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Abstract. Consider a random graph model where each possible edge e
is present independently with some probability pe. We are given these
numbers pe, and want to build a large/heavy matching in the randomly
generated graph. However, the only way we can find out whether an edge
is present or not is to query it, and if the edge is indeed present in the
graph, we are forced to add it to our matching. Further, each vertex
i is allowed to be queried at most ti times. How should we adaptively
query the edges to maximize the expected weight of the matching? We
consider several matching problems in this general framework (some of
which arise in kidney exchanges and online dating, and others arise in
modeling online advertisements); we give LP-rounding based constant-
factor approximation algorithms for these problems. Our main results
are:
• We give a 5.75-approximation for weighted stochastic matching on

general graphs, and a 5-approximation on bipartite graphs. This an-
swers an open question from [Chen et al. ICALP 09].

• Combining our LP-rounding algorithm with the natural greedy al-
gorithm, we give an improved 3.88-approximation for unweighted
stochastic matching on general graphs and 3.51-approximation on
bipartite graphs.

• We introduce a generalization of the stochastic online matching
problem [Feldman et al. FOCS 09] that also models preference-
uncertainty and timeouts of buyers, and give a constant factor ap-
proximation algorithm.

1 Introduction

Motivated by applications in kidney exchanges and online dating, Chen et al. [4]
proposed the following stochastic matching problem: we want to find a maximum
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matching in a random graph G on n nodes, where each edge (i, j) ∈ [
(
n
2

)
] exists

with probability pij , independently of the other edges. However, all we are given
are the probability values {pij}. To find out whether the random graph G has the
edge (i, j) or not, we have to try to add the edge (i, j) to our current matching
(assuming that i and j are both unmatched in our current partial matching)—we
call this “probing” edge (i, j). As a result of the probe, we also find out if (i, j)
exists or not—and if the edge (i, j) indeed exists in the random graph G, it gets
irrevocably added to the matching. Such policies make sense, e.g., for dating
agencies, where the only way to find out if two people are actually compatible is
to send them on a date; moreover, if they do turn out to be compatible, then it
makes sense to match them to each other. Finally, to model the fact that there
might be a limit on the number of unsuccessful dates a person might be willing
to participate in, “timeouts” on vertices are also provided. More precisely, valid
policies are allowed, for each vertex i, to only probe at most ti edges incident
to i. Similar considerations arise in kidney exchanges, details of which appear
in [4].

Chen et al. asked the question: how can we devise probing policies to maxi-
mize the expected cardinality (or weight) of the matching? They showed that the
greedy algorithm that probes edges in decreasing order of pij (as long as their
endpoints had not timed out) was a 4-approximation to the cardinality version
of the stochastic matching problem. This greedy algorithm (and other simple
greedy schemes) can be seen to be arbitrarily bad in the presence of weights,
and they left open the question of obtaining good algorithms to maximize the
expected weight of the matching produced. In addition to being a natural gener-
alization, weights can be used as a proxy for revenue generated in matchmaking
services. (The unweighted case can be thought of as maximizing the social wel-
fare.) In this paper, we resolve the main open question from Chen et al.:

Theorem 1 There is a 5.75-approximation algorithm for the weighted stochastic
matching problem. For bipartite graphs, there is a 5-approximation algorithm.

Our main idea is to use the knowledge of edge probabilities to solve a linear
program where each edge e has a variable 0 ≤ ye ≤ 1 corresponding to the
probability that a strategy probes e (over all possible realizations of the graph).
This is similar to the approach for stochastic packing problems considered by
Dean et al. [6, 5]. We then give two different rounding procedures to attain the
bounds claimed above. The first algorithm (§2.1) is very simple: it considers
edges in a uniformly random order and probes each edge e with probability
proportional to ye; the analysis uses Markov’s inequality and a Chernoff-type
bound (Lemma 2). The second algorithm (§2.2) is more nuanced: we use the
y-values to define an auxiliary LP that is shown to be integral, and then probe
only the edges chosen by this auxiliary LP; the analysis here requires more work
and uses certain ideas from the generalized assignment problem [18].

