
On Approximating the Maximum Simple

Sharing Problem⋆

Danny Z. Chen1⋆⋆, Rudolf Fleischer2⋆ ⋆ ⋆, Jian Li2, Zhiyi Xie2, and Hong Zhu2†

1 Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA. E-mail: dchen@cse.nd.edu

2 Department of Computer Science and Engineering, Shanghai Key Laboratory of
Intelligent Information Processing, Fudan University, Shanghai, China.

Email: {rudolf,lijian83,xie zhiyi,hzhu}@fudan.edu.cn

Abstract. In the maximum simple sharing problem (MSS), we want to
compute a set of node-disjoint simple paths in an undirected bipartite
graph covering as many nodes as possible of one layer of the graph, with
the constraint that all paths have both endpoints in the other layer. This
is a variation of the maximum sharing problem (MS) that finds important
applications in the design of molecular quantum-dot cellular automata
(QCA) circuits and physical synthesis in VLSI. It also generalizes the
maximum weight node-disjoint path cover problem. We show that MSS
is NP-complete, present a polynomial-time 5

3
-approximation algorithm,

and show that it cannot be approximated with a factor better than 740
739

unless P = NP .

1 Introduction

Let G = (U, V ; E) be an undirected bipartite graph with upper nodes U and
lower nodes V . An upper node u ∈ U forms a sharing with two distinct lower
nodes v1, v2 ∈ V if (u, v1) and (u, v2) are both edges in E. In the maximum
simple sharing problem (MSS), we want to cover the maximum number of upper

⋆ This work was supported in part by a grant from the Shanghai Key Laboratory of
Intelligent Information Processing, Fudan University, Shanghai, China. The order
of authors follows the international standard of alphabetic order of the last name.
In China, where first-authorship is a particularly important aspect of a publication,
the order of authors should be Zhiyi Xie, Jian Li, Hong Zhu, Danny Z. Chen, and
Rudolf Fleischer.

⋆⋆ The research of this author was supported in part by the US National Science Foun-
dation under Grant CCF-0515203. This work was partially done while the author
was visiting the Shanghai Key Laboratory of Intelligent Information Processing at
Fudan University, China.

⋆ ⋆ ⋆ The work described in this paper was partially supported by a grant from the Na-
tional Natural Science Fund China (grant no. 60573025).

† The work described in this paper was partially supported by a grant from the Na-
tional Natural Science Fund China (grants #60496321, #60373021, and #60573025)
and the Shanghai Science and Technology Development Fund (grant #03JC14014).



UU

V V

Fig. 1. The MSS problem: A non-optimal maximal solution (left), and an optimal
solution (right).

nodes by sharings such that the edges of the sharings form a set of node-disjoint
simple paths in G, where every path has both endpoints in V . See Figure 1 for
an example.

MSS is a variant of the maximum sharing problem (MS) where a node in U

may be involved in multiple sharings (i.e., the paths formed by the sharings may
be non-simple and may overlap in the nodes of U). In a companion paper [10]
we give a 1.5-approximation for MS. Unfortunately, the techniques used for that
result do not carry over to the restricted variant MSS.

MS can help us to solve the node-duplication based crossing elimination prob-
lem (NDCE) [1, 4]. In a two-layered (bipartite) graph, we want to duplicate as
few nodes as possible in the first layer such that afterwards all connections be-
tween the two layers can be realized crossing-free (after a suitable permutation
of the nodes in both layers). Intuitively, each sharing in an MS solution tells us
how to avoid a node duplication. MSS is equivalent to restricted NDCE where
duplicated nodes can only have a single neighbor in V . Variants of NDCE play
a key role in the design of molecular quantum-dot cellular automata (QCA) cir-
cuits [1, 12, 15] and physical synthesis [3] which is similar to the key role played
by the well studied crossing minimization problem [9, 11, 14] in the design of
traditional VLSI circuit layouts.

