
Approximating Spanning Tree

with Weighted Inner Nodes

Jian Li? , Haitao Wang, Rudolf Fleischer, Qi Ge, Hong Zhu

Shanghai Key Laboratory of Intelligent Information Processing
Department of Computer Science and Engineering

Fudan University
Shanghai, China, 200433

Email: {lijian83, wanghaitao, rudolf, qge, hzhu}@fudan.edu.cn

Abstract. We consider a problem coming from practical applications: finding a minimum spanning
tree with both edge weights and inner node (non-leaf node) weights. This problem is NP-complete
even in the metric space. We present two polynomial time algorithms which achieve approximation
factors of 2.35 ln n and 2(Hn − 1), respectively, where n is the number of nodes in the graph
and Hn is the n-th Harmonic number. This nearly matches the lower bound: no polynomial-time
approximation algorithm can achieve an approximation factor of (1−ε)Hn, for any ε > 0. For metric
case where the edge weights are symmetric and satisfy the triangle inequality, it also proves to be an
NP-hard problem and we give a 3.52 approximation algorithm and an improved factor 3.106 one and
also show that an approximation factor of 1.463 is impossible unless NP ⊆ DTIME[nO(loglogn)].
We also give an approximation algorithm with factor ∆−1, where ∆ is the maximum degree of the
graph.

Keywords: Minimum spanning tree, approximation algorithm, NP-hard

1 Introduction

1.1 Problem Statement

Minimum spanning trees have been widely studied and many efficient polynomial algo-
rithms have been designed to compute them optimally. But when we consider the variant
where nodes have weights and the weights of inner nodes of the spanning tree also con-
tribute to the total weight of a tree, then the problem becomes NP-complete. In the paper,
we call the non-leaf nodes of the spanning tree inner nodes and call the variant minimum
spanning tree minimum spanning tree with weighted inner nodes (MSTI) problem. In the
MSTI problem, we are given a connected undirected graph G(V, E) with n nodes and m
edges and a positive weight function w on the edges and nodes of G, i.e., w : E∪V → R+.

If T is a spanning tree of G, then let IT denote the set of inner nodes of T , also
called the backbone of T . The sti-weight (spanning tree with inner node weight) of T
is defined as the sum of all edge weights plus all node weights of the backbone, i.e.,
sti(T) =

∑
e∈E(T) w(e) +

∑
v∈IT

w(v). The goal is to find a minimum sti-weight spanning

tree Tmsti(G) of G whose overall weight we denote by msti(G) (i.e.msti(G) = Tmsti(G)).
Many practical problems can naturally be modeled as an MSTI problem. For example,

consider the problem of connecting a number of computers by some network. Then the

? Corresponding author. Email: lijian83@fudan.edu.cn Address: Department of Computer Science, Fudan Uni-
versity, 220 Han Dan Road. Shanghai, China, 200433

cost is determined by the cost of all cables plus the cost of additional routing hardware
needed at intermediate nodes of the network.

If we set all edge weights to zero and all node weights to one, we obtain as a special
case the connected dominating set problem (CDS). Since CDS is NP-complete [2], MSTI is
NP-complete. Furthermore, MSTI has no (1 − ε)Hn approximation, for any ε > 0, unless
NP ⊆ DTIME(nO(log log n)), as this lower bound holds already for CDS [3].

1.2 Our Results

First we show that the MSTI problem is also NP-hard even in the metric space. We then
give some approximation algorithms for MSTI. We assume throughout the paper that
n ≥ 3. In the first algorithm we combine an approximation algorithm for the uncapacitated
facility location problem with an approximation algorithm for the node weighted Steiner
tree problem to get an algorithm with an approximation factor of 2.35·ln(n). If restricted to
metric MSTI, the above algorithm gives a 3.52-approximation. By using a slightly different
algorithm for facility location which considers a tradeoff between facility opening costs
and connection costs we obtain a 3.106-approximation algorithm. The lower bound of
1.463 is also proved for the approximation factor.

We present a second algorithm with an improved approximation factor of 2(Hn − 1).
This algorithm follows a greedy approach. In each iteration, we choose a star so as to
minimize the ratio of the weight of the star to its size. A similar approach, based on
spiders, was used by Klein and Ravi [5] and Guha and Khuller [4] to approximate the
node weighted Steiner tree problem.

When the maximum degree ∆ of the graph is small, we give an algorithm with an
approximation factor of ∆− 1. In the paper, we often use the following inequality.

Fact 1 Let a1, . . . , ak, b1, . . . , bk be positive real numbers. Then,

min{a1

b1

, . . . ,
ak

bk

} ≤
∑k

i=1 ai∑k
i=1 bi

ut

This paper is organized as follows. In Section 2, we prove MSTI is NP-hard in the
metric space. In Section 3 we present a (2.35 · ln n)-approximation algorithm in general
space and the 3.52-approximation algorithm in the metric space. In Section 4, we give an
improved 3.106-approximation algorithm in the metric space. In Section 5 we present the
2(Hn − 1)-approximation algorithm for general space. In Section 6 we present a (∆− 1)-
approximation algorithm. We end the paper with some remarks in Section 7.