This second rounding algorithm can also be extended to general graphs, but
it results in a slightly worse approximation ratio of 7.5. However, this approach
has the following two advantages:



• The probing strategy returned by the algorithm is in fact matching-probing [4],
where we are given an additional parameter k and edges need to be probed
in k rounds, each round being a matching. It is clear that this matching-
probing model is more restrictive than the usual edge-probing model (with
timeouts min{ti, k}) where one edge is probed at a time; this algorithm
obtains a matching-probing strategy that is only a small constant factor
worse than the optimal edge-probing strategy. Hence we also obtain the
same constant approximation guarantee for weighted stochastic matching in
the matching-probing model; previously only a logarithmic approximation
in the unweighted case was known [4].

• We can combine this algorithm with the greedy algorithm [4] to obtain im-
proved bounds for unweighted stochastic matching:

Theorem 2 There is a 3.88-approximation algorithm for the unweighted stochas-
tic matching problem; this improves to a 3.51-approximation algorithm in bipar-
tite graphs.

Apart from solving these open problems and giving improved ratios, our LP-
based analysis turns out to be applicable in a wider context:
Online Stochastic Matching Revisited. In a bipartite graph (A,B; E) of
items i ∈ A and potential buyer types j ∈ B, pij denotes the probability that a
buyer of type j will buy item i. A sequence of n buyers are to arrive online, where
the type of each buyer is an i.i.d. sample from B according to some pre-specified
distribution—when a buyer of type j appears, he can be shown a list L of up to
tj as-yet-unsold items, and the buyer buys the first item on the list according
to the given probabilities p·,j . (Note that with probability

∏
i∈L(1 − pij), the

buyer leaves without buying anything.) What items should we show buyers when
they arrive online, and in which order, to maximize the expected weight of the
matching?

Theorem 3 There is a 7.92-approximation algorithm for the above online stochas-
tic matching problem.

This question is an extension of similar online stochastic matching questions
considered earlier in [7]—in that paper, wij , pij ∈ {0, 1} and tj = 1. Our model
tries to capture the facts that buyers may have a limited attention span (using
the timeouts), they might have uncertainties in their preferences (using edge
probabilities), and that they might buy the first item they like rather than
scanning the entire list.

Other Extensions. The proof in [4] that the greedy algorithm for stochastic
matching was a 4-approximation in the unweighted case was based on a some-
what delicate charging scheme involving the decision trees of the algorithm and
the optimal solution. We show that the greedy algorithm, which was defined
without reference to any LP, admits a simple LP-based analysis and is a 5 ap-
proximation.

We also consider the model from [4] where one can probe as many as C edges
in parallel, as long as these C edges form a matching; the goal is to maximize



the expected weight of the matched edges after k rounds of such probes. We
improve on the min{k,C}-approximation offered in [4] (which only works for
the unweighted version), and present a constant factor approximation for the
weighted cardinality constrained multiple-round stochastic matching.

We also extend our analysis to a much more general situation where we try
to pack k-hyperedges with random sizes into a d-dimensional knapsack of a given
size; this is just the stochastic knapsack problem of [5], but where we consider
the situation where k ¿ d. For this setting of parameters, we improve on the√

d-approximation of [5] and present a 2k-approximation algorithm.
Due to lack of space, the details on these extensions as well as the omitted

proofs in this extended abstract can be found in a full version of the paper [1].

Related Work. As mentioned above, perhaps the work most directly related
to this work is that on stochastic knapsack problems (Dean et al. [6, 5]) and
multi-armed bandits (see [9, 10] and references therein). Also related is some
recent work [2] on budget constrained auctions, which uses similar LP rounding
ideas.

In recent years stochastic optimization problems have drawn much attention
from the theoretical computer science community where stochastic versions of
several classical combinatorial optimization problems have been studied. Some
general techniques have also been developed [11, 19]. See [20] for a survey.