MSS also generalizes the NP-hard maximum weight node-disjoint path cover
problem (PC) where we want to find in an undirected graph a set of node-
disjoint paths maximizing the number (or total weight) of the edges used by the
paths. It is easy to see that PC is equivalent to MSS when all nodes in U have
degree two (V and U correspond to the nodes and edges of the PC instance,
respectively). PC is equivalent to the (1, 2)-TSP problem in the following sense.
An approximation ratio of γ for one problem yields an approximation ratio of

1
2−γ

for the other [13] (note that we adapted their formula for the approximation

ratio to our different definition of approximation ratio). Since (1, 2)-TSP can be
approximated with a factor of 8

7 [2], PC, and thus the case of MSS where all
nodes in U have degree two, can be approximated with a factor of 7

6 . On the
other hand, it is NP-hard to approximate (1, 2)-TSP better than with a factor of
741
740 [7]. Thus, MSS cannot be approximated with a factor better than 740

739 unless
P = NP .

An MSS solution is maximal if it cannot be enlarged by extending any path
from its endpoints without destroying the current solution; otherwise, it is ex-
tendible. Note that we can enlarge any given solution to a maximal solution
in polynomial time. The greedy algorithm that always chooses an unused node
in V and arbitrarily extends a maximal node-disjoint path in both endpoints

2



obviously constructs a maximal solution. Since a sharing touches exactly three
nodes, each sharing in a maximal solution can only block three sharings in an
optimal solution. Thus, any maximal solution is a 3-approximation for MSS.

Our main contribution is to show that MSS can be approximated with a
factor of 5

3 . Our algorithm is based on a relaxation of the path constraint to
allow solutions to contain node-disjoint simple cycles as well as paths, still max-
imizing the number of nodes of U covered by the paths and cycles. We call this
relaxed version the cyclic maximum simple sharing problem (CMSS). While MSS
is NP-hard, CMSS can be solved optimally in polynomial time as a maximum
weight perfect matching problem (MWPM) [5]. A similar phenomenon occurs
in the 2-matching relaxation of TSP [8] which can be computed in polynomial
time [6]. The difference is that a 2-matching is a pure cycle cover, whereas CMSS
computes a mixture of cycles and paths. Since each cycle in a CMSS solution
contains at least two sharings, we can get a 2-approximate MSS solution by
removing one sharing from each cycle (thus breaking the cycle into a path).
To obtain an approximation factor of 5

3 , we must carefully construct a set of
node-disjoint simple paths from an optimal CMSS solution.

We assume in this paper that every node v ∈ V has degree at least two.
In MS we can get rid of degree-one nodes by adding a parallel edge to the one
edge connecting the node, giving rise to the so-called q-MS problem in [10]. This
approach does not work for MSS. Instead, we must duplicate the upper node
adjacent to a degree-one lower node (we can w.l.o.g. assume that there is only
one degree-one neighbor) together with all its adjacent edges. Then, maximizing
the sharings is still equivalent to minimizing the node duplications.

The rest of this paper is organized as follows. First, we show in Section 2 that
MSS is equivalent to restricted NDCE. In Section 3 we show how to solve CMSS
in polynomial time. In Section 4 we then show how to transform an optimal
CMSS solution into a 5

3 -approximation for MSS.

2 MSS and Restricted NDCE

The input to NDCE is a bipartite graph G = (U, V ; E). We want to duplicate
as few nodes of U as possible to achieve a crossing-free drawing of G with the
nodes U (and their copies) drawn (in some suitable order) along a line (the upper
layer) and the nodes V drawn along another parallel line (the lower layer). In
restricted NDCE the copies of nodes in U can only have a single neighbor in
V . The following theorem shows that minimizing the number of duplications is
equivalent to maximizing the number of simple sharings.

Theorem 1. Given a bipartite graph G = (U, V ; E) in which every node has
degree at least two, there is a solution of the MSS problem containing m simple
sharings if and only if we can duplicate |E| − |U | − m nodes of U to eliminate
all wire crossings.

