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ABSTRACT
We study the problem of generating synthetic databases hav-
ing declaratively specified characteristics. This problem is
motivated by database system and application testing, data
masking, and benchmarking. While the data generation
problem has been studied before, prior approaches are either
non-declarative or have fundamental limitations relating to
data characteristics that they can capture and efficiently
support. We argue that a natural, expressive, and declara-
tive mechanism for specifying data characteristics is through
cardinality constraints; a cardinality constraint specifies that
the output of a query over the generated database have a
certain cardinality. While the data generation problem is in-
tractable in general, we present efficient algorithms that can
handle a large and useful class of constraints. We include
a thorough empirical evaluation illustrating that our algo-
rithms handle complex constraints, scale well as the num-
ber of constraints increase, and outperform applicable prior
techniques.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; H.2.4 [Database Management]: Systems—
Query processing

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Data Generation, Testing, Masking, Benchmarking, Con-
straints

1. INTRODUCTION
We consider the problem of generating a synthetic

database instance having certain data characteristics. Many
applications require synthetically generated data:
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1. DBMS testing: When we design a new DBMS compo-
nent such as a new join operator or a new memory manager,
we require synthetic database instances with specific char-
acteristics to test correctness and performance of the new
component [7, 22]. For example, to test the code module
of a hybrid hash join that handles spills to disk, we might
need a database instance with a high skew on the outer join
attribute. As another example, to study the interaction of
the memory manager and multiple hash join operators, we
might need a database instance that has particular interme-
diate result cardinalities for a given query plan [9].

2. Data masking and database application testing: Organi-
zations sometimes outsource the testing of their database
applications to other organizations. However an outsourc-
ing organization might not be able to share its internal
databases (over which the applications run) with the test-
ing organization due to privacy considerations, requiring us
to generate a synthetic database that behaves like the orig-
inal database for the purposes of testing. (We emphasize
that our goal here is not to study the general data masking
problem with its privacy considerations; we are merely sug-
gesting that data generation might be a useful component
of a general data masking solution.)

3. Benchmarking: In order to decide between multiple com-
peting data management solutions, a customer might be in-
terested in benchmarking the solutions [22]. The standard
benchmarks such as TPC-H might not capture many of the
application scenarios and data characteristics of interest to
the customer, motivating the need for synthetic data genera-
tion. A related scenario is upscaling, where we are interested
in generating a synthetic database that is an upscaled ver-
sion of an existing database. Upscaling is useful for future
capacity planning purposes.

Data characteristics and cardinality constraints: The
applications of data generation above require a wide variety
of data characteristics in the generated synthetic databases.
A natural class of characteristics are schema properties such
as key and referential integrity constraints, functional de-
pendencies, and domain constraints (e.g., age is an integer
between 0 and 120). A synthetic database for DB appli-
cation testing often needs to satisfy such constraints since
the application being tested might require these constraints
for correct functioning. If DB application testing involves a
visual component with a tester entering values in fields of
a form, the synthetic database might need to satisfy natu-



ralness properties, e.g., the values in an address field should
“look like” real addresses.

In benchmarking and DBMS testing, we typically need to
capture characteristics that can influence the performance
of a query over the generated database. These include, for
example, ensuring that values in a column be distributed in
a particular way, ensuring that values in a column have a
certain skew, or ensuring that two or more columns are cor-
related. We note correlations can involve joining multiple
tables. For example, in a customer-product-order database,
we might need to capture correlations between the age of
customers and the category of products they purchase. In
data masking, we might require synthetic data to result in
the same application performance as the original data, with-
out revealing sensitive information from the original data.

In addition to the richness of data characteristics, appli-
cations might require several properties and constraints be
together satisfied in a generated database. This requirement
motivates the need for a declarative approach to data gen-
eration as opposed procedural approaches considered in [7,
15]. As a concrete example, consider generating a customer-
product-order database where we need to capture correla-
tions between several pairs of columns such as customer age
and product category, customer age and income, and prod-
uct category and supplier location. It is fairly nontrivial for
a programmer to design a procedure that outputs a database
with all of the above properties, even with the right proce-
dural primitives.

A natural and expressive language for specifying data char-
acteristics is a set of cardinality constraints. A cardinality
constraint specifies that the output of a given query over the
generated database should have a particular cardinality. As
a simple example, we can (approximately) specify the distri-
bution of values in a column by providing a histogram, and
a histogram can be represented as a collection of cardinal-
ity constraints, one for each bucket. In Section 2, we show
that many of the data characteristics discussed earlier can
be represented using cardinality constraints.

The idea of using cardinality constraints for data gener-
ation is not new and has been proposed in QAGen [6] and
its extension MyBenchmark [22]. However, in this work car-
dinality constraints are mostly used for capturing workload
characteristics and the ability of cardinality constraints to
express more general data characteristics is not discussed.

Motivated by the above discussion, the goal of this pa-
per is to design efficient algorithms for generating synthetic
databases that satisfy a given set of cardinality constraints.
The set of constraints provided as input can be large (say,
thousands); for example, even specifying a simple histogram
can require 10s or 100s of constraints. The queries in the
constraints can be complex, possibly involving joins over
multiple tables.

Prior Work: While QAGen [6] and MyBenchmark [22]
do not discuss the expressiveness aspects of cardinality con-
straints, their techniques are quite general and can be used
for our purposes. However, they have some basic limita-
tions. QAGen and MyBenchmark assume that cardinality
constraints are available in a particular form called anno-
tated query plans (AQP). An annotated query plan is a query
plan with a subset of plan nodes annotated with cardinali-
ties. We can show that we can encode cardinality constraints
as AQPs and vice-versa. For data generation, QAGen uses

a novel approach called symbolic query processing. Briefly, it
starts with a symbolic database; a symbolic database is like a
regular database, but its attribute values are symbols (vari-
ables), not“constants.” It then translates the input AQPs to
constraints over the symbols in the database, and invokes a
black-box constraint satisfaction program (CSP) to identify
values for symbols that satisfy all the constraints.

One limitation of QAGen is that it can handle a sin-
gle AQP, and therefore cannot be directly used to generate
databases that satisfy multiple arbitrary constraints. This
limitation is identified and addressed in MyBenchmark [22].
Briefly, to handle n AQPs, MyBenchmark uses QAGen to
generate n symbolic databases with constraints and per-
forms “matching” between these databases to heuristically
identify m ≤ n databases that together satisfy all the AQPs.
MyBenchmark is not guaranteed to produce a single
database instance and this functionality can be unsuitable
for some applications requiring synthetic data. For example,
we cannot use multiple database instances for DB applica-
tion testing, since no single instance reflects all the charac-
teristics of the original database.

One advantage of using a general purpose CSP is that
it enables QAGen to handle complex queries, e.g., queries
with HAVING clauses. However, this generality comes with
a performance cost. The number of times QAGen and My-
Benchmark invoke a CSP grows with the size of the gener-
ated database and this has serious performance implications
as the experiments in [6, 22] indicate.1 The algorithms that
we propose do not have these limitations: they always gen-
erate a single database instance and their dependence on the
generated database size is limited to the cost of materializing
the database.