2 NP-hard Proof of the Metric MSTI

Theorem 2. The MSTI problem is NP-hard even in the metric space, where the edge
weights are symmetric and satisfy the triangle inequality.

2

Proof. We prove it by reduction from Maximum Leaf Spanning Tree (MLST) problem
which is NP-hard[2]. Recall that the MLST problem is to find a spanning tree which has
the maximum number of leaves in a given graph. The reduction algorithm is as follows:

For any given graph G(V, E), we transform it to a new graph G′(V ′, E ′) just by con-
necting u and v, if (u, v) is not in E. Now G′ is a complete graph. For each node v ∈ V ′,
set w(v) = β. Here β = 1

n2 and n is the number of nodes in G. For each edge (u, v) ∈ E ′,
if (u, v) ∈ E, set w(u, v) = 1; otherwise, w(u, v) = 2. It is not difficult to see that the edge
weights are symmetric and satisfy triangle inequality. Obviously, the reduction algorithm
is polynomial.

Now we claim that there exits a spanning tree in G which has at least k leaves if and
only if there exists a spanning tree of G′ whose overall sti-weight is at most (n−k)β+n−1.
We prove it as follows.

Suppose there is a spanning tree T of G which has t ≥ k leaves. Then in G′, since the
weight of each edge in T is 1, the weight of each inner node in T is β and the number of
inner nodes of T is n − t, the sti-weight of T in G′ is (n − t)β + n − 1 which is at most
(n− k)β + n− 1.

If there is a spanning tree T ′ in G′ whose weight is at most (n− k)β + n− 1, then we
know the weight of T ′ is less than n because (n − k)β = (n − k) 1

n2 < 1. Since there are
n − 1 edges in T ′, it is easy to see that each edge in T ′ has weight 1. This implies T ′ is
also a spanning tree in G. Because weight of the backbone is at most (n− k)β, we know
that the number of the inner nodes in T ′ is at most n − k which means the number of
leaves is at least k.

ut

3 A Simple Algorithm

We first solve an uncapacitated facility location problem where all the nodes of G are
clients. Each node is a facility candidate and the cost of opening a facility at node v is
w(v). Let F ⊂ V be the set of facilities chosen to open in the solution of the facility
location. Then we set the weight of the nodes in F to zero and subdivide each edge of G
into two edges by introducing a new node, whose weight is the weight of the subdivided
edge, in the middle of the subdivided edge. Then we solve the node weighted Steiner
tree problem, where terminals are the nodes in F . Finally we combine the solution of
the facility location problem (i.e., the set of edges used to connect nodes to their closest
facility) with the obtained Steiner tree to get a solution to the MSTI problem, breaking
cycles (if there exits) by deleting edges arbitrarily on the cycles. For the metric case, after
finding the solution of facility location, since all nodes in F have direct connections, we
just find a normal minimum spanning tree in the subgraph SGF which is induced by F .
The following is the two algorithms:

Algorithm 1(G)

1 Solve the uncapacitated facility location problem in G by the approximation algorithm in [7]. Let SOLufl

denote the solution. Let F be the set of facilities opened in SOLufl.
2

3 for each v ∈ F
4 w(v) = 0.

3

5 for each edge e(u, v) ∈ G
6 delete e
7 add a node auv

8 add two edges e1(u, auv), e2(auv, v)
9 w(auv) = w(e)

10 w(e1) = w(e2) = 0 //Now every edge’s weight is 0.
11

12 Considering the nodes in F as terminals, find a node weighted Steiner tree by the approximation algorithm in
[4]. Let SOLsteiner denote the steiner tree.

13

14 Combining SOLufl with SOLsteiner to get a graph G∗, if there are cycles in G∗, break cycles by arbitrarily
deleting edges on the cycles to get a spanning tree T of G.

15 return T

Algorithm 2(G) (in metric space)

1 Solve the uncapacitated facility location problem in G by the approximation algorithm in [6]. Let SOLufl

denote the solution. Let F be the set of facilities opened in SOLufl.
2

3 Using Prim’s algorithm in [1] to find a minimum spanning tree TF in the subgraph SGF induced by F .
4

5 Combine SOLufl with TF to get a spanning tree T of G.
6

7 return T

Theorem 3.

(a) The Algorithm 1 is a factor (2.35 ln n)-approximation algorithm for MSTI.

(b) The Algorithm 2 is a factor 3.52-approximation algorithm for the metric MSTI .

Proof.

(a) Since each node of G is either a facility or a client connected to a facility, and the Steiner
tree connects all facilities, combining both solutions produces a spanning network of
G, which we can turn into a spanning tree by deleting edges on cycles.

Let OPTF denote the minimum cost of the facility location problem, and OPTS

the minimum weight of the node weighted Steiner tree problem with terminals F .
It is easy to see that Tmsti(G) could also be a feasible solution (maybe not optimal)
for solving the facility location problem, so we have OPTF ≤ msti(G). The facility
location problem can be ln n-approximated [7].