Proof. Denote the layout of the circuit without wire crossings by G′ = (U ′, V ′; E′).
U ′ consists of |U | original nodes and the newly duplicated nodes. One way to

3



achieve crossing-free wires is to duplicate |E| − |U | nodes, i.e., every edge of E

has a distinct endpoint in U ′. To reduce the number of node duplications we
observe that the original nodes (not the duplicated nodes) in U ′ can connect to
more than one node, thus reducing the number of duplications.

Consider a permutation of the nodes in V ′, and let vi and vi+1 be two con-
secutive nodes. It is easy to see that vi and vi+1 can have at most one common
neighbor in U ′; otherwise there would be some wire crossings. It can also be seen
that in G′ the degree of a node in U ′ cannot be bigger than two; otherwise edge
crossings cannot be avoided because we cannot duplicate nodes in V .

In G, if there are m simple sharings, then we can arrange m pairs of nodes
in V consecutively so that each pair of nodes shares a common neighbor in U ,
thus reducing the duplication number by m. The other direction can be proved
by a similar argument. ⊓⊔

3 The Cyclic Maximum Simple Sharing Problem (CMSS)

The cyclic maximum simple sharing problem (CMSS) is defined as follows. Given
a bipartite graph G = (U, V ; E), find a set C of node-disjoint simple cycles and
simple paths in G such that every path begins at a node of V and ends at another
node of V , maximizing the number of nodes in U covered by C (i.e., maximizing
the number of sharings). Since any MSS solution is also a CMSS solution, the
optimal objective function value of MSS is upper-bounded by the optimal CMSS
value.

We now show how to solve CMSS by reducing it to the maximum weight
perfect matching problem (MWPM) on undirected graphs which can be solved
optimally in polynomial time [5]. Given a bipartite graph G = (U, V ; E), we
construct an undirected graph H as follows. We want to represent every node
and every edge of G by a pair of adjacent nodes in H . If a node or an edge in
G is not used by any sharing, then the corresponding paired nodes in H are
matched by their connecting edge. Otherwise, they are matched by other edges.

Figure 2 shows an example of the construction. For each node v ∈ U ∪V , we
add to H two nodes v(1) and v(2) connected by an edge of weight zero. Similarly,
for each edge e ∈ E, we add to H two nodes e(1) and e(2) connected by an edge
of weight zero. In addition, for each edge e = (u, v), with u ∈ U and v ∈ V , we
add the four edges (u(1), e(1)), (u(2), e(1)), (v(1), e(2)), and (v(2), e(2)), where the
first edge has weight one and the other three edges have weight zero. Finally, for

any two nodes v1 and v2 in V , we add an edge (v
(2)
1 , v

(2)
2 ) of weight zero to H .

It is easy to see that we can construct H in time O(|E| + |V |2).

Theorem 2. G has a CMSS solution with k sharings if and only if H has a
perfect matching of weight k.

Proof. Figure 2 illustrates the proof. We prove the “only if” direction first. Given
a set C of node-disjoint simple paths and cycles in G with k sharings, we construct
a perfect matching M of weight k in H , as follows. We treat C as a subgraph

4



u
(1)
1 u

(1)
2

v
(2)
1 v

(2)
2 v

(2)
3

HG

v1 v2 v3 v
(1)
1 v

(1)
2 v

(1)
3

u
(2)
2u

(2)
1

u2u1

e1

e4

e5e3 e
(2)
1

e
(1)
2

e2

e
(1)
1 e

(1)
3

e
(2)
2 e

(2)
4

e
(1)
5

e
(1)
4

e
(2)
5

e
(2)
3

Fig. 2. Illustrating the proof of Theorem 2: The equivalence between CMSS in G and
MWPM in H .

of G. For each node v of G not covered by C we add the edge (v(1), v(2)) to M .
Similarly, we add the edge (e(1), e(2)) to M for each edge e ∈ E not in C.