The online bipartite matching problem was first studied in the seminal pa-
per by Karp et al. [13] and an optimal 1 − 1/e competitive online algorithm
was obtained. Katriel et al. [14] considered the two-stage stochastic min-cost
matching problem. In their model, we are given in a first stage probabilistic in-
formation about the graph and the cost of the edges is low; in a second stage,
the actual graph is revealed but the costs are higher. The original online stochas-
tic matching problem was studied recently by Feldman et al. [7]. They gave a
0.67-competitive algorithm, beating the optimal 1− 1/e-competitiveness known
for worst-case models [13, 12, 16, 3, 8]. Our model differs from that in having a
bound on the number of items each incoming buyer sees, that each edge is only
present with some probability, and that the buyer scans the list linearly (until
she times out) and buys the first item she likes.

Our problem is also related to the Adwords problem [16], which has applica-
tions to sponsored search auctions. The problem can be modeled as a bipartite
matching problem as follows. We want to assign every vertex (a query word)
on one side to a vertex (a bidder) on the other side. Each edge has a weight,
and there is a budget on each bidder representing the upper bound on the total
weight of edges that may be assigned to it. The objective is to maximize the
total revenue. The stochastic version in which query words arrive according to
some known probability distribution has also been studied [15].

Preliminaries. For any integer m ≥ 1, define [m] to be the set {1, . . . ,m}. For
a maximization problem, an α-approximation algorithm is one that computes a



solution with expected objective value at least 1/α times the expected value of
the optimal solution.

We must clarify here the notion of an optimal solution. In standard worst
case analysis we would compare our solution against the optimal offline solution,
e.g. the value of the maximum matching, where the offline knows all the edge
instantiations in advance (i.e. which edge will appear when probed, and which
will not). However, it can be easily verified that due to the presence of timeouts,
this adversary is too strong [4]. Hence, for all problems in this paper we consider
the setting where even the optimum does not know the exact instantiation of
an edge until it is probed. This gives our algorithms a level playing field. The
optimum thus corresponds to a “strategy” of probing the edges, which can be
chosen from an exponentially large space of potentially adaptive strategies.

We note that our algorithms in fact yield non-adaptive strategies for the
corresponding problems, that are only constant factor worse than the adaptive
optimum. This is similar to previous results on stochastic packing problems:
knapsack (Dean et al. [6, 5]) and multi-armed bandits (Guha-Munagala [9, 10]
and references therein).

2 Stochastic Matching

We consider the following stochastic matching problem. The input is an undi-
rected graph G = (V, E) with a weight we and a probability value pe on each
edge e ∈ E. In addition, there is an integer value tv for each vertex v ∈ V (called
patience parameter). Initially, each vertex v ∈ V has patience tv. At each step
in the algorithm, any edge e(u, v) such that u and v have positive remaining
patience can be probed. Upon probing edge e, one of the following happens:
(1) with probability pe, vertices u and v get matched and are removed from the
graph (along with all adjacent edges), or (2) with probability 1− pe, the edge e
is removed and the remaining patience numbers of u and v get reduced by 1. An
algorithm is an adaptive strategy for probing edges: its performance is measured
by the expected weight of matched edges. The unweighted stochastic matching
problem is the special case when all edge-weights are uniform.

Consider the following linear program: as usual, for any vertex v ∈ V , ∂(v)
denotes the edges incident to v. Variable ye denotes the probability that edge
e = (u, v) gets probed in the adaptive strategy, and xe = pe · ye denotes the
probability that u and v get matched in the strategy. (This LP is similar to
the LP used for general stochastic packing problems by Dean, Goemans and
Vondrák [5].)

maximize
∑

e∈E we · xe (LP1)∑
e∈∂(v) xe ≤ 1 ∀v ∈ V (1)

∑
e∈∂(v) ye ≤ ti ∀v ∈ V (2)

xe = pe · ye ∀e ∈ E (3)

0 ≤ ye ≤ 1 ∀e ∈ E (4)

It can be shown that the LP above is a valid relaxation for the stochastic
matching problem.