We also have OPTS ≤ msti(G). Here we give a simple idea of the proof. We assume
T is the optimal spanning tree of msti(G), IT is the set of inner nodes of T , and F is
the terminals set of the steiner tree problem. We delete the leaves which are in T but
not in F to obtain T ′. Then T ′ is a steiner tree of F . We assume steiner(T ′) is the
sum of the weight of the steiner tree. steiner(T ′) =

∑
e∈E(T ′) w(e) +

∑
v∈V (T ′)−F w(v).

Remember that msti(G) =
∑

e∈E(T) w(e) +
∑

v∈IT
w(v). Because E(T ′) ⊆ E(T) and

V (T ′) − F ⊆ IT , we can get steiner(T ′) ≤ msti(G). Then we obtain the inequality
OPTS ≤ steiner(T ′) ≤ msti(G). The best approximation algorithm for the node
weighted steiner tree problem achieves an approximation factor of 1.35 ln n [4].

Using the above two approximation algorithms, we combine their solutions and
break cycles (if there exits) by arbitrarily deleting edges on the cycles, and then we
can obtain a (ln n + 1.35 ln n)-factor approximation solution for MSTI.

4

(b) The factor of approximation algorithm in [6] for the facility location problem in the
metric space is 1.52. And then we claim that the weight of the spanning tree TF found
in the second step of Algorithm 2 is less than 2msti(G). Here we also give the simple
idea about the 2-approximation. Assume T is the optimal solution of the metric MSTI

problem in G, TF is the minimum spanning tree of the subgraph SGF which is induced
by the nodes in F , and TG is the minimum spanning tree of G. For each edge e(u, v) ∈
TG, we add a secondary edge e′(u, v) to TG and finally get a new graph T ′

G. Now we
can easily get a Euler tour P in T ′

G since each node has even degree. Then we connect
directly each node in F according to the order in which they appear firstly in P to get
a new tree (in fact, a path) T ′

F which is a spanning tree of SGF . Due to the triangle
inequality, it is not difficult to get

∑
e∈T ′F

w(e) ≤ ∑
e∈P w(e) = 2

∑
e∈TG

w(e). Since TG

is the minimum spanning tree in G, we have
∑

e∈TG
w(e) ≤ ∑

e∈T w(e). Since TF is the
minimum spanning tree of SGF , we have

∑
e∈TF

w(e) ≤ ∑
e∈T ′F

w(e). Finally we can

obtain
∑

e∈TF
w(e) ≤ ∑

e∈T ′F
w(e) ≤ 2

∑
e∈TG

w(e) ≤ 2
∑

e∈T w(e) ≤ 2msti(G). Then

we just combine the above two results and obtain a factor (1.52+2) approximation
solution of the metric MSTI problem.

ut

4 Metric MSTI

4.1 The Improved Approximation Algorithm

In this section, we give a better approximation algorithm for the metric MSTI problem.
Our improved metric MSTI algorithm runs in three stages.

First, we scale up the facility costs by a constant factor of δ > 1 (which will be
fixed later) and then run the greedy facility location algorithm of [9] (often called JMS
algorithm) to find a solution of the scaled facility location problem.

In the second stage, we scale down the facility costs back to their original values. If at
any point during this process a facility could be opened without increasing the total cost,
then we open that facility and connect each client to its closest open facility. In other
words, if the opening cost of the facility is equal to or less than the total cost that clients
can save by switching their service facilities to that facility, then we open the facility and
connect those clients to it. Let F denote the set of facilities chosen to open after the
second stage, and let C denote the total cost of the facilities opening and the connection.

Finally, we connect the facilities in F by finding a minimum spanning tree TF in the
subgraph which is induced by the nodes in F . Let Cmsti denote the cost of the final
solution.

For an optimal solution of MSTI, let C∗
I denote the weight of all inner nodes and C∗

T

the weight of all edges. In [9], a general lemma shows the relation between the solution
of JMS algorithm and any other solution of the facility location problem. For any fixed
parameter γf ≥ 1, a second parameter γc can be computed as the supremum of the
maximum solutions of an infinite family of optimization problems. It was shown in [6]
that γc ≤ 1.78 when γf = 1.11.

Lemma 1. [9] Let γf ≥ 1 and γc := supk{zk}, where zk is the solution of the following
optimization algorithm:

5

maximize zk =
Pk

i=1 αi−γf fPk
i=1 di

subject to:

∀1 ≤ i < k : αi ≤ αi+1

∀1 ≤ j < i < k : rj,i ≥ rj,i+1

∀1 ≤ j < i ≤ k : αi ≤ rj,i + di + dj

∀1 ≤ i ≤ k :
∑i−1

j=1 max(rj,i − dj, 0) +
∑k

j=i max(αi − dj, 0) ≤ f

∀1 ≤ j ≤ i ≤ k : αj, dj, f, rj,i ≥ 0

then for every instance I of the facility location problem and for every solution of I
with facility opening cost Copen and connection cost Cconn, the cost of the solution found
by the JMS algorithm is at most γfCopen + γcCconn. ut

It was also proved in [6] that after the second stage of our algorithm the cost C can be
bounded by C ≤ max{γf +1− 1

δ
, γf +ln δ}C∗

open +(1+ γc−1
δ

)C∗
conn, where C∗

open and C∗
conn

are, respectively, the facility opening cost and connection cost of an optimal solution of
the unscaled facility location problem. It is not difficult to prove that γf +1− 1

δ
< γf +ln δ

when δ > 1. So we have C ≤ (γf + ln δ)C∗
open + (1 + γc−1

δ
)C∗

conn. Actually, by carefully
analyzing the proof of the above inequality in [6], we can easily find that in the right side
of the inequality the facilities opening cost and connection cost could be not only the
optimal solution but any other feasible solution as well. The following lemma shows the
idea.