Interestingly, recent work on cardinality estimation using
maximum entropy principle [27, 28] can be adapted to de-
rive algorithms for data generation, and we discuss this pos-
sibility in detail in Section 4. However, briefly, cardinality
estimation using maximum entropy is known to be a very
hard problem and adaptations of current solutions do not
efficiently handle complex constraints.

Summary of Contributions: We formally introduce car-
dinality constraints in Section 2 and show that a set of car-
dinality constraints forms an expressive language for speci-
fying data characteristics. In Section 3, we state the formal
data generation problem and show that the general prob-
lem is NEXP-complete and therefore hard. We present our
algorithms in Section 4. While the general data genera-
tion problem is hard, our algorithms are able to handle a
large and useful class of constraints. Our algorithms are
probabilistically approximate, meaning that they satisfy all
constraints in expectation. We note that this is sufficient
for most applications of data generation. Our algorithms
are also sensitive to the complexity of the input cardinal-
ity constraints in a precisely quantifiable way and use ideas
from probabilistic graphical models [26]. We include detailed
experimental evaluation of our algorithms in Section 6 and
conclude.

1One aspect of QAGen that we do not consider in this paper is
parameters in AQPs. In the full version of the paper, we show that
a data generation problem instance having cardinality constraints
with parameters can be transformed to an instance not involving
parameters, for a large class of constraints.



2. CARDINALITY CONSTRAINTS
In this section, we formally introduce cardinality con-

straints and discuss their expressiveness. We need a few
notations first. We denote a relation R with attributes
A1, . . . , An as R(A1, . . . , An). We use Attr(R) = {A1, . . . ,
An} to denote the set of attributes of relation R. A database
D is a collection of relations R1, . . . , Rl. Given the schema
of D, a cardinality constraint is of the form

|πAσP (Ri1 1 · · · 1 Rip)| = k

where A is a set of attributes, P is a selection predicate, and
k is a non-negative integer. A database instance satisfies a
cardinality constraint if evaluating the relational expression
over the instance produces k tuples in the output. Through-
out this paper, we assume that relations are bags2 and rela-
tional operators use bag semantics. The projection operator
in cardinality constraints is duplicate eliminating; the input
and output cardinalities of a duplicate preserving projection
operator are identical, and therefore duplicate preserving
projections are not interesting in constraints. (The projec-
tion operator is optional.)

We now show that a set of a cardinality constraints can
be used to declaratively encode various data characteristics
of interest.

Schema Properties:3 We can specify that a set of attributes
Ak ⊆ Attr(R) is a key of R using two constraints |πAk (R)| =
N and |R| = N . We can specify that R.A is a foreign key
referencing S.B using the constraints |πA(R 1A=B S)| =
N and |R| = N . We can similarly represent more general
inclusion dependencies between attribute values of one table
and attribute values of another. Such inclusion dependencies
can also be used with reference “knowledge” tables such as
a table of all US addresses to ensure that the generated
databases satisfy various naturalness properties.

Value distributions: As mentioned earlier, we can approxi-
mately capture the value distribution of a column using a
histogram. We can specify a single dimension histogram
by including one constraint for each histogram bucket. The
constraint corresponding to the bucket with boundaries [l, h]
having k tuples is |σl≤A≤h(R)| = k. We can capture correla-
tions between attributes using multi-dimension histograms
such as STHoles [8], which can again be encoded using one
constraint for each histogram bucket. Correlations span-
ning multiple tables can be specified using joins and multi-
dimension histograms. For example, we can specify cor-
relations between customer age and product category in
a customer-product-orders database using multi-dimension
histograms over the view (Customer 1 Orders 1 Product).
We can approximately constrain the performance of a query
plan over generated data by specifying intermediate cardi-
nalities as shown in Figure 1. Each intermediate cardinality
maps to a cardinality constraint. In the data masking sce-
nario from Section 1, these intermediate cardinalities can be
obtained by evaluating the query plan on the original data
to ensure that the performance of the plan on original and
synthetic data are similar. (We have not fully explored the
privacy related issues in this setting. We note that cardinal-
ity constraints integrate nicely with differential privacy [13];

2A bag is a multi-set where an element can appear multiple times.
3Although, we can encode schema properties using general cardi-
nality constraints, for efficiency purposes, our algorithms handle
them in a special way, different from other constraints.
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Figure 1: Query Plan intermediate cardinalities

instead of using actual intermediate cardinalities, we can
fudge cardinalities using differential privacy algorithms and
use the fudged constraints for data generation. We are cur-
rently exploring these directions.) The full version of the
paper includes examples of using cardinality constraints to
capture more complex attribute correlations such as those of
[14], join distributions between relations, and skew of values
in a column.

We view cardinality constraints as a useful programmatic
abstraction for data generation and we envision automated
techniques, not manual approaches, generating the
constraints. The techniques for generating constraints are
application specific and outside the scope of this work.

We note that the set of cardinality constraints is complete,
in a sense that any database instance can be fully specified
using such constraints (for each tuple, we use a constraint to
specify its existence). Also, the cardinality constraints that
we consider in this paper are a special class of logic programs
and cardinality constraints studied in [30]; the focus of this
work is to extend logic programs with cardinality constraints
and establish formal semantics.

3. PROBLEM FORMULATION
We now formally state the data generation problem:

Data Generation Problem (DGP): Given a database
schema and a collection of cardinality constraints C1, . . . , Cm,
generate a database instance conforming to the schema that
satisfies all the constraints.

In the decision version of the problem, the output is Yes
if there exists a database instance that satisfies all the con-
straints and No, otherwise. We can show even the decision
version of the problem is extremely hard.

Theorem 1. The decision version of the data generation
problem is NEXP-complete.

Due to space constraints, we defer all proofs to the full ver-
sion of the paper. We note that the problem of checking
whether a logical program with cardinality constraints has
a model is NEXP-complete [30], but Theorem 1 does not fol-
low from the results in [30] since logical programs of [30] are
more general than the cardinality constraints we consider.

While the general DGP problem is hard, there exist prob-
abilistically approximate efficient algorithms for a large and



useful class of constraints that we present next. These al-
gorithms satisfy the input constraints only in expectation;
as we observed in Section 1, such approximation is usually
acceptable in practice.

4. ALGORITHMS
We begin (in section 4.1) by presenting an algorithm for

the simple case of a single table with a single attribute that
involves solving a linear program (LP). A straightforward
generalization of the LP approach for multiple attributes
produces an exponentially large LP, and we use ideas from
from probabilistic graphical models to reduce the size of the
LP. In section 4.3, we present algorithms for generating mul-
tiple tables possibly involving join constraints. Sections 4.1-
4.3 assume that the input constraints do not involve projec-
tions. We discuss constraints with projections in section 4.4.