2.1 Weighted Stochastic Matching: General Graphs

Our algorithm first solves (LP1) to optimality and uses the optimal solution
(x, y) to obtain a non-adaptive strategy achieving expected value Ω(1) · (w · x).
Next, we present the algorithm. We note that the optimal solution (x, y) to the
above LP gives an upper-bound on any adaptive strategy. Let α ≥ 1 be a constant
to be set later. The algorithm first fixes a uniformly random permutation π on
edges E. It then inspects edges in the order of π, and probes only a subset of the
edges. A vertex v ∈ V is said to have timed out if tv edges incident to v have
already been probed (i.e. its remaining patience reduces to 0); and vertex v is
said to be matched if it has already been matched to another vertex. An edge
(u, v) is called safe at the time it is considered if (A) neither u nor v is matched,
and (B) neither u nor v has timed out. The algorithm is the following:

1. Pick a permutation π on edges E uniformly at random
2. For each edge e in the ordering π, do:

a. If e is safe then probe it with probability ye/α, else do not probe it.

In the rest of this section, we prove that this algorithm achieves a 5.75-approximation.
We begin with the following property:

Lemma 1 For any edge (u, v) ∈ E, when (u, v) is considered under π,
(a) the probability that vertex u has timed out is at most 1

2α , and
(b) the probability that vertex u is matched is at most 1

2α .

Proof: We begin with the proof of part (a). Let random variable U denote the
number of probes incident to vertex u by the time edge (u, v) is considered in π.

E[U ] =
∑

e∈∂(u) Pr[edge e appears before (u, v) in π AND e is probed]

≤ ∑
e∈∂(u) Pr[edge e appears before (u, v) in π] · ye

α =
∑

e∈∂(u)
ye

2α ≤ tu

2α .

The first inequality above follows from the fact that the probability that edge e
is probed (conditioned on π) is at most ye/α. The second equality follows since
π is a u.a.r. permutation on E. The last inequality is by the LP constraint (2).
The probability that vertex u has timed out when (u, v) is considered equals
Pr[U ≥ tu] ≤ E[U ]

tu
≤ 1

2α , by the Markov inequality. This proves part (a). The
proof of part (b) is identical (where we consider the event that an edge is matched
instead of being probed and replace ye and tu by xe and 1 respectively and use
the LP constraint (1)) and is omitted.

Now, a vertex u ∈ V is called low-timeout if tu = 1, else u is called a high-
timeout vertex if tu ≥ 2. We next prove the following bound for high-timeout
vertices that is stronger than the one from Lemma 1(a).

Lemma 2 Suppose α ≥ e. For a high-timeout vertex u ∈ V , and any edge f
incident to u, the probability that u has timed out when f is considered in π is
at most 2

3α2 .



Using this, we can analyze the probability that an edge is safe. (The proof is a
case analysis on whether the end-points are low-timeout or high-timeout.)

Lemma 3 For α ≥ e, an edge f = (u, v) is safe with probability at least (1 −
1
α − 4

3α2 ) when f is considered under a random permutation π.

Theorem 1 follows from the definition of the algorithm, the LP formulation
and using Lemma 3 (with α = 1 +

√
5).

2.2 Weighted Stochastic Matching: Bipartite Graphs

In this section, we obtain an improved bound for stochastic matching on bipar-
tite graphs, via a different rounding procedure. In fact, the algorithm produces
a matching-probing strategy whose expected value is a constant fraction of the
optimal value of (LP1) (which was for edge-probing). A similar rounding algo-
rithm also works for non-bipartite graphs, achieving a slightly weaker bound.
Furthermore, we show in the next subsection that this LP-rounding algorithm
can be combined with the greedy algorithm of [4] to get improved bounds for
unweighted stochastic matching.