Lemma 2. For any feasible solution of the original (unscaled) facility location problem
with facility opening cost Copen and connection cost Cconn, C ≤ (γf + ln δ)Copen + (1 +
γc−1

δ
)Cconn. ut

Theorem 4. Our algorithm is a factor 3.106 approximation algorithm for the metric
MSTI problem.

Proof. We have proved in theorem 3 that cost(TF) ≤ 2C∗
T . Remember that C∗

I and C∗
T

respectively denote the weight of all inner nodes and the weight of all edges in the optimal
solution of the metric MSTI problem. According to Lemma 2, we have the inequality,

Cmsti ≤ C + cost(TF) ≤ (γf + ln δ)C∗
I + (1 +

γc − 1

δ
)C∗

T + 2C∗
T

≤ max(γf + ln δ, 3 +
γc − 1

δ
)msti(G) .

Choosing γf = 1.11 and γc = 1.78, we can minimize the approximation factor by choosing
δ = 7.36. We then get an approximation factor of 3.106. ut

Mahdian [8] have numerically calculated many pairs (γf , γc) (by solving the first 100
optimization problems), which should give a good approximation of the trade-off between
facility cost approximation ratio and connection cost approximation ratio. We try all these
pairs and find the pair (1.11, 1.78) is the best and fortunately, this pair has been proved
mathematically in [6].

6

4.2 A Lower Bound for Approximating Metric MSTI

In this section, we will slightly modify the lower bound proof for the non-approximability
of the metric uncapacitated facility location problem [10] to get a lower bound for the
non-approximability of metric MSTI. In particular, we establish a relation between the
set cover problem (SC) and metric MSTI and show that if metric MSTI can be approx-
imated within a factor of 1.463, then we can have a polynomial time approximation
algorithm for SC with approximation factor c · ln(n) for some c < 1, which implies
NP ⊆ DTIME[nO(loglogn)] [11].

An instance of SC is given by a set of elements X = {x1, x2, . . . , xn} and a collection
of subsets S = {S1, S2, . . . , Sm}, where each Si ⊆ X. The goal is to choose a minimum
number of subsets in S to cover all elements in X.

We construct an instance of MSTI as follows. We introduce a node for each xi ∈ X and
each Sj ∈ S, and add an additional node r with its weight w(r) = 0. With a slightly abuse
of notation, we also use xi and Sj to denote the corresponding nodes in the constructed
instance of MSTI. If xi ∈ Sj, then the two nodes are connected by an edge of weight 1 (i.e.
w(e(xi, Sj)) = 1). All Sj are connected to r by an edge of weight 2. All the other edge
weights are defined by the shortest path in the graph defined so far. Obviously, the edge
weights satisfy the triangle inequality. We assign a very large weight to all nodes xi (so
that they will not be chosen as inner nodes in an optimal MSTI tree). The weights of the
Sj will be specified later.

The basic idea is to use the solution of MSTI to obtain a partial solution of the set
cover problem in one iteration. If we can find a good approximation of MSTI, say with
factor 1.463, then we can approximate the set cover problem within a factor of c · ln n for
some c < 1.

Because all nodes of xi have a large weight, any MSTI approximation algorithm with
a reasonable approximation factor will find a tree T in which all these xi nodes are
leaves. If T contains an edge e = (Si, Sj), then we delete e. Then there are two connected
components left and Si and Sj are in different connected components. Here we assume Si

is in the same connected components as r and thus Sj is in the other components. We
then add the edge e′(r, Sj) to T −e to obtain a new spanning tree T ′ (i.e. T ′ = T −e+e′).
Since w(e) ≥ 2 and w(e′) = 2, we know msti(T) ≥ msti(T ′). The inner nodes Sj are the
subsets we will choose for the set cover problem, and the xi connected to them are the
elements covered by those subsets.

Now we formally give the algorithm to solve SC by using an approximation algorithm
for MSTI as a subroutine. Suppose k is the optimal solution of an SC instance and γ a
constant we will specify later. Since we do not know k, we run the following algorithm for
k = 1, 2, 3, . . . , |S|.

Set Cover(X,S)

While X 6= ∅ do

Create an MSTI instance corresponding to (X,S), where all the nodes of Sj are

assigned the same weight f = γ |X|
k

;

Compute an MSTI-approximation T by the approximation algorithm;

7

Let X ′ be the set of all xi that are connected by an edge of weight 1 in T and
S ′ the set of inner nodes Sj;

Set X = X −X ′ and S = S − S ′;
end while

The following lemma was proved in [10].