We first present some notation and simplifying assump-
tions. We denote the domain of attribute A using Dom(A).
We assume the domains of all attributes are positive in-
tegers; this assumption is without loss of generality since
values from other domains can be 1-1 mapped to positive
integers. To simplify presentation, we further assume that
the domain of all attributes is [D] = {1, . . . , D} for a known
positive integer D. Removing the assumption that D be
known in advance and handling different domains for differ-
ent attributes is straightforward.

For presentation simplicity, we assume selection predicates
are conjunctions of range predicates of the form A ∈ [l, h];
equality predicate is a special case where l = h. Our al-
gorithms can be extended to work with selection predicates
with disjunction and non-equalities such as ≥,≤, >, and <.

In the rest of this section, we use C1, . . . , Cm to denote
the input constraints. We specify the exact form of the
constraints in each subsection.

4.1 Single Table, Single Attribute
Let R(A) denote the table being generated. Without loss

of generality, each constraint Cj (1 ≤ j ≤ m) is in the
canonical form |σlj≤A<hj (R)| = kj . We generate a simple
integer linear program (ILP) to solve this instance of DGP.
For each i ∈ [D] we create a variable xi that represents the
number of copies of i in R. We create the following system
of equations to capture the m constraints:

hj−1∑
i=lj

xi = kj for j = 1, . . . ,m

We further require that each xi is a nonnegative integer. We
can show that any solution to the above ILP corresponds to
a solution of the DGP instance.

In general, solving an ILP is NP-hard [19]. However, the
above ILP has a special structure: we can show that the ma-
trix corresponding to the system of equations has a property
called unimodularity [19]. This property implies that a so-
lution of the corresponding linear programming (LP) relax-
ation is integral4. (We obtain the LP relaxation by dropping
the integer requirement.) An LP can be solved in polynomial
time, but this does not imply a polynomial time solution to
DGP since the number of variables in the LP is proportional

4This solution is integral only in the presence of a linear opti-
mization criterion, so we need to add a dummy criterion to get
integral solutions.

to domain size D, which may be much larger than the sizes
of the input and the database instance being output. We
next present a simple intervalization trick to reduce the size
of the LP.

Intervalization: Let v1 = 1, v2, . . . , vl = D + 1 denote in
increasing order the distinct constants occurring in predi-
cates of constraints Cj including constants 1 and D+ 1. We
define (l− 1) basic intervals [vi, vi+1) (1 ≤ i < l). We intro-
duce a variable x[vi,vi+1) for each basic interval [vi, vi+1) to
represent the number of tuples in R(A) that belong to the
interval. Consider a constraint Cj : |σlj≤A<hj (R)| = kj . By
construction, there exist vp = lj and vq = rj , and we use
the following equation to capture Cj :

q−1∑
i=p

x[vi,vi+1) = kj

As before, a solution to the above LP can be used to con-
struct a solution for the DGP instance. We can easily see
that the number of variables is at most twice of the number
of constraints, implying a polynomial time solution5 to the
DGP problem.

Example 1. Consider a DGP instance with three con-
straints |σ20≤A<60(R)| = 30, |σ40≤A<101(R)| = 40, and |R| =
50 and assume a domain size D = 100. There are 4 basic in-
tervals: [1, 20), [20, 40), [40, 60), [60, 101). The correspond-
ing linear program consists of the three equations:

x[1,20) + x[20,40) + x[40,60) + x[60,101) = 50

x[20,40) + x[40,60) = 30

x[40,60) + x[60,101) = 40

One solution to the LP is x[1,20) = 2, x[20,40) = 8, x[40,60) =
22, and x[60,101) = 18. To generate R(A), we pick 2 values
(e.g., at random) from [1, 20), 8 values from [20, 40), and so
on.

This intervalization trick is applicable and implicitly part of
all of our algorithms, although for presentation simplicity
we may not explicitly mention this fact.

4.2 Single Table, Multiple Attributes
Let R(A1, . . . , An) denote the table being generated. Each

constraint Cj is of the form |σPj (R)| = kj . For conciseness,
we sometimes denote constraint Cj as the pair 〈Pj , kj〉 in this
subsection. The following theorem implies that the DGP
problem becomes significantly harder when we move from
single to multiple attributes.

Theorem 2. The decision version of the single table data
generation problem without projections is NP-complete for
even two attributes (n = 2).

We first consider a generalization of the algorithm in Sec-
tion 4.1. For every tuple t ∈ Dom(A1)× · · ·×Dom(An), we
create a variable xt representing the number of copies of t in
R. For each constraint Cj = 〈Pj , kj〉, we generate a linear
equation: ∑

t:Pj(t)=true

xt = kj

5Given an LP solution, the time for generating the actual table is
linear in the size of the output, which may be independent of the
input size. However, since any algorithm takes that much time,
we do not count it in the running time.



With LP relaxation, a solution to the above set of equations
might not always be integral; otherwise, Theorem 2 would
imply P = NP . However, slightly violating some cardinal-
ity constraints is acceptable for most applications of data
generation. We can derive a probabilistically approximate
solution by starting with an LP relaxation solution and per-
forming randomized rounding: Round xt to bxtc with prob-
ability xt − bxtc and to dxte with probability dxte − xt. We
can prove that relation R generated in this manner satis-
fies all constraints in expectation: E[|σPj (R)|] = kj for all
constraints Cj . We refer to this algorithm as LPAlg.

Even with intervalization, the number of variables cre-
ated by LPAlg can be exponential in the number of at-
tributes. We next present more sophisticated algorithms
that use ideas from graphical models [26]. If the input con-
straints are low-dimensional (involve a small number of at-
tributes) and sparse—this is often the case in practice—
these algorithms significantly outperform LPAlg.

4.2.1 Algorithms based on Graphical Models
We begin with a toy example illustrating a more efficient

strategy for data generation than LPAlg.

Example 2. Consider a DGP instance with domain size
|D| = 2 and 2n + 1 constraints |R| = 1000, |σAi=1(R)| =
500 and |σAi=2(R)| = 500 (1 ≤ i ≤ n). LPAlg solves an
LP involving 2n variables for this instance. There exists a
simpler strategy: We generate 1000 random tuples, where
each tuple is generated by picking each of its attribute values
from {1, 2} uniformly at random. It is easy to see that this
generated instance satisfies all constraints in expectation.

Informally, the strategy in Example 2 “decouples” attributes
from one another and generates values for each attribute
“independently.” The algorithms we present next are essen-
tially generalizations of this idea that identify and exploit
various “independence” properties between attributes for ef-
ficient data generation.

Figure 2 presents a general class of algorithms, which in-
cludes the algorithm of Example 2. We assume for simplic-
ity that the size of R, |R| = N , is provided as input. With
each attribute Ai, we associate a random variable Xi that
assumes values in Dom(Ai). Let X = {X1, . . . , Xn}. We
denote a joint probability distribution over X1, . . . , Xn us-
ing p(X1, . . . , Xn) (or p(X ), for short). In the first step, we
identify a distribution p(X ) that belongs to a special class
called generative distributions.