Algorithm round-color-probe. First, we find an optimal fractional solution
(x, y) to (LP1) and round x to identify a set of interesting edges Ê. Then we use
edge coloring to partition Ê into a small collection of matchings M1, . . . ,Mh,
which are then probed in a random order. If we are only interested in edge-
probing strategies, probing the edges in Ê in random order would suffice. We
denote this edge-probing strategy by edge-probe. The key difference from the
rounding algorithm of the previous subsection is in the choice of Ê, which we
describe next.

Computing Ê. Our scheme is based on the rounding procedure of Shmoys and
Tardos for the generalized assignment problem [18]. Let q∗ denote the values of
x-variables in an optimal solution to (LP1). For each vertex u, sort the edges
incident on u in non-increasing values of their probabilities eu

1 , eu
2 , . . . , eu

deg(u),
and write a new LP:

maximize
∑

e∈E we pe · ze (LP2)

∑
e∈∂(u) ze ≤ tu ∀ i ∈ V (5)

∑i
j=1 zeu

j
≤

⌈∑i
j=1 q∗eu

j

⌉
∀u ∈ V, i = 1, . . . , deg(u) (6)

ze ∈ [0, 1] ∀e ∈ E

Notice that q∗ is a feasible solution of this new program. Thus, the optimal
value of (LP2) is at least that of (LP1). As shown in the next lemma, this new
linear program has the nice property of being integral.

Lemma 4 All basic solutions of (LP2) are integral.



Let q̂ be an optimal basic (and therefore integral) solution of (LP2) and
Ê be the set of edges in the support of q̂, i.e., Ê = {e | q̂e = 1}. Let h =
maxv∈V degÊ(v). Using König’s Theorem [17, Ch. 20], we can decompose Ê into
h matchings in polynomial time. Notice that each vertex u ∈ V will be matched
in at most tu of these matchings.

Analysis. We now analyze the performance guarantee. First, we notice that the
downside of exchanging LPs is that the “expected number of successful probes”
incident on a vertex can be larger than 1. However, the excess can be bounded
by the next lemma.

Lemma 5 For any feasible (integral or fractional) solution q̂ of (LP2) we have
∑

e∈∂(u) peq̂e ≤ 1 + pmax ∀u ∈ V, where pmax = maxe∈E pe.

It only remains to bound the probability that a given edge e = (u, v) ∈ Ê is
in fact probed by our probing strategy. Consider a random permutation of the
h matchings used by the edge coloring. Let π be the edge ordering induced by
this permutation where edges within a matching are listed in some arbitrary but
fixed order. Let us denote by B(e, π) the set of edges incident on u or v that
appear before e in π. It is not hard to see that

Pr [ e was probed ] ≥ Eπ

[∏
f∈B(e,π)(1− pf )

]
; (7)

here we assume that
∏

f∈B(e,π)(1− pf ) = 1 when B(e, π) = ∅.
Notice that in (7) we only care about the order of edges incident on u and v.

Furthermore, the expectation does not range over all possible orderings of these
edges, but only those that are consistent with some matching permutation. We
call this type of restricted ordering random matching ordering and we denote it
by π; similarly, we call an unrestricted ordering random edge ordering and we
denote it by σ. Our plan to lower bound the probability of e being probed is to
study first the expectation in (7) over random edge orderings and then to show
that the expectation can only increase when restricted to range over random
matching orderings.

The following simple lemma is useful in several places.

Lemma 6 Let r and pmax be positive real values. Consider the problem of min-
imizing

∏t
i=1(1 − pi) subject to the constraints

∑t
i=1 pi ≤ r and 0 ≤ pi ≤ pmax

for i = 1, . . . , t. Denote the minimum value by η(r, pmax). Then,

η(r, pmax) = (1− pmax)b
r

pmax c
(
1− (r −

⌊
r

pmax

⌋
pmax)

)
≥ (1− pmax)r/pmax .

Let ∂Ê(e) be the set of edges in Ê \ {e} incident on either endpoint of e.

Lemma 7 Let e be an edge in Ê and let σ be a random edge ordering. Let
pmax = maxf∈Ê pf . Assume that

∑
f∈∂Ê(e) pf ≤ r for all u ∈ V . Then,

Eσ

[∏
f∈B(e,σ)(1− pf )

]
≥ ∫ 1

0
η(xr, xpmax) dx.



