–89, 1998.

[6] E. Bortnikov, S. Khuller, J. Li, Y. Mansour, and
S. Naor. The load-distance balancing problem. In
Networks, 2010.

[7] S. P. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[8] J. Byrka. An optimal bifactor approximation algo-
rithm for the metric uncapacitated facility location
problem. APPROX, pages 29–43, 2007.

[9] M. Charikar and S. Guha. Improved combinatorial al-
gorithms for the facility location and k-median prob-
lems. In FOCS, 1999.

[10] F. Chudak and D. Shmoys. Improved Approximation
Algorithms for the Uncapacitated Facility Location
Problem. SIAM J. on Computing, 33:1, 2003.

[11] F. Chudak and D. Williamson. Improved approxima-
tion algorithms for capacitated facility location prob-
lems. Math. Prog., 102(2):207–222, 2005.

[12] J. Chuzhoy and J. Naor. Covering problems with
hard capacities. SIAM J. on computing, 36(2):498–
515, 2007.

[13] U. Feige. A threshold of ln n for approximating set
cover. JACM, 45(4):634–652, 1998.

[14] L. Fleischer. Data Center Scheduling, Generalized
Flows, and Submodularity. In ANALCO, 2010.

[15] T. Fujito. Approximation algorithms for submodular
set cover with applications. IEICE Transactions on
Information and Systems, pages 480–487, 2000.

[16] A. Ghosh, M. Mahdian, D. Reeves, D. Pennock, and
R. Fugger. Mechanism design on trust networks.
WINE, pages 257–268, 2007.

[17] M. Gondran and M. Minoux. Graphs and Algorithms.
Wiley, New York, 1984.

[18] S. Guha and S. Khuller. Greedy strikes back: Im-
proved facility location algorithms. J. of Algorithms,
31(1):228–248, 1999.

[19] M. Hajiaghayi, M. Mahdian, and V. Mirrokni. The
facility location problem with general cost functions.
Networks, 42(1):42–47.

[20] K. Jain and A. Saberi. A new greedy approach for
facility location problems. In STOC, pages 731–740,
2002.

[21] K. Jain and V. Vazirani. Approximation algorithms for
metric facility location and k-median problems using
the primal-dual schema and Lagrangian relaxation.
JACM, 48(2):274–296, 2001.

[22] R. Karp, F. Leighton, R. Rivest, C. Thompson,
U. Vazirani, and V. Vazirani. Global wire routing in
two-dimensional arrays. Algorithmica, 2(1):113–129,
1987.

[23] S. Khuller, J. Li, and B. Saha. Energy efficient
scheduling via partial shutdown. In SODA, 2010.

[24] M. Korupolu, C. Plaxton, and R. Rajaraman. Analysis
of a local search heuristic for facility location problems.
J. of Algorithms, 37(1):146–188, 2000.

[25] V. Kumar, M. Marathe, S. Parthasarathy, and A. Srini-

vasan. A unified approach to scheduling on unrelated
parallel machines. JACM, 56(5):1–31, 2009.

[26] M. Mahdian and M. Pal. Universal facility location.
ESA, 2003.

[27] M. Mahdian, Y. Ye, and J. Zhang. A 2-Approximation
Algorithm for the Soft-Capacitated Facility Location
Problem. In APPROX, page 129, 2003.

[28] M. Mahdian, Y. Ye, and J. Zhang. Approximation
algorithms for metric facility location problems. SIAM
J. Comput., 36(2):411–432, 2006.

[29] M. Pal, T. Tardos, and T. Wexler. Facility location
with nonuniform hard capacities. In FOCS, pages 329–
338, 2001.

[30] L. Qiu, R. Ch, K. Jain, and M. Mahdian. Optimiz-
ing the placement of integration points in multi-hop
wireless networks. In Proceedings of ICNP, 2004.

[31] R. Rockefeller. Network Flows and Monotropic Opti-
mization. J. Wiley, 1984.

[32] B. Saha and A. Srinivasan. A new approximation
technique for resource-allocation problems. In ICS,
2010.

[33] D. Shmoys and É. Tardos. An approximation algo-
rithm for the generalized assignment problem. Mathe-
matical Programming, 62(1):461–474, 1993.

[34] D. Shmoys, É. Tardos, and K. Aardal. Approximation
algorithms for facility location problems (extended
abstract). In STOC, pages 265–274, 1997.