Definition 1. (Generative Distribution) A generative
distribution is a probability distribution p(X ) that satisfies
the property that for each constraint Cj = 〈Pj , kj〉, the prob-
ability that predicate Pj is true for a tuple sampled from p(X )
is kj/N .

In the next step, we independently sample N times from
this distribution to generate an instance R. By construc-
tion, this instance satisfies all constraints in expectation,
i.e., E[|σPj (R)|] = kj . Moreover, using Hoeffding’s inequal-
ity, we can show that the probability mass is concentrated
around the mean:

Pr[||σPj (R)| − kj | ≥ t] ≤ 2 exp(−2t2

N
).

Example 3. The algorithm in Example 2 uses the uni-
form generative distribution p(x1, . . . , xn) = 1/2n for all
x1, . . . , xn.

Input:A data generation problem involving R(A1, . . . , An) and
constraints C1, . . . , Cm and |R| = N

1. Identify a generative probability distribution p(X )
2. Sample N times from p(X ) to generate R

Figure 2: A general probabilistic algorithm

The following proposition asserts that the algorithm of
Figure 2 is always feasible:

Proposition 3. If an instance of single table data gen-
eration problem (without projections) has a solution, there
exists a generative probability distribution for the instance.

We next discuss the problem of identifying a generative
probability distribution p(X ). In general, there could be
several generative probability distributions for an instance
of single table DGP. Theorem 4 states there always exists a
generative distribution that factorizes into a product of sim-
pler functions; we later use this factorization to identify such
a distribution. We first introduce some notation used in the
statement of Theorem 4. For each constraint Cj = 〈Pj , kj〉,
we use Attrs(Cj) to denote the set of attributes appear-
ing in predicate Pj and X (Cj) to denote the set of random
variables corresponding to these attributes. For example,
if Cj is |σA1=5∧A3=4(R)| = 10, then Attrs(Cj) = {A1, A3}
and X (Cj) = {X1, X3}. For any X ′ ⊆ X , we use f(X ′)
to denote a function f over random variables in X ′. Func-
tion f(X ′) maps an assignment of values to random vari-
ables in X ′ to its range (which is usually nonnegative re-
als R≥0). We assume that each attribute Ai appears in at
least one constraint; otherwise, we add the trivial constraint
|σ1≤Ai≤D(R)| = N .

Theorem 4. If an instance of single table data genera-
tion problem (without projections) has a solution, then there
exists a generative probability distribution p(X ) that factor-
izes as:

p(X ) =
∏

Xi:∃Cjs.t.Xi=X (Cj)

fi(Xi)

for some functions fi.

Example 4. Consider a DGP instance where Attrs(C1) =
{A1, A2} and for all other constraints Cj (j 6= 1), |Attrs(Cj)|
= 1. Theorem 4 asserts that there exists a generative prob-
ability distribution p(X1, . . . , Xn) for this instance that can
be expressed as f1(X1, X2)f3(X3) · · · fn(Xn), where fi are
some functions. Note that a DGP instance can have several
generative distributions and all such distributions need not
factorize as above, but there exists at least one that does.

The factorization of a probability distribution implies var-
ious independence properties of the distribution. It is conve-
nient to use an undirected graph to infer independence prop-
erties implied by a factorization [26]. The Markov network
of a DGP instance is an undirected graph G = (X , E) with
vertices corresponding to the random variables X1, . . . , Xn.
Graph G contains an edge (Xi, Xj) whenever {Xi, Xj} ⊆
X (Cj) for some constraint Cj . The following lemma char-
acterizes the independence properties of distributions p(X )
that factorize according to Theorem 4. It follows from a
simple application of the well-known Hammersley-Clifford
theorem [16, 26].
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Figure 3: Example Markov Networks

Lemma 1. Let XA,XB ,XC ⊆ X be nonoverlapping sets
such that in the Markov network G every path from a vertex
in XA to a vertex in XB goes through a vertex in XC . Then
for any probability distribution that factorizes according to
Theorem 4, (XA ⊥ XB |XC).

(The notation (XA ⊥ XB |XC) denotes that XA and XB are
conditionally independent given XC .) As a special case of
Lemma 1, if XA and XB belong to different connected com-
ponents then XA ⊥ XB (unconditionally) for any distribu-
tion p(X ) that factorizes according to Theorem 4.

Example 5. Continuing Example 4, the Markov network
for this instance has n vertices and a single edge (X1, X2).
Lemma 1 implies that there exists a distribution p(X ) for
which (Xi ⊥ Xj) for all pairs {Xi, Xj} 6= {X1, X2}. Us-
ing chain rule and the above independences, we can show
that p(X ) = p(X1, X2) p(X3) · · · p(Xn), where, for exam-
ple, p(X1, X2) denotes the marginal distribution of (X1, X2).
The algorithm we present next uses this observation to di-
vide the problem of identifying p(X ) into “smaller” problems
of identifying the marginals p(X1, X2), p(X3), . . . , p(Xn).

Example 6. Consider a DGP instance whose Markov net-
work is the path graph shown in Figure 3(a). There exists
a generative p(X ) for which (X1 ⊥ X3|X2), since the only
path from X1 to X3 passes through X2. For the graph of
Figure 3(b), (X1 ⊥ X3|X2, X4), but (X1 6⊥ X3|X2).

We now present two algorithms for identifying a gener-
ative distribution. While the algorithms are easy to state,
the rationale for some steps of the algorithms and their for-
mal correctness depend on nontrivial properties of graphical
models and are presented in the full version of the paper.
The two algorithms are incomparable and depending on the
input one can outperform the other.

Algorithm based on Chordal graphs
The first algorithm is designed based on the insight that
the factors fi in Theorem 4 allow a natural probabilistic
interpretation if the Markov network is a chordal graph6. A
graph is chordal if each cycle of length 4 or more has a chord;
a chord is an edge joining two nonadjacent nodes of a cycle.
The graph in Figure 3(b) is not chordal, but adding the edge
(X2, X4) results in the chordal graph shown in Figure 3(c).

The formal algorithm is presented in Figure 4. We begin
by constructing (Step 1) the Markov network of the input

6In the language of graphical models, the distribution p(X ) is a
decomposable distribution if the Markov network is chordal [26].