Corollary 1. Let ρ(r, pmax) =
∫ 1

0
η(xr, xpmax) dx. For any r, pmax > 0, we have

1. ρ (r, pmax) is convex and decreasing on r.
2. ρ (r, pmax) ≥ 1

r+pmax
·
(
1− (1− pmax)1+

r
pmax

)
> 1

r+pmax
·
(
1− e−r

)

Lemma 8 Let e = (u, v) ∈ Ê. Let π be a random matching ordering and σ be
a random edge ordering of the edges adjacent to u and v. Then

Eπ

[∏
f∈B(e,π)(1− pf )

]
≥ Eσ

[∏
f∈B(e,σ)(1− pf )

]
.

Everything is in place to derive a bound on the expected weight of the match-
ing found by our algorithm.

Theorem 4 If G is bipartite then there is a 1/ρ(2+2pmax, pmax) approximation
with ρ as in Corollary 1. The worst ratio is attained at pmax = 1 and is 5.

Proof: Recall that the optimal value of (LP2) is exactly
∑

e∈Ê we pe. On the
other hand, the expected size of the matching found by the algorithm is

E [ our solution ] =
∑

e∈Ê

we pe Pr [ e was probed ] ≥
∑

e∈Ê

we pe Eπ

[ ∏

f∈B(e,π)

(1− pf )
]

≥
∑

e∈Ê

we pe Eσ

[ ∏

f∈B(e,σ)

(1− pf )
]
≥ ρ(2 + 2pmax, pmax) value(q̂)

where the first inequality follows from (7) and the second from Lemma 8—here
π is a random matching ordering and σ is a random edge ordering. The third
inequality follows from Lemma 7 and setting r = 2 + 2pmax (using Lemma 5 on
endpoints of e). Recall that the value of q̂ is at least the value of q∗ and this, in
turn, is an upper bound on the cost of an optimal probing strategy.

In the full version of the paper, we present the final version of round-color-
probe which obtains a a slightly weaker bound of k+1

k · 3
2 · 1

ρ (2+2pmax,pmax) for
the matching-probing model on general graphs, and edge-probe which is a
3
2 · 1

ρ (2+2pmax,pmax) -approximation for the edge-probing model on general graphs.

2.3 Improved Bounds for Unweighted Stochastic Matching

In this subsection, we consider the unweighted stochastic matching problem,
and show that our algorithm from §2.2 can be combined with the natural greedy
algorithm [4] to obtain a better approximation guarantee than either algorithm
can achieve on its own. Basically, our algorithm attains its worst ratio when
pmax is large and greedy attains its worst ratio when pmax is small. Therefore,
we can combine the two algorithms as follows: We probe edges using the greedy
heuristic until the maximum edge probability in the remaining graph is less than
a critical value pc, at which point we switch to algorithm edge-probe.



Theorem 5 Suppose we use the greedy rule until all remaining edges have prob-
ability less than pc, at which point we switch to an algorithm with approxima-
tion ratio γ(pc). Then the approximation ratio of the overall scheme is α(pc) =
max {4− pc, γ(pc)}.
The proof follows by an induction on the size of the problem instance (and we
use existing bounds on the optimum from Chen et al. [4]).

The proof of Theorem 2 follows by setting the cut-off point pc = 0.49 for
bipartite graphs and pc = 0.12 for general graphs and using the edge-probe
algorithm.

We remark that the approximation ratio of the algorithm in §2.1 does not de-
pend on pmax, thus we can not combine that algorithm with the greedy algorithm
to get a better bound.