Lemma 3. [10] Suppose we have a set cover instance (X,S) where the minimum set cover
size is k. If there is a polynomial time algorithm that can pick βk sets (for any constant
β) covering c′|X| elements, where c′ > cβ = (1− 1

eβ), then NP ⊆ DTIME[nO(loglogn)]. ut
Theorem 5. If there is a polynomial time approximation algorithm with an approxima-
tion factor smaller than 1.463 for metric MSTI, then NP ⊆ DTIME[nO(loglogn)].

Proof. Consider iteration j of the above algorithm with sets Xj and Sj. Let nj = |Xj|,
mj = |Sj|, and fj be the weight of Sj. Since there is a solution of size k of the set cover
problem, there is a solution of MSTI of cost kfj +2mj +nj. If there is an α-approximation
for MSTI, then we obtain a solution of cost at most α(kfj + 2mj + nj).

Suppose this solution selects βk nodes in S as inner nodes and cn nodes in X as
leaves within distance 1 of these inner nodes. By Lemma 3, c ≤ cβ unless NP ⊆
DTIME[nO(loglogn)]. We know the overall cost of this solution is at least βkfj + cnj +
2mj + 3(nj − cnj), but at most α(kfj + 2mj + nj).

Thus, we can obtain the following inequality,

α ≥ βkfj + 2mj + 3nj − 2cnj

kfj + 2mj + nj

≥ βγnj + 2mj + 3nj − 2cβnj

γnj + 2mj + nj

The last inequality holds because c < cβ and fj = γ
nj

k
. The right hand side is mini-

mized with β = ln 2
γ
, i.e.,

α ≥
nj(1 + γ + γln 2

γ
) + 2mj

nj(1 + γ) + 2mj

≈
nj(1 + γ + γln 2

γ
)

nj(1 + γ)

.
The last approximation holds when mj/nj ≤ ε for some small ε > 0. We can assume

that this is true for every j because we can reduce the original set cover problem to an
equivalent set cover problem where we reproduce many copies of each single element, say
|S|1

ε
many. The containment relationship is reserved. This leaves the number of subsets

unchanged but increases the number of elements such that mj/nj ≤ ε. Choosing γ = 0.463
we get α ≥ 1.463. ut

5 A 2(Hn − 1)-Approximation for the General MSTI

In the previous section, we used approximation algorithms for facility location and node
weighted Steiner tree, both of which use the similar technique to classical set cover approx-
imation algorithms. For the algorithm in this section, we also follow a greedy approach, in
each iteration we select a minimum ratio partial solution. The similar ideas appear in[4,

8

5] for example. However, to find a minimum ratio partial solution is not always a trivial
work like in the set cover approximation. The main difficulty here is how to define the
structure of partial solution and how to find a minimum ratio partial solution.

Now, we describe our algorithm which runs in iterations. In the beginning, every node
of G forms a singleton tree. In each iteration, we combine some trees together into a new
larger tree. The algorithm terminates when only one tree is left which will be our MSTI

approximation. Since at any time of our algorithm our partial solution forms a forest, we
use Fi to denote this forest just before going into iteration i.

In each iteration we choose a treestar which consists of a tree T0, k trees T1, . . . , Tk

and k edges e1, . . . , ek, where k ≥ 1 and ei connects a node in T0 to a node in Ti. We call
T0 the center-tree of the treestar, T1, . . . , Tk the leaf-trees, and ei the leaf-edges. We then
combine the center-tree plus the leaf-trees and the leaf-edges into one larger tree.

We distinguish paid nodes from unpaid nodes. If the weight of the node has been
counted, it is paid. Otherwise, it is unpaid. Initially, all nodes are unpaid. We will make
sure that all the inner nodes of Fi are paid before iteration i and each node will be paid
at most once. In each iteration, we pay the cost of the treestar we choose. Formally, the
cost of treestar TS is composed of the cost of all the leaf-edges in TS plus all unpaid
nodes that are leaves in original trees but become inner nodes in the new larger tree. The
only exception is that if the center is an unpaid singleton tree (a node) and the newly
produced larger tree consists only of two nodes, then the center node must be paid in the
new larger tree although it is a leaf. We call the above two types of nodes which should
be paid in this iteration switch nodes of the treestar TS. After this iteration, all switch
nodes become paid. Fig. 1 shows a treestar.

T3

T2

T1

T0

Fig. 1. A treestar with center-tree T0 and leaf-trees T1, T2, T3. The dashed lines are leaf-edges. The solid nodes
are switch nodes. The cost of the treestar is the sum of the weights of the three leaf-edges and the two switch
nodes.

To achieve a good approximation ratio we must in each step select the treestar carefully.
Note that the cost of a treestar is the sum of the leaf-edge weights plus the weights of
all switch nodes. As a consequence, the sti -weight of the tree is at most the sum of all
the treestar costs involved in its iterative construction. Every node of the backbone is
counted for once, namely in the iteration when it becomes an inner node. And every edge
is counted in the iteration when it is added as a leaf-edge.