Input:A data generation problem involving R(A1, . . . , An) and
constraints C1, . . . , Cm and |R| = N

Output: A generative probability distribution p(X )
1. Construct the Markov network G = (X , E)
2. Add edges to G to get a chordal graph Gc = (X , Ec)
3. Identify maximal cliques Xc1, . . . ,Xcl in Gc
4. Solve for marginal distributions p(Xc1), . . . , p(Xcl)
5. Use chordal graph property to construct p(X ) from the

marginals p(Xc1), . . . , p(Xcl)

Figure 4: Indentifying a generative distribution us-
ing Chordal graphs

DGP instance. In general, the Markov network of a DGP in-
stance need not be chordal. In Step 2, we use the algorithm
of Tarjan and Yannakakis [31] to convert the Markov net-
work G = (X , E) to a chordal graph Gc = (X , Ec), E ⊆ Ec,
by adding additional edges if necessary. In Step 3, we iden-
tify the maximal cliques Xc1, . . . ,Xcl of Gc. In Step 4, we
“solve” for the marginal distributions p(Xc1), . . . , p(Xcl); this
step is discussed in detail later. Chordal graphs have a spe-
cial property [26] that allows us to construct (in Step 5) the
desired distribution p(X ) using the marginals p(Xc1), . . . ,
p(Xcl). The following example illustrates this property.

Example 7. Consider a DGP instance whose Markov net-
work is the path graph of Figure 3(a) and let p(X1, X2, X3, X4)
be a distribution that factorizes according to Theorem 4. The
graph has no cycles and is therefore chordal with maximal
cliques {X1, X2}, {X2, X3}, and {X3, X4}. We show that
p(X1, X2, X3, X4) can be computed using the marginals over
these cliques:

p(X1, X2, X3, X4) = p(X1, X2)p(X3|X1, X2)p(X4|X1, X2, X3)

= p(X1, X2)p(X3|X2)p(X4|X3)

= p(X1, X2)
p(X2, X3)

p(X2)

p(X3, X4)

p(X3)

The second step follows from the first using the independence
properties described in Example 6. p(X2) and p(X3) can
be obtained from p(X2, X3) by summing out X3 and X2,
respectively. Finally, note that such a distribution is easy to
sample from: we first pick x1, x2 from p(X1, X2), then pick
x3 from p(X3|X2 = x2) and then pick x4 from p(X4|X3 =
x3).

To identify the marginal distributions p(Xc1), . . . , p(Xcl)
(Step 4, Figure 4), we construct and solve a system of linear
equations. The variables in these equations are probability
values p(x), x ∈ Dom(Xci) of the distributions p(Xci). In
the following, we use pXci to denote the marginal over vari-
ables Xci. The first set of equations below ensures that pXci

are valid probability distributions. The second set ensures
that the marginal distributions satisfy all constraints within
their “scope”. ∑

x∈Dom(Xci)

pXci(x) = 1 1 ≤ i ≤ l

∑
x∈Dom(Xci):Pj(x)=true

pXci(x) = kj/N X (Cj) ⊆ Xci

Consider any two cliques Xci and Xcj such that Xci∩Xcj 6= φ.
For any x ∈ Dom(Xci∩Xcj), let ExtXci(x) denote the set of
assignments to Xci that is consistent with the assignment x.



Input:A data generation problem involving R(A1, . . . , An) and
constraints C1, . . . , Cm and |R| = N

Output: A generative probability distribution p(X )
1. Construct the Markov network G = (X , E)
2. Identify maximal cliques Xc1, . . . ,Xcl
3. Solve for marginal distributions p(M(Xc1)), . . . , p(M(Xcl))
4. Construct p(X ) from the marginals p(M(Xc1)), . . . , p(M(Xcl))

Figure 5: Indentifying a generative distribution us-
ing Markov Blankets

We include the following equation for each x ∈ Dom(Xci ∩
Xcj) in the linear program.∑

y∈ExtXci
(x)

pXci(y) =
∑

z∈ExtXcj
(x)

pXcj (z)

The marginal distribution p(Xci ∩ Xcj) can be computed
either by starting with p(Xci) and summing out the variables
in Xci − Xcj or by starting with p(Xcj) and summing out
variables in Xcj − Xci. The above set of equations ensure
that we get the same marginal distribution in either case.

Example 8. Consider a DGP instance R(A1, A2, A3, A4)
with 3 constraints: |σA1=0∧A2=0(R)| = 5, |σA2=0∧A3=0(R)| =
5, and |σA3=0∧A4=0(R)| = 5. Assume N = 10 and a binary
domain {0, 1} for each attribute. The Markov network for
this instance is the path graph of Figure 3(a). The maximal
cliques are the three edges. We solve the following system
of equations to identify the marginals over the edges. The
notation p12(00) is a shorthand for p(X1 = 0, X2 = 0).

p12(00) + p12(01) + p12(10) + p12(11) = 1 (1)

p23(00) + p23(01) + p23(10) + p23(11) = 1 (2)

p34(00) + p34(01) + p34(10) + p34(11) = 1 (3)

p12(00) = 1/2 (4)

p23(00) = 1/2 (5)

p34(00) = 1/2 (6)

p12(00) + p12(10) = p23(00) + p23(01) (7)

p12(01) + p12(11) = p23(10) + p23(11) (8)

p23(00) + p23(10) = p34(00) + p34(01) (9)

p23(00) + p23(10) = p34(00) + p34(01) (10)

Equations 1-3 ensure that the marginals are probability dis-
tributions, equations 4-6 ensure that the marginals are con-
sistent with the constraints, and equations 7-10 ensure the
marginals produce the same “submarginals”p(X2) and p(X3).

We refer to the algorithm of Figure 2 that uses chordal
graph method to identify p(X ) as CLPAlg. For the DGP
instance in Example 8, CLPAlg solves an LP with 12 vari-
ables and we can show that LPAlg uses with 16 variables.
While this difference is small, for a similar “path-graph” in-
stance with 10 attributes and domain size D = 10, we can
show that CLPAlg uses 9·102 = 900 variables while LPAlg
uses 1010 variables.

Algorithm based on Markov Blankets
The second algorithm is structurally similar to the algo-
rithm based on chordal graphs. It solves for a set of low-
dimensional marginal distributions using the input
constraints and combines these distributions to get a genera-
tive probabilistic distribution. We first introduce definitions

required to present the algorithm. Let G = (X , E) denote
the Markov network corresponding to the DGP instance.

Definition 2. The Markov blanket of a set of variables
XA ⊆ X , denoted M(XA), is defined as: M(XA) =
{Xi|(Xi, Xj) ∈ E ∧ (Xi 6∈ XA) ∧ (Xj ∈ XA)}.

The Markov blanket of XA is the set of neighbors of vertices
in XA not contained in XA. For example, in Figure 3(a),
M({X2}) = {X1, X3}. We use M(XA) as shorthand for
M(XA) ∪ XA.

The formal algorithm using Markov blankets is presented
in Figure 5. In Step 2, we identify maximal cliques Xc1, . . . ,
Xcl in G. In Step 3, we solve for the marginal distribu-
tions p(M(Xc1)), . . . , p(M(Xcl)). We do this by setting up a
system of linear equations quite similar to the one described
earlier. In the final step, we construct a generative probabil-
ity distribution p(X ) by combining the marginals identified
in the previous step.

Constructing p(X ) using marginals p(M(Xci)) is quite in-
volved and uses a canonical representation of probability
distributions presented in [1]. We present these details in
the full version of the paper. The full version also includes
some subtleties relating to ensuring the p(X ) is a positive
distribution that is required for the above construction to
work and describes how to sample from p(X ) using Gibbs
sampling.