[35] A. Srinivasan. Improved approximation guarantees for
packing and covering integer programs. SIAM J. on
Computing, 29(2):648–670, 2000.

[36] J. Vygen. From stars to comets: improved local search
for universal facility location. Operations Research
Letters, 35(4):427–433, 2007.

[37] G. Woeginger. A comment on scheduling two paral-
lel machines with capacity constraints. Discrete Opti-
mization, 2(3):269–272, 2005.

[38] L. Wolsey. An analysis of the greedy algorithm for
the submodular set covering problem. Combinatorica,
2:358–393, 1982.

[39] H. Yang, Y. Ye, and J. Zhang. An approximation
algorithm for scheduling two parallel machines with
capacity constraints. Discrete Applied Mathematics,
130(3):449–467, 2003.

[40] J. Zhang, B. Chen, and Y. Ye. A Multiexchange Local
Search Algorithm for the Capacitated Facility Location
Problem. Math. Oper. Res., 30(2):389–403, 2005.

A Supermodularity - Another Proof

We provide another proof for the supermodularity of
the minimum cost generalized flows. Our proof is also
based on analyzing the changes of dual variables, as
done in [14]. However, the key difference in our proof is
the use of the following conformal decomposition lemma
for a general LP solution, generalizing Lemma 2.1
significantly.

Let A be an arbitrary real matrix and X be its
kernel, i.e., X = {x ∈ RJ | Ax = 0}. Denote the

13

Primal:

minimize
∑
vw

cvwfvw

subject to
∑
w

fvw −
∑
w

γwvfwv ≤ bv ∀v ∈ V

0 ≤ fvw ≤ uvw ∀(v, w) ∈ E

Dual: (φvw are slack variables)

minimize
∑
v

bvrv +
∑
vw

uvwzvw

subject to rv − γvwrw + zvw − φvw = −cij ∀(v, w) ∈ E
rv, zvw, φvw ≥ 0∀(v, w) ∈ E;

positive (negative) support of vector x by supp+(x) =
{j ∈ J | x(j) > 0} (supp−(x) = {j ∈ J | x(j) < 0}).
The support of x is supp(x) = supp+(x)∪supp+(x). We
say a nonzero vector x is an elementary vector if x ∈ X
and has a minimal support.

Theorem A.1. [31] (Conformal Decomposition for
LP) Any vector x ∈ X can be decomposed into
conformal elementary vectors: x =

∑
k λkuk where

λk > 0, uk ∈ X is elementary and supp+(uk) ⊆
supp+(x), supp−(uk) ⊆ supp−(x) for all k.

We use the primal and dual programs for minimum
cost generalized flows from [14]. Node v has excess bv.
If bv > 0, v is a source. If bv < 0, v is a sink. Let π(b)
be the optimal value of the following LP.

Our goal is to show π(b) is supermodular. Let r
and r′ be the respective dual optimal solutions to π(b)
and π(b′). As argued in [14], it suffices to show that if
b � b′, then r � r′. In fact, this can be seen from the

linear programming duality: rv = dπ(b)
dbv

.

Proof. We denote the dual constraint matrix by D. Let
y = (r, z, φ) and y′ = (r′, z′, φ′) be the respective dual
optimal solutions to π(b) and π(b′). It suffices to show
the case where b = b′ + ex for any x ∈ V . The
theorem then follows by induction. Let ŷ = y − y′.
It is easy to see Dŷ = 0 since Dy′ = Dy = c.
Let ŷ =

∑
k λkuk be a conformal decomposition of

ŷ. We will use uk(v) to denote the entry of uk that
corresponds to the position of r(v). By the standard
property of a linear program (e.g. [31]), we can see
ŷ(x) = y(x) − y′(x) < 0 (assuming non-degeneracy).
Therefore, we have uk(x) < 0 for all k. Therefore, it
suffices to show uk(v) ≤ 0 for all v ∈ V .