9

We define the relative cost of a treestar as the quotient of its cost and its number
of tree components (i.e. one plus the number of leaf-trees). In each iteration we choose
a treestar of minimum relative cost, a so-called mrc-treestar. We will first show that we
can find such an mrc-treestar efficiently, and then analyze the approximation ratio of this
construction.

5.1 Computing a Treestar of Minimum Relative Cost

We show how to find an mrc-treestar with fixed center T0. Since T0 may have many
nodes, enumerate all the possibilities of the leaf-edge combinations will lead to an expo-
nential time algorithm. The main observation is that we do not need to test all possible
combinations.

Lemma 4. There is an mrc-treestar with center T0 such that all leaf-trees are connected
to the same node of T0.

Proof. Assume there is a mrc-treestar TS where we have leaf-trees connected to nodes
v1, . . . , vt of T0, where t ≥ 2. Let Si be the set of leaf-trees connected to node vi, for
i = 1, . . . t. Then we have

mrc(TS) =

∑t
i=1 cost(TSi)

1 +
∑t

i=1 |Si|
=

∑t
i=1 cost(TSi)∑t
i=1(

1
t
+ |Si|)

,

where mrc(TS) is the relative cost of TS and cost(TSi) is the cost of the treestar TSi

which consists of center-tree T0 and the leaf-trees Si connected to vi. By Fact 1, there is
a node vi such that the treestar TSi has relative cost

mrc(TSi) =
cost(TSi)

1 + |Si| <
cost(TSi)

1
t
+ |Si|

≤ mrc(TS) .

ut
For a fixed center-tree T0 and node v0 in T0 we can compute the respective mrc-

treestar as follows. Let dis(v0, Ti) denote the minimum cost of connecting the leaf-tree
Ti to node v0 in T0 (but without the cost induced by v0 if it becomes a switch node).
Formally,dis(v0, Ti) = minv∈Ti

(w(e(v0, v)) + sn(v)) where sn(v) = w(v) if v becomes
a switch node and sn(v) = 0 otherwise. If the mrc-treestar has k leaf-trees, it must
use the k cheapest trees. So all we have to do is to compute dis(v0, Ti) for all other
trees Ti. Assume there are l other trees Ti, we sort them by the value dis(v0, Ti) in
non-decreasing order. Suppose they are T1, T2, . . . , Tl, and then we find the value k that

minimizes rc(T0, v0) =
sn(v0)+

Pk
i=1 dis(v0,Ti)

k+1
.

Then, the mrc-treestar TS in forest F is the tree with the relative cost mrc(TS) =
minT∈F,v∈T rc(T, v).

Theorem 6. We can compute an mrc-treestar in time O(m log n).

Proof. We must compute an mrc-treestar for any fixed center tree T and any node v
in T . There may be up to n trees, but there are also only n nodes and fixing the node

10

automatically fixes the tree which the fixed node belongs to. So we actually only need
to compute n mrc-treestars with the fixed tree and the fixed node. The time to compute
one such star is dominated by O(n log n), the time needed to sort the dis(v0, Ti) values.
Since each Ti can only incur cost once for each adjacent edge, the total time is bounded
by O(m log n). ut
Here we give the outline of our algorithm. Mrc-Treestar is a subroutine which will be
used in Msti

Mrc-Treestar (F) //F is the forest where we want to find the mrc-treestar

1 for each tree T ∈ F
2 for each node v ∈ T
3 if paid(v) = 0
4 then sn(v) = w(v)
5 else sn(v) = 0
6 for each tree T ′ ∈ F (T ′ 6= T)
7 for each node v′ ∈ T ′ and if (v, v′) ∈ E(G)
8 if paid(v′) = 0 and degF (v′) ≥ 1 //degF (v′) is the degree of node v′ in F
9 then sn(v′) = w(v)

10 else sn(v′) = 0
11 dis(v, v′) = w(e(v, v′)) + sn(v′)
12 dis(v, T ′) = minv′∈T ′ dis(v, v′)
13 Sort all trees T ′ 6= T by dis(v, T ′) in nondecreasing order, suppose they are T1, T2, . . . , Tl

14 rc(T, v) = mink(
sn(v)+

Pk
i=1 dis(v,Ti)

k+1
)

15 mrc(TS) = minT∈F,v∈T (rc(T, v))
16 update paid function according to TS
17 return TS

Msti (G)//G is the graph where we want to find a MSTI

1 F1 =
Sn

i=1{{vi}}
2 paid(vi) = 0, 1 ≤ i ≤ n
3 T = ∅, i = 1
4 while (T is not a spanning tree of G)
5 do TSi = Mrc− Treestar(Fi).
6 Let E(TSi) be tree−edges of TSi and T1, T2, .., Tk be tree components (center−tree and leaf−trees)

involved in TSi.
7 T = T ∪ E(TSi)
8 Fi+1 = Fi − {T1, T2, .., Tk}+ {T1 ∪ T2 ∪ . . . ∪ Tk}
9 i = i + 1