Complexity: We measure the complexity of the algorithm
by the number of variables the algorithm creates. This is
because theoretically a linear program can be solved in time
polynomial in the number of variables. In practice, the ac-
tual running time depends on the efficiency of the chosen
linear programming solver. For the chordal graph approach,
suppose γ is the size of the largest maximal clique of Gc
identified in Step 3. Then, the number of the variables in
the linear equations is upper bounded by O(lDγ), where l
is the number of maximal cliques identified in step 3 and
D, the domain size. For the Markov blanket approach, let
γ = maxi |M(Xci)|. We can show that the number of the
variables is upper bounded by O(lDγ). Depending on the
actual Markov network, one approach can be more efficient
than another. The following example illustrates this claim.

Example 9. Consider the 3 × 3 grid Markov network G
shown in Figure 3(d). The maximal cliques of G are its
edges, so the marginals solved by the algorithm correspond
to M({X1, X2}) = {X1, X2, X3, X4, X5}, M({X2, X3}) =
{X1, X2, X3, X5, X6}, and so on. More generally, consider
an n×n grid Markov network G. Since each Markov blanket
is of a constant size and there are 2(n− 1)n edges, Markov

blankets approach uses at most 2n(n−1)×|D|O(1) variables
in its LP. We can show that the size of the largest maximal
clique of any chordal super-graph of G is at least n+ 1, and
therefore the chordal-graph approach uses |D|n+1 variables
in its LP, which is less efficient. In contrast, for the Markov
networks in Figure 3(a)-(c), we can show that the chordal
graph method is more efficient.

Maximum-Entropy based approaches: Another
approach to identifying a generative probability distribution
p(X ) (in Figure 2) is to pick a distribution with maximum
entropy (MaxEnt) that satisfies the constraints C1, . . . , Cm.
Identifying such MaxEnt distributions is the subject of re-
cent work on cardinality estimation using query feedback [27,



R1 (K1, A, FK2, FK3)

R2 (K2, B) R3 (K3, C, FK4)

R4 (K4, D)

V1(A, B, C)

V2(B) V3(C, D)

V4(D)

Figure 6: Example snowflake schema

28]. MaxEnt-based approaches have two drawbacks: (1)
Current techniques for identifying MaxEnt distributions can-
not handle complex constraints involving joins and (dupli-
cate eliminating) projections; (2) Identifying a MaxEnt dis-
tribution involves solving a set of non-linear equations and
is therefore expensive. In other words, settling for non-
MaxEnt distributions allows us to stay within linear pro-
gramming and also handle a larger class of constraints.

4.3 Multiple Tables
In this section, we present our algorithms for data gener-

ation problem involving multiple tables. For the rest of this
section, assume a DGP instance involving relations R1, . . . ,
Rn and constraints C1, . . . , Cm. Each constraint Cj is of the
form |σPj (Ri1 1 · · · 1 Ris)| = kj .

We assume that the tables R1, . . . , Rn form a snowflake
schema [11] and all joins are foreign key joins. A snowflake
schema has a central fact table and several dimension ta-
bles which form a hierarchy. We can represent a snowflake
schema as a rooted tree T with nodes corresponding to the
tables R1, . . . , Rn, and directed edges corresponding to for-
eign key relationships. The root of the tree is the fact table.
Each relation has a single key attribute, zero or more foreign
keys that reference keys of other tables, and any number of
non-key attributes that we call value attributes. We make
the fairly natural assumption that selection predicates in
constraints involve only value attributes. We note that keys
and foreign keys also represent constraints that need to be
satisfied by an output instance. We can extend our algo-
rithms to work with non-snowflake schemas, e.g., directed
acyclic graphs instead of trees; however, we do not have al-
gorithms that can handle non-foreign key joins and designing
such algorithms is future work.

Example 10. Figure 6 shows four relations R1, R2, R3, R4

that form a snowflake schema with R1 being the fact table.
The keys of the relations are shown underlined and the for-
eign keys are named by prefixing “F” to the key that they ref-
erence, e.g., FK2 is the foreign key referencing R2.K2. The
value attributes are A,B,C,D. Two example constraints are
|σC=5∧D=2(R3 1 R4)| = 20 and |σD=2(R1 1 R3 1 R4)| =
30.

We use regular tree terminology to specify relationships be-
tween tables; e.g., R1 is the parent of R2 in Figure 6.

For each relation Ri, we define a view Vi formed by join-
ing all its descendant tables and projecting out non-value
attributes. This projection is duplicate preserving unlike the
projections in our constraints. For example, in Figure 6,
V3 = πC,D(R3 1 R4), where we use π to denote duplicate
preserving projection. With this definition, we can rewrite
each constraint Cj as simple selection constraint over ex-

Input: A data generation problem involving R1, . . . , Rn and
constraints C1, . . . , Cm.

Output: Instances of R1, . . . Rn satisfying constraints

1. Generate instances of each view Vi satisfying constraints
associated with Vi

2. Root to leaf: Update each view Vi:
Vi ← Vi ∪ (πAttr(Vi)

(Vpi)− Vi)
where Vpi is the parent of Vi

3. Generate instances R1, . . . , Rn from V1, . . . , Vn

Figure 7: Algorithm for multiple tables

actly one of the views Vi. For instance, the first constraint
in Example 10 can be rewritten as |σC=5∧D=2(V3)| = 20.

The above observation forms the basis of our algorithm,
which is presented in Figure 7. In Step 1, we generate an
instance of each view Vi that satisfies all cardinality con-
straints associated with it. Since the constraints are all “sin-
gle table” selection constraints, we can use algorithms from
Section 4.2 to generate these instances. However, these inde-
pendently generated view instances may not correspond to
valid relation instances: Consider relation instances R1, . . . ,
Rn that satisfy all key-foreign key constraints and let Rpi de-
note the parent of some relation Ri. We can show that views
Vi and Vpi should satisfy the property πAttr(Vi)(Vpi) ⊆ Vi
(note: π is duplicate eliminating). For example, in Figure 6,
every distinct value of B in V1(A,B,C) occurs in some tu-
ple V2(B). However, the view instances generated in Step 1
may not satisfy this property. Therefore, in Step 2, we add
additional tuples to each Vi to ensure that this containment
property is satisfied in the resulting view instances. These
updates might cause some cardinality constraints to be vi-
olated, however we show shortly how the degree of these
violations can be bounded. In the final step, we construct
relation instances R1, . . . , Rn consistent with V1, . . . , Vn.

We now discuss how to minimize the error introduced in
Step 2. (Error is the absolute difference between required
and actual cardinalities of expressions in constraints.) Re-
call that all of our algorithms use the intervalization trick
(see Section 4.1). With intervalization, the value of an at-
tribute is constrained to come from some interval [vi, vj)
during data generation, but we are free to select any value
from the interval. We can minimize the error introduced
in Step 2 by picking values from an interval in a consistent
manner across all views. The following example illustrates
this idea.