We now classify the nodes of C into three types: (i) upper nodes, (ii) lower
nodes of degree two in C, and (iii) lower nodes of degree one in C. All nodes of
type (i) have degree two in C, and the number of nodes of type (iii) is even.

If u ∈ U is of type (i), let e1 and e2 be the two edges adjacent to u in C. We

add the two edges (u(1), e
(1)
1 ) and (u(2), e

(1)
2 ) to M , increasing the weight of M

by one. If v ∈ V is of type (ii), let f1 and f2 be the two edges adjacent to v in C.

We add the two edges (v(1), f
(2)
1 ) and (v(2), f

(2)
2 ) to M . If w ∈ V is of type (iii),

let g be the edge adjacent to w in C. We add the edge (w(1), g(2)) to M .

All these operations are possible because a node or an edge in G can appear
at most once in C. Now, all nodes in H are matched except those of the form
w(2) corresponding to a lower node w ∈ V of type (iii). Because there is an even
number of such nodes and they are all pairwise connected, we can arbitrarily
match them. Now we have a perfect matching M in H . The weight of M is k,
the number of nodes of type (i).

Next, we prove the “if” direction. Given a perfect matching M of weight k in
H , we construct a CMSS solution in G, as follows. We call a node v ∈ U ∪V used
if the corresponding edge in H , (v(1), v(2)), does not belong to M . Similarly, we
call an edge e ∈ E used edge if the corresponding edge in H , (e(1), e(2)), does
not belong to M .

Let e = (u, v) be a used edge, where u ∈ U and v ∈ V . Since (e(1), e(2)) is not
in M , e(1) must be matched either with u(1) or u(2), and e(2) must be matched
either with v(1) or v(2). Thus, both u and v are used nodes. On the other hand,
let u ∈ U be a used upper node. Since (u(1), u(2)) is not in M , u(1) must be

matched with some node e
(1)
1 and u(2) must be matched with some node e

(1)
2 ,

where e1 and e2 are two edges in E adjacent to u. Thus, both e1 and e2 are used
edges and there are no other edges of E corresponding to used edges adjacent to
u in G. Only the used upper nodes contribute one to the weight of M . Similarly,
each used lower node v ∈ V must be adjacent to one or two used edges in E.

5



In summary, every used edge connects two used nodes, every used upper node
is adjacent to exactly two used edges, and every used lower node is adjacent
to either one or two used edges. Thus, all used nodes and used edges form a
subgraph C of G consisting of node-disjoint simple cycles and simple paths such
that every path begins at a node of V and ends at another node of V . The
number of used nodes in U (i.e., the number of sharings contained in C) equals
the weight k of M . ⊓⊔

Corollary 3. CMSS can be solved optimally in polynomial time. ⊓⊔

4 Obtaining a 5

3
-approximate MSS Solution

Given a bipartite graph G = (U, V ; E), let S denote a (not necessarily optimal)
CMSS solution, i.e., S is a subgraph of G. We first classify the lower nodes V

into three types: (i) white nodes, which are not covered by S, (ii) gray nodes,
which have degree one in S (i.e., the endpoints of the paths in S), and (iii) black
nodes, which have degree two in S (i.e., the lower nodes lying in the interior of
a path or on a cycle in S). Nodes on a cycle in S are also called cycle nodes.
Cycle nodes are always black. Note that the color of a lower node depends on
the subgraph S and may vary while the subgraph S changes.

Let C be a cycle in S. An edge not belonging to C but connected to an upper
node in C is a short tail of C. A long tail is a chain of two edges not belonging
to C starting at a lower node of C with the middle (upper) node not in S (i.e., a
long tail is a sharing). We often do not distinguish between short and long tails,
just calling them tails. A tail of C has the color of its endpoint not in C. Note
that the edges of a tail never belong to S. See Figure 3 for an example.

v

u

V

U

Fig. 3. A gray long tail at v and a white short tail at u.