10 end while
11 return T

5.2 Analysis of the Approximation Factor

We now prove that we eventually compute a 2(Hn − 1)-approximation to the minimum
sti -weight tree. Let Fi be the forest of ni trees before iteration i. Let OPTi denote the
minimum cost of connecting all these trees (using a similar cost function as we used
for the cost of a treestar, i.e. the cost of all edges and those nodes which are leaves in
Fi but finally become inner nodes). In particular, F1 is the set of nodes of G, n1 = n,
and OPT1 = OPT , the minimum sti -weight for G. Let TSi be the treestar computed in
iteration i, with mi tree components (the number of leaf-trees of TSi plus one), and let

11

cost(TSi) be its cost. After t iterations (it is easy to see t must be smaller than n), the
algorithm terminates.
We start with a lemma.

Lemma 5. Any tree of size at least 2 can be partitioned into vertex-disjoint stars of size
at least 2, where a star is a tree which has at most one inner node.

Proof. By induction on the size of the tree. A tree of size 2 is a star of size 2. If the tree
has more than 2 nodes, let r be any vertex of degree at least 2. Let T1, T2, T3, . . . be the
subtrees rooted at r. If some of them have size one, we connect all of them to r to form
a star of size at least 2; the other subtrees will have a star partition by the induction
hypothesis. If all Ti have size at least 2, then T1∪ r, T2, T3, . . . have a star partition by the
induction hypothesis. ut
The next two lemmas show that we can bound the relative cost of the mrc-treestar found
in any iteration by the relative cost of OPT .

Lemma 6. For all i ≥ 1, cost(TSi)
mi

≤ OPTi

ni
.

Proof. By Lemma 5, the optimal connection of all trees in Fi is a tree (regarding the trees
in Fi as nodes) which has a star partition. By Fact 1, there is one star (thus a treestar
in Fi) in this partition whose relative cost is at most OPTi

ni
. But we computed a treestar

with minimum relative cost, so the claim follows.

Lemma 7. For all i ≥ 1, OPTi+1 ≤ OPTi.

Proof. Suppose Fi = {T1, T2, . . . Tni
} and we find the mrc-treestar TSi = {T1, T2, . . . Tk},

2 ≤ k ≤ ni and merge its components into a single tree. If k = ni, the lemma holds
since OPTi+1 = 0. Let Gi denote an optimal connection network of these trees in Fi. The
cost of Gi is composed of the cost of all the edges of Gi and the cost of all nodes that
are leaves in Fi but become inner nodes after adding Gi. We will construct a connection
network Gi+1 for Fi+1 (Gi+1 may not be the optimal solution for Fi+1). Consider all the
edges in the cut S = S(A; B) where A = T1 ∪T2 ∪ . . .∪Tk and B = Tk+1 ∪ . . .∪Tni

in Gi.
we denote these cut edges (aj, bj) where aj ∈ A and bj ∈ B. we can obtain a connection
network Gi+1 for Fi+1 whose cost is not more than the cost of Gi by deleting some edges
of S. Consider the subgraph Hi of Fi ∪ Gi induced by the nodes of B. Suppose Hi have
several components, say C1, C2, . . . , Cl. We let Gi+1 consist of all edges of Hi ∩ Gi and
l cut edges each of which connects one component to A. Since A is a tree in Fi+1, such
a Gi+1 can connect all trees in Fi+1. For a component Ci, arbitrary choosing a cut edge
(ax, bx) that connects Ci to A may not work because of a bad situation where the cost of
Gi does not include the cost of ax while the cost of Gi+1 does, rendering Gi+1 ≥ Gi. The
bad situation happens only when ax is a singleton tree in Fi and a leaf in tree Fi∪Gi (the
cost of Gi does not contains the cost of ax), but an unpaid leaf in Fi+1 and an inner node
in tree Fi+1∪Gi+1 (so the cost of Gi+1 contains the cost of ax). We argue that there exists
a cut edge adjacent to each component Ci such that the bad situation doesn’t happen.
Suppose for component C1 there is no such edge, then l must be 1 since all choice axs are
leaves in tree Fi ∪ Gi; otherwise Fi ∪ Gi is not connected. So A is the union of all such

12

axs. However, they can’t be all unpaid leaves in Gi+1, for at least the center must be paid.
Therefore the contradiction follows.

ut

In particular, OPTi ≤ OPT1 = OPT for all i ≥ 1.

Theorem 7. We can compute a 2(Hn−1)-approximation to the minimum sti-weight tree
in time O(nm log n).