Example 11. Consider two relations R1(K1, A, FK2) and
R2(K2, B) and four constraints:

|σB∈[1,5)(R2)| = 2

|σB∈[5,10)(R2)| = 3
|σB∈[1,2)(R1 1 R2)| = 2

|σB∈[2,10)(R1 1 R2)| = 2

Assume domain size D = 10. To identify view instances
V1(A,B) and V2(B) that satisfy all cardinality constraints,
LPAlg solves the following two LPs (using intervalization):

x[1,10)[1,2) = 2

x[1,10)[2,5) + x[1,10)[5,10) = 2

y[1,2) + y[2,5) = 2

y[5,10) = 3

Here x[··· ) denote LP variables corresponding to V1 and y[··· )
denote LP variables corresponding to V2. One solution of
these LPs is x[1,10)[1,2) = 2, x[1,10)[2,5) = 1, x[1,10)[5,10) = 1,



y[1,2) = 0, y[2,5) = 2, y[5,10) = 3. If we pick the minimum
possible value when selecting attribute values from an inter-
val, we get the instances of V1 and V2 (without boxed 1)
shown below.

A B

1 1

1 1

1 2

1 5

B

2

2

5

5

5

1

K1 A FK2

1 1 6

2 1 6

3 1 1

4 1 4

K2 B

1 2

2 2

3 5

4 5

5 5

6 1

V1(A,B) V2(B) R1(K1, A, FK2) R2(K2, B)

In Step 2 of our algorithm, we add the (boxed) tuple 1 to
V2(B) to ensure πB(V1) ⊆ V2. This update results in an ad-
ditive error of 1 in one of the constraints. The instances of
R1 and R2 that are consistent with V1 and V2 are also shown
above. We can verify that randomly and independently pick-
ing values from intervals results in a solution with a larger
error7.

In the full version, we present rounding techniques that to-
gether with the intervalization trick above ensure that the
additive error of any constraint is bounded by O(m), the
number of cardinality constraints. The full version also
presents extensions to the algorithm in Figure 7 that can
handle degree constraints, e.g., each tuple in R2 is refer-
enced by at most 10 tuples in R1. Such constraints allow us
to have finer control over the joins across relations.

4.4 Projections
This section briefly discusses how to handle cardinality

constraints with projections. Recall from Section 2 that only
duplicate eliminating projections are useful as constraints.
The general data generation problem involving projections
is very hard as the NEXP-completeness result suggests. In
the full version, we show that the data generation problem
over a single table with constraints that have just projections
and no selections is nontrivial and has connections to known
hard problems in combinatorial geometry.

Here we present an algorithm for the case of a single
table and a single attribute. The ideas behind this algo-
rithm can be combined with techniques from earlier sec-
tions to derive a more general solution for the case where at-
tributes involved in different projection constraints are non-
overlapping, meaning, if |πA1(. . .)| = k1 and |πA2(. . .)| = k2
are two constraints then either A1 = A2 or A1 ∩ A2 = ∅.

Let R(A) denote the table being generated. Each con-
straint Cj has one of two forms: |πA(σA∈[lj ,hj)(R))| = kj or
|σA∈[lj ,hj)(R)| = kj . We identify basic intervals [vi, vi+1)
(1 ≤ i < l) exactly as we did in Section 4.1. We now in-
troduce two variables x[vi,vi+1) and y[vi,vi+1) for each ba-
sic interval; x[vi,vi+1) denotes the number of tuples of R(A)
belonging to the interval and y[vi,vi+1), the number of dis-
tinct tuples belonging to the interval. We generate one lin-
ear equation corresponding to each constraint using x∗ vari-
ables for constraints not involving a projection and y∗ vari-
ables for constraints involving projections. For each inter-
val [vi, vi+1), we add two additional equations: y[vi,vi+1) ≤
7There exist techniques for consistently picking attribute values
from intervals that ensure greater randomness in the output in-
stances compared to the strategy of picking the minimum.

x[vi,vi+1) and y[vi,vi+1) ≤ (vi+1−vi). The first equation cap-
tures the constraint that in any interval the number of dis-
tinct values is not greater than the number of values (count-
ing duplicates) and the second captures the natural bound
on the number of distinct values in the interval.

As in Section 4.2, we solve the LP and perform random-
ized rounding. One tricky case happens when q ≤ y[vi,vi+1) ≤
x[vi,vi+1) < (q + 1) where q is some nonnegative integer. If
we independently round x[vi,vi+1) and y[vi,vi+1), we might
end up with y = q + 1 and x = q, which is inconsistent.
To resolve this problem, we use a slightly different rounding
procedure: We pick a random value r uniformly between q
and q + 1. We round x[vi,vi+1) (resp., y[vi,vi+1)) to q + 1 if
x[vi,vi+1) > r (resp., y[vi,vi+1) > r) and to q, otherwise. It is
not hard to see that the solution is consistent and satisfies
all constraints in expectation.

5. EXPERIMENTS

5.1 Setup
To generate a large number of meaningful cardinality con-

straints, we consider the following hypothetical scenario: We
have an instance of TPC-H benchmark database and our
goal is to generate a synthetic database instance such that a
workload of 8 queries Q1-Q10 (not including Q4 and Q9) has
similar performance characteristics over the synthetic and
original database. We do not consider queries Q4 and Q9
since Q4 has a nonequality predicate between two attributes
and Query Q9 has a LIKE predicate as the main predicate
of the query, and our algorithms currently do not handle ei-
ther of these types of predicates. Each TPC-H query has an
associated parameterization, and our workload consists of
various parameterizations of these 8 queries. For example,
in query Q3, we can substitute the parameter [SEGMENT]

with five different values and the parameter [DATE] with 30
different values.

The value distributions in TPC-H are fairly simple, and
we can “cheat” and generate an instance similar to the orig-
inal TPC-H database by generating attribute values almost
independently. But such generation would not be possible
if our database had the TPC-H schema, but complex value
correlations. We note in this context that once we fix the
constraints, the performance of our algorithms is not sen-
sitive to such correlations—these correlations only change
the cardinalities of the constraints, not the structure of the
constraints and the performance of our algorithms depends
on the structure of the constraints, not cardinality values.

If we assume that the performance of queries is a func-
tion of various intermediate join cardinalities, we get the
following methodology for generating constraints: For each
query, we consider the query plan produced by the query
optimizer and the various nodes in the query plan. Each
node corresponds to a relational expression, and we iden-
tify all nodes whose relational expressions involve only joins
and selections; we evaluate all such relational expressions for
various parameterizations, and use the resulting expressions
and cardinalities as input constraints. This produces a set
of 1100 constraints ranging from single table constraints to
join constraints involving all the TPC-H tables.