Now we prove for any elementary vector µ (w.r.t.
D) with µ(x) < 0, it holds that µ(v) ≥ 0 for all v ∈ V .
Since µ is an elementary vector, we must have Dµ = 0.
Suppose µ = (r̃, z̃, φ̃). We construct the following graph
H(V ′, E′) based on µ. The vertex set V ′ is the subset
supp(r̃) ⊆ V . If z̃vw = 0 and φ̃vw = 0 for v, w ∈ V ′, we
have an edge (i, j) ∈ E′. We argue that r̃v < 0 for each
v ∈ V ′, otherwise we can get another nonzero vector µ′

with Dµ′ = 0 and supp(µ′) (supp(µ), contradicting the
fact that µ is an elementary vector. Before constructing

µ′, let us see the following simple fact. Consider any
connect component of H. Let (i, j) be an edge in this
component. It represent the constraint rv − γvwrw = 0.
r̃v and r̃w must have the same sign. Therefore, r̃v for
all v in this component have the same sign.

Now we argue there is only one connected compo-
nent corresponding to any elementary vector. Suppose
there are more than one connected components. We
call all components other than the one contain x bad
components. Now, we construct µ′ = (r̃′, z̃′, φ̃′) from µ
as follows: For each node v in the bad components, set
r̃′v = 0. It is easy to verify that φ̃′vw and z̃′vws can be set
in a way such that (1) r̃′v−γvw r̃′w+z̃′vw−φ̃′vw = 0∀(v, w),
(2) if z̃ij = 0, then z̃′ij = 0 and (3) if φ̃ij = 0, then

φ̃′ij = 0 for any i, j. This ensures supp(u′) (supp(u).
Therefore, there is only one component which contains
node x and all r̃v have the same sign with r̃x. The proof
is complete. �

B Maximum Flow with Cost Constraints is Not
Submodular

In this section, we show the maximum flow with one
additional cost constraint is not submodular. That is
the function π(S), which is define to be the minimum
cost of sending the maximum amount of flow given
the set S of sources, subject to a linear constraint∑
j cijfij ≤ C, is not submodular. This rules out the

possibility of using standard greedy algorithm developed
for submodular covering problem.

We provide below a counterexample. We have
three sources x, y, z, a node w and sink t. Arcs are
(x, t), (y, w), (z, w) and (w, t), all with capacity 1. Let
f(X,Y) be the optimal value of the following LP.

maximize x+ y + z maximize flow

subject to x+ z ≤ 1.5, cost constraint

y + z ≤ 1, capacity constraint

x ≤ X, y ≤ Y, z ≤ 1, makespan constraint

It is not hard to see:

f(0, 0) = 1; f(0, 1) = 1; f(1, 0) = 1.5; f(1, 1) = 2.0.

Obviously, f(0, 0) + f(1, 1) ≥ f(0, 1) + f(1, 0). There-
fore, f is not submodular.

C The Case Where ωi = 0∀i
We consider a special case of the MALC problem, where
ωi = 0 for all i ∈ M . Assume LP(5.3) is feasible.
We show that there is an algorithm that produces an
integral assignment such that the linear constraints are
violated by at most a factor of d+ 1. First we describe
Theorem C.1, a rounding scheme of Karp et al. [22].

Theorem C.1. ([22]) Given a m × n matrix A, with
∆ = maxj{

∑
i:Aij>0Aij ,−

∑
i:Aij<0Aij}, and a frac-

tional vector x, we can, construct an integral vector X
such that:

1. Xj ∈ {bxjc, dxje} for all j, and

2.
∑
j AijXj <

∑
ij Aijxj + ∆ for all i.

Now, we show how to apply the theorem to the
problem. Our argument is a straightforward extension
to the one in [25]. We rewrite LP(C.1) as follows (We
do not need y variables):∑

j∈J

pijkT

Tik
xij ≤ T, ∀i ∈M,k = 1, . . . , d

∑
i∈M
−dTxij = −dT, ∀j ∈ J

xij = 0, if pijk > Tik for some k

We can assume the coefficients to be zero if the cor-
responding xij = 0. Thus, we have pijk ≤ Tik and
pijkT
Tik

≤ T for all i, j, k. Therefore, we have that
∆ ≤ dT . Applying Theorem C.1, we can see that
−
∑
i∈M −dTXij < −dT + ∆ < 0. We must have

Xij = 1 for some i. All jobs are assigned. Moreover,

we have
∑
j∈J

pijkT
Tik

xij ≤ T + ∆ ≤ (d + 1)T , which is

equivalent to
∑
j∈J pijkxij ≤ T + ∆ ≤ (d+ 1)Tik.

Indeed, we can use the randomize version of Theo-
rem C.1, developed in [25], where we can further guar-
antee that E[Xj] = xj . This is particularly useful if we
want to optimize some linear function over X.

15