Proof. First note that

mi

ni

=
mi − 1

ni

+
1

ni

≤
ni∑

k=ni−mi+2

1

k
+

1

ni

≤ 2 ·
ni∑

k=ni−mi+2

1

k

In each iteration, we combine mi trees into a single tree. Thus, ni+1 = ni−mi+1. Because
in the last iteration (the tth iteration) all of the leaf-trees will be combined into the final
spanning tree which is our approximation solution, it is easy to know nt = mt. And there
are more than one trees in Ft, which implies nt ≥ 2. Since nt−1 > nt, we can get nt−1 ≥ 3.
Using Lemmas 6 and 7 we can can get the inequality:

t∑
i=1

cost(TSi) ≤
t−1∑
i=1

OPTi · mi

ni

+
mt

nt

·OPTt ≤ (2 ·
t−1∑
i=1

ni∑

k=ni−mi+2

1

k
+ 1) ·OPT

Since n1 = n and nt−1 ≥ 3, we can obtain

t−1∑
i=1

ni∑

k=ni−mi+2

1

k
=

1

n
+

1

n− 1
+ · · · 1

nt−1

≤ 1

n
+

1

n− 1
+ · · ·+ 1

3

≤H(n)− (
1

2
+ 1)

Then we can obtain the upper bound of our approximation solution:

t∑
i=1

cost(TSi)≤ ((2(H(n)− 3

2
) + 1) ·OPT

= 2(H(n)− 1) ·OPT

The running time follows from theorem 6 and the fact that we have at most n iterations.
ut

13

6 A (∆ − 1)-Approximation

Let ∆ be the maximal degree of the graph. For small ∆ there is a simple and fast (∆−1)-
approximation algorithm.
We try to transfer the node weights to the edges and then find a normal minimum spanning
tree in the new graph with only edge weights. For each edge e(u, v), let the new weight
be w′(e) = w(e) + w(u) + w(v). Then we compute a minimum spanning tree T for edge
weights w′ [1].

Theorem 8. T is a ∆− 1-approximation to the optimal solution Tmsti(G).

Proof. For the cost w′(T) and w′(Tmsti(G)) of the two trees with respect to w′ we have

w′(T) =
∑

e∈E(T)

w′(e) =
∑

e∈E(T)

w(e) +
∑

v∈V (T)

degT (v) · w(v)

and

w′(Tmsti(G)) =
∑

e∈E(Tmsti(G))

w′(e) =
∑

e∈E(Tmsti(G))

w(e) +
∑

v∈V (Tmsti(G))

degmsti(v) · w(v) ,

where degT (v) and degmsti(v) denote the degree of v in T and Tmsti(G), respectively. Since
w′(T) ≤ w′(Tmsti(G)), we can get the inequality:

∑

e∈E(T)

w(e) +
∑
v∈IT

(degT (v)− 1) ·w(v) ≤
∑

e∈E(Tmsti(G))

w(e) +
∑

v∈ITmsti(G)

(degmsti(v)− 1) ·w(v)

Thus, if ∆ ≥ 2, we get for the sti -weight of T in G

sti(T) =
∑

e∈E(T)

w(e) +
∑
v∈IT

w(v) ≤
∑

e∈E(T)

w(e) +
∑
v∈IT

(degT (v)− 1) · w(v)

≤
∑

e∈E(Tmsti(G))

w(e) +
∑

v∈ITmsti(G)

(degmsti(v)− 1) · w(v)

≤ (∆− 1) ·

 ∑

e∈E(Tmsti(G))

w(e) +
∑

v∈ITmsti(G)

w(v)


 = (∆− 1) ·msti(G) .

ut

7 Conclusion

We have presented the first approximation algorithms for the NP-complete problem min-
imum spanning tree with weighted inner nodes. Reducing the problem to an uncapac-
itated facility location and a node weighted Steiner tree problem gave us a (2.35 ln n)-
approximation algorithm. In the metric space, the algorithm can get a factor 3.52 ap-
proximation solution. Using a slightly different algorithm for facility location, we obtain

14

a 3.106-approximation algorithm. The lower bound of 1.463 is also proved for the approx-
imation factor. Then we improved the approximation factor to 2(Hn − 1) in general case
by using a greedy algorithm that repeatedly chooses minimum ratio stars and contracts
them into single nodes. The computation of a minimum ratio star can be done efficiently.
We believe that the factor 2(Hn − 1) is a tight bound of our approximation algorithm.

8 Acknowledgements

We thank Prof M. Mahdian for providing the data about the tradeoff between γf and γc

and helpful suggestions.

References

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge,
MA, and London, England, 5. edition, 1990.

2. M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York, 1979.

3. S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Algorithmica, 20:347–387,
1998.

4. S. Guha and S. Khuller. Improved methods for approximating node weighted Steiner trees and connected
dominating sets. Information and Computation, 150:57–74, 1999.

5. P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner trees. Journal
of Algorithms, 19(1):104–115, 1995.

6. M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric facility location problems In
Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX), LNCS 2462, pages 229-242, 2002.

7. N. Young. k-medians, facility location, and the Chernoff-Wald bound. In Proceedings of the 11th ACM-SIAM
Symposium on Discrete Algorithms (SODA’00), pages 86–95, 2000.

8. M. Mahdian. Private communication, 2005.
9. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In Proceedings of

the 34th ACM Symposium on the Theory of Computation (STOC’02), pages 731–740, 2002.
10. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. Journal of Algorithms,

31:228–248, 1999.
11. U. Feige. A threshold of ln n for approximating set-cover. Journal of the ACM, 45(4):634–652, 1998.

15