Lemma 4. Let C be a cycle in S.

(a) If C has a white tail, we can break C into a path with the same number of
sharings.

(b) If C has a gray tail ending at an endpoint of a path D in S, then we can
break C by merging it with D into a single path with the same number of
sharings.

6



(c) If C has a tail ending at a node of another cycle D in S, then we can merge
C and D into a single path at the cost of losing one sharing.

Proof. See Fig. 4. ⊓⊔

(a)

(b)

(c)

Fig. 4. Three ways of breaking a cycle, proving Lemma 4.

We now present our approximation algorithm. For the input graph G =
(U, V ; E), let OPT ⋆ denote an optimal CMSS solution. We apply the following
algorithm to OPT ⋆.

Cycle-breaking Algorithm

Step 0: Let S = OPT ⋆.
Step 1: Repeatedly pick a cycle C in S with a white or gray tail and break C

into a path as in Lemma 4 (a) or (b), until no such cycle exists. Then
go to Step 2.

Step 2: Pick a pair of cycles C and D such that C has a tail ending at a cycle
node in D, merge C and D into a path P as in Lemma 4 (c), and then
go to Step 3. Go to Step 4 if no such pair exists.

Step 3: Let v1 and v2 denote the two (gray) endpoints of P . Perform the fol-
lowing two substeps:
Step 3(a): Repeatedly pick a cycle C that has a tail ending at v1 or

v2, and break C as in Lemma 4 (b). Then go to Step 3(b).
Step 3(b): For the two endpoints v1 and v2 of P obtained in Step 3(a),

if there is an upper node u ∈ U not in S and both (v1, u)
and (v2, u) are edges in E, then add the sharing (v1, u, v2)
to S, closing a cycle. Then go to Step 2.

Step 4: Break all remaining cycles in S by arbitrarily removing one sharing
from each cycle.

The output from the algorithm above is our approximate MSS solution. It
is easy to see that the algorithm takes only polynomial time. Note that Steps 2

and 3 are iterated at most ⌊ |U|
2 ⌋ times since each iteration merges at least two

cycles into either one path or one cycle. Moreover, if at the end of an iteration
of Steps 2 and 3 a path is generated, then it will stay as a path from that point
on.

7



Let SOL⋆ denote the CMSS solution before we begin with Step 4. Further-
more, let |OPT ⋆| and |SOL⋆| denote the number of sharings contained in OPT ⋆

and SOL⋆, respectively.

Lemma 5. Let p be the number of paths that are generated and added to SOL⋆

in Steps 2 and 3. Then |OPT ⋆| = |SOL⋆| + p.

Proof. Let s(S) denote the number of sharings in S during the algorithm. By
Lemma 4 (a) and (b), we do not lose any sharings in Step 1. Thus, s(S) = |OPT ⋆|
at the end of Step 1. For each iteration of Steps 2 and 3, by Lemma 4 (b) and
(c), we lose one sharing in Step 2, but we do not lose any sharing in Step 3(a).
Therefore, if the algorithm does not find a suitable upper node in Step 3(b),
then one path is generated that will stay as a path from that point on and we
lose one sharing. On the other hand, if the algorithm forms a cycle in Step 3(b),
then no path is generated and no sharing is lost. Hence, the number of paths
generated is equal to the number of sharings lost in Steps 2 and 3, which is
exactly p. Therefore, |OPT ⋆| = |SOL⋆| + p. ⊓⊔

Lemma 6. Let (v1, u, v2) be a sharing in G such that the upper node u is not
covered by a path in SOL⋆.

(a) Then at least one of v1 and v2 is black in SOL⋆.
(b) If v1 is a cycle node in SOL⋆, then v2 is also black.
(c) If v1 and v2 are both cycle nodes, then they belong to the same cycle in SOL⋆.