In the following, we report on various performance char-
acteristics of our algorithms when run over various subsets
of these 1100 constraints. Although we do not explicitly
present this result, the synthetic database generated using
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Figure 8: Total runtime

all of these 1100 constraints as input does indeed have a per-
formance characteristic similar to the original database for
the workload of 8 queries we start with.

Our overall experiment methodology is very similar to the
methodology used by [7, 22]. Also, since QAGen [6], reports
performance numbers over TPC-H as well, we can (roughly)
compare the performance of our algorithm with that of QA-
Gen using the numbers reported in [6].

All of our experiments were run on a dual core 2.4 GHz
machine with 6GB of main memory.

5.2 Results
We now report various performance results of our algo-

rithms. In all of the results that we report here, we use the
CLPAlg algorithm for identifying probability distribution
within a single view. The algorithm that uses markov blan-
kets has a worse performance than CLPAlg for this class
of inputs. For solving the the linear equations, we used
a commercial state-of-the-art LP solver. Unless mentioned
otherwise, we use TPC-H 1G for all of our experiments.

Figure 8 shows the overall running time of our algorithms
as we vary the number of input constraints. To vary the
number of constraints, we first ordered all the constraints
by the queries from which they were obtained. For example,
the constraints from Q1 occurred before constraints from
Q2 in this ordering, and we picked various prefixes of this
ordering to obtained subsets of different sizes.

Recall that our overall algorithm has three stages: In the
first stage, the algorithm sets up a linear program by an-
alyzing the input constraints, in the second step, the lin-
ear program is solved using the LP solver. The solution of
the linear program represents a probability distribution for
each view, and in the final step our algorithm samples from
this probability distribution to produce the output database.
Most of the overall time of our algorithm goes into the third
and final stage. The first stage takes negligible amount of
time and we report the time taken for the second stage (LP
solving) shortly. Overall we note that our algorithm is able
to generate a database instance for an input involving all
the 1100 constraints in less than 10 minutes.

Figure 9 shows the relative error of all the 1100 constraints
(when we use all the 1100 constraints as input). Each con-
straint is shown as a point in Figure 9. To better highlight
the errors, we ordered all the constraints (on the horizon-
tal axis) based on their cardinalities; constraints with larger
cardinalities are shown to the right and constraints with
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Figure 9: Relative errors in constraints

Table Extra tuples Table size

LINEITEM 0 6000000

ORDERS 24 1500000

CUSTOMER 18 150000

PARTSUPP 20 800000

PART 202 200000

SUPPLIER 0 10000

Figure 10: Error due to additional referential in-
tegrity tuples

smaller cardinalities are shown to the left. The relative error
is shown on the vertical axis. As expected (and predicted by
standard sampling theory), the constraints with larger car-
dinalities have smaller relative error and constraints with
smaller cardinalities have a larger relative error. But over-
all, most of the constraints are satisfied with less than 5%
error.

There are two sources of errors in our algorithm. The first
is introduced by sampling, and the second due to addition
of extra tuples in Step 2 of Figure 6 to ensure referential
integrity. Figure 10 shows the extra tuples added for each of
the 6 tables (with foreign keys) in TPC-H schema and the
overall table size. Figure 10 suggests that the error intro-
duced in this step is very small.

Our next set of experiments cover the size and complexity
of the linear program generated by our algorithm, and the
overall time taken to solve the linear program. Figure 11
shows the number of variables introduced by our algorithm
as we increase the number of constraints. There exists a
sudden jump in the number of constraints—this jump occurs
due to addition of constraints from Q8, which is a large
join query involving all the tables of the TPC-H schema.
Figure 12 shows the number of linear equations introduced
by our algorithm and Figure 13 shows the overall size of the
linear program setup by our algorithm. These two figures
also show a similar jump when query Q8 is introduced.

Figure 14 shows the time required by the LP solver to solve
the generated linear program as a function of the number of
constraints. The time required to solve the LP is less than 5
seconds even if we input all of the 1100 constraints. As men-
tioned in Section 1, an important aspect of our algorithm is
that it is not very sensitive to the size of the database being
generated. Figure 15 shows the time to solve the LP for
constraints derived from TPCH 0.1G database, and we note
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Figure 11: Number of variables in the LP
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Figure 12: Number of equations in the LP

that there is very little difference when we move from 0.1G
to 1G.

6. RELATED WORK
There is much work on generating synthetic databases [7,

6, 15, 22, 24, 5]. Current database generation tools [15, 18,
7] allow users to specify the data distributions of individ-
ual attributes or somewhat simplistic intra-attribute corre-
lations. For example, DGL (Data Generation Language) [7]
can specify something like “produces 65% of uniformly dis-
tributed and 35% of normally distributed rows”. Houkjaer
et al. [17] proposed to use a graph model, which holds the
primary-foreign keys and various other statistical informa-
tion, to guide the data generation process. While being very
efficient in producing large database instances, those tools
do not have much control over more complex data character-
istics, especially over the input/output sizes of the queries,
which are particularly important in testing the performance
of query plans or optimizers. Mannila et al. [24] first stud-
ied query-aware data generation. However, their focus is to
generate a small yet complete test dataset for the queries.
Bruno et al. [9] considered the problem of generating query
instances, rather than generating database instances, that
satisfy cardinality constraints on their sub-expressions.

There is also much work on generating non-relational
datasets. Several XML generators have been developed,
e.g., the Winsconsin XML generator [2], ToxGene [4] and
GxBE [12]. Among those, GxBE [12] is perhaps the closest
to ours in spirit in that it also allows users to specify car-
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Figure 13: Size of the LP
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Figure 14: Time to solve the LP

dinality constraints over XPath queries. Olston et al. [25]
studied the problem of generating example data for dataflow
programs (e.g., MapReduce and Pig Latin). However, their
goal is to produce a small dataset to illustrate the operator
behaviors as well as helping human understanding the pro-
gram. There is also a huge literature on generating graph
data (see e.g., [3, 21, 32, 20]). Typically, their goals are to
generate random graphs with certain properties on degree
distribution, edge density, diameter, and so on.

Recently, there have been increasing interests in data mask-
ing and privacy preserving techniques (see e.g., [29, 33, 23,
13, 10] and references therein). However, the fundamen-
tal difference of most of those work from ours is that they
generate a new database instance by modifying an exist-
ing one, while our data generation algorithms take only the
constraints as input (even though the constraints may be
extracted from existing databases).

7. CONCLUSION
We considered the problem of generating synthetic

databases and proposed a declarative approach for speci-
fying data characteristics using cardinality constraints. We
showed the problem is extremely hard in general, and de-
veloped a suite of efficient exact or approximate algorithms
for many important classes of constraints. Our experimental
results have demonstrated the effectiveness and efficiency of
our approach.

Our work opens up many avenues for further research.
For instance, it would be very interesting and important
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Figure 15: Time to solve the LP (1G vs 0.1G)

if one can handle cardinality constraints with overlapping
projections. We also intent to extend our current algorithms
to handle more general schemas and joins.
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