Proof. Part (c) follows immediately from the termination codition of Step 2. The
other two parts we prove by induction on the number of iterations of Steps 2
and 3. Note that |S| = |OPT ⋆| at the end of Step 1. The termination condition
of Step 1 implies part (b) at the end of Step 1, and part (a) if u is covered by
a cycle in S at that time. If u is not covered by S and both v1 and v2 were not
black after Step 1, we could add the sharing (v1, u, v2) to S and get a CMSS
solution better than OPT ⋆, which is impossible.

In Steps 2 and 3 we do not destroy a path, and we do not create new black
nodes or cycle nodes. However, it may happen that we break a cycle into a path,
thus turning two black nodes into gray nodes (the endpoints of the path). If a
tail ends at one of these gray nodes, Step 3(a) does not terminate. This implies
that part (b) holds after each iteration of Steps 2 and 3.

To prove part (a), assume there is a sharing (v1, u, v2) with u not covered
by a path at the end of an iteration of Steps 2 and 3. Since part (a) holds at
the beginning of the iteration, at least one of the two lower nodes must have
been black at that time. Since only cycle nodes can change their color during
an iteration, it was a cycle node. By part (b), the other node must also have
been black before the iteration. Since both nodes became gray, they are the
two endpoints of the path created in the iteration. But then we would add the
sharing (v1, u, v2) to S in Step 3(b), making both nodes black again. ⊓⊔

Now we have all the ingredients to prove our main result. Let SOL denote
the final MSS solution obtained by the “Cycle-breaking Algorithm” on G.

8



Theorem 7. SOL is a 5
3 -approximate MSS solution.

Proof. We partition the paths in SOL into three sets: (i) SOL1, the paths that
exist right after Step 1, (ii) SOL2, the paths created in Steps 2 and 3, and (iii)
SOL4, the paths created in Step 4. We denote the number of sharings in SOLi

by si, for i = 1, 2, 4, and we denote the number of paths in SOLi by pi. Each
path in SOL1 or SOL2 is a path in SOL⋆, and each path in SOL4 corresponds
to a cycle in SOL⋆ with the same set of lower nodes.

Let OPT denote an optimal MSS solution. We partition the sharings in
OPT into three disjoint subsets. 1) The set OPT1+2 of all sharings whose
upper nodes are contained in the paths in SOL1 or SOL2. 2) The set OPT4

of all sharings whose upper nodes are not contained in any paths in SOL1 or
SOL2, and whose two lower nodes are contained in some paths in SOL4. 3)
The set OPTother of all other sharings.

For each sharing (v1, u, v2) in OPT4, in SOL⋆ both v1 and v2 are cycle nodes
and u is not contained in any path. Thus, by Lemma 6 (c), v1 and v2 are in
the same cycle in SOL⋆, i.e., in the same path in SOL4. Let s(P ) denote the
number of sharings in a simple path P . For each path P in SOL4 there are
at most s(P ) sharings that are in OPT4. Summing over all paths in SOL4, we
obtain |OPT4| ≤ s4.

Similarly, for each sharing (v1, u, v2) in OPTother, u is not in any path in
SOL⋆. Thus, if v1 (or v2) is a cycle node in SOL⋆, then by Lemma 6 (b), v2 (or
v1) is a black node in a path in SOL⋆. On the other hand, if neither v1 nor v2 is
a cycle node in SOL⋆, then by Lemma 6 (a) at least one of v1 and v2 is a black
node on a path in SOL⋆. Hence, in either case, the sharing (v1, u, v2) has at least
one black node on a path in SOL⋆, i.e., on a path in SOL1 or SOL2. Since a
lower node can appear in at most two sharings in OPT , we have |OPTother| ≤
2 · #(black nodes in a path in SOL1 or SOL2) = 2(s1 − p1 + s2 − p2).

Since the number of sharings in OPT1+2 cannot exceed the number of shar-
ings in SOL1 and SOL2, we have |OPT1+2| ≤ s1 + s2. Altogether,we have
|OPT | = |OPT1+2|+ |OPT4|+ |OPTother| ≤ s1 +s2 +s3 +2(s1−p1 +s2−p2) =
|SOL| + 2(s1 − p1 + s2 − p2).

Note that we lost p4 sharings in Step 4 of the algorithm. Moreover, by Lemma
5, |OPT ⋆| = |SOL⋆| + p2. Thus, |OPT | ≤ |OPT ⋆| = |SOL| + p2 + p4 and
therefore |OPT | + 2 · |OPT | ≤ |SOL| + 2(s1 − p1 + s2 − p2) + 2(|SOL| + p2 +
p4) = 3 · |SOL| + 2(s1 + s2 + p4) − 2p1. Since p4 ≤ s4 and p1 ≥ 0, this implies
3 · |OPT | ≤ 3 · |SOL| + 2(s1 + s2 + s4) = 5 · |SOL|. ⊓⊔

The 5
3 approximation ratio of our algorithm is tight, as shown by the example

in Fig. 5.

References

1. D. A. Antonelli, D. Z. Chen, T. J. Dysart, X. S. Hu, A. B. Khang, P. M. Kogge,
R. C. Murphy, and M. T. Niemier. Quantum-dot cellular automata (QCA) cir-
cuit partitioning: problem modeling and solutions. Proc. 41st ACM/IEEE Design
Automation Conference (DAC), pp. 363–368, 2004.

9



3SOL 2SOL 3SOL

  Edges in SOL

  Edges in OPT

Fig. 5. An example showing that our approximation ratio 5
3

is tight.

2. P. Berman and M. Karpinski. 8
7
-approximation algorithm for (1, 2)-TSP. Proc.

17th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’06), pp. 641–648,
2006.

3. A. Cao and C.-K. Koh. Non-crossing OBDDs for mapping to regular circuit struc-
tures. Proc. IEEE International Conference on Computer Design, pp. 338–343,
2003.

4. A. Chaudhary, D. Z. Chen, X. S. Hu, M. T. Niemier, R. Ravinchandran, and K. M.
Whitton. Eliminating wire crossings for molecular quantum-dot cellular automata
implementation. Proc. IEEE/ACM International Conference on Computer-Aided
Design, pp. 565–571, 2005.

5. W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS
J. on Computing, 11(2):138–148, 1999.

6. J. Edmonds. Maximum matching and a polyhedron with 0,1-nodes. J. Res. Nat.
Bur. Stand. B, 69:125–130, 1965.

7. L. Engebretsen and M. Karpinski. TSP with bounded metrics. Journal of Com-
puter and System Sciences, 72(4):509–546, 2006.

8. S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings. Proc.
35th Annual Symp. on Foundations of Computer Science (FOCS’94), pp. 166–177,
1994.

9. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New
York, 1990.

10. J. Li, A. Chaudhary, D. Z. Chen, R. Fleischer, X. S. Hu, M. T. Niemier, Z. Xie, and
H. Zhu. Approximating the Maximum Sharing Problem. Submitted for publication,
2006.

11. M. Marek-Sadowska and M. Sarrafzadeh. The crossing distribution problem, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 14(4):423–
433, 1995.

12. M. T. Niemier and P. M. Kogge. Exploring and exploiting wire-level pipelining
in emerging technologies, Proc. 28th Annual International Symp. on Computer
Architecture, pp. 166–177, 2001.

13. C. H. Papadimitriou and M. Yannakakis. The Traveling Salesman Problem with
distances one and two, Mathematics of Operations Research, 18(1):1–11, 1993.

14. C. D. Thompson. Area-time complexity for VLSI, Proc. 11th Annual ACM Symp.
on Theory of Computing (STOC’79), pp. 81–88, 1979.

15. P. D. Tougaw and C. S. Lent. Logical devices implemented using quantum cellular
automata, J. of App. Phys., 75:1818, 1994.

10