3 Stochastic Online Matching (Revisited)

As mentioned in the introduction, the stochastic online matching problem is
best imagined as selling a finite set of goods to buyers that arrive over time. The
input to the problem consists of a bipartite graph G = (A,B, A × B), where
A is the set of items that the seller has to offer, with exactly one copy of each
item, and B is a set of buyer types/profiles. For each buyer type b ∈ B and item
a ∈ A, pab denotes the probability that a buyer of type b will like item a, and
wab denotes the revenue obtained if item a is sold to a buyer of type b. Each
buyer of type b ∈ B also has a patience parameter tb ∈ Z+. There are n buyers
arriving online, with eb ∈ Z denoting the expected number of buyers of type
b, with

∑
eb = n. Let D denote the induced probability distribution on B by

defining PrD[b] = eb/n. All the above information is given as input.
The stochastic online model is the following: At each point in time, a buyer

arrives, where her type b ∈D B is an i.i.d. draw from D. The algorithm now
shows her up to tb distinct items one-by-one: the buyer likes each item a ∈ A
shown to her independently with probability pab. The buyer purchases the first
item that she is offered and likes; if she buys item a, the revenue accrued is
wab. If she does not like any of the items shown, she leaves without buying. The
objective is to maximize the expected revenue.

We get the stochastic online matching problem of Feldman et al. [7] if we have
wab = pab ∈ {0, 1}, in which case we need only consider tb = 1. Their focus was
on beating the 1− 1/e-competitiveness known for worst-case models [13, 12, 16,
3, 8]; they gave a 0.67-competitive algorithm that works for the unweighted case
whp; whereas our results are for the weighted case (with preference-uncertainty
and timeouts), but only in expectation.

By making copies of buyer types, we may assume that eb = 1 for all b ∈ B,
and D is uniform over B. For a particular run of the algorithm, let B̂ denote the
actual set of buyers that arrive during that run. Let Ĝ = (A, B̂, A × B̂), where
for each a ∈ A and b̂ ∈ B̂ (and suppose its type is some b ∈ B), the probability
associated with edge (a, b̂) is pab and its weight is wab. Moreover, for each b̂ ∈ B̂



(with type, say, b ∈ B), set its patience parameter to tb̂ = tb. We will call this
the instance graph; the algorithm sees the vertices of B̂ in random order, and
has to adaptively find a large matching in Ĝ.

It now seems reasonable that the algorithm of §2.1 should work here. But
the algorithm does not know Ĝ (the actual instantiation of the buyers) up front,
it only knows G, and hence some more work is required to obtain an algorithm.
Further, as was mentioned in the preliminaries, we use OPT to denote the optimal
adaptive strategy (instead of the optimal offline matching in Ĝ as was done in
[7]), and compare our algorithm’s performance with this OPT.

The Linear Program. For a graph H = (A,C,A × C) with each edge (a, c)
having a probability pac and weight wac, and vertices in C having patience
parameters tj , consider the LP(H):

maximize
∑

a∈A, c∈C wac · xac (LP3)
∑

c∈C xac ≤ 1 ∀a ∈ A (8)∑
a∈A xac ≤ 1 ∀c ∈ C (9)∑
a∈A yac ≤ tc ∀c ∈ C (10)

xac = pac · yac ∀a ∈ A, c ∈ C (11)

yac ∈ [0, 1] ∀a ∈ A, c ∈ C (12)

Note that this LP is very similar to the one in §2, but the vertices on the left
do not have timeout values. Let LP(H) denote the optimal value of this LP.

The algorithm:

1. Before buyers arrive, solve the LP on the expected graph G to get values y∗.
2. When any buyer b̂ (of type b) arrives online:

a. If b̂ is the first buyer of type b, consider the items a ∈ A in u.a.r. order.
One by one, offer each unsold item a to b̂ independently with probability
y∗ab/α; stop if either tb offers are made or b̂ purchases any item.

b. If b̂ is not the first arrival of type b, do not offer any items to b̂.

In the following, we prove that our algorithm achieves a constant approximation
to the stochastic online matching problem. The first lemma show that the ex-
pected value obtained by the best online adaptive algorithm is bounded above
by E[LP(Ĝ)].

Lemma 9 The optimal value OPT of the given instance is at most E[LP(Ĝ)],
where the expectation is over the random draws to create Ĝ.

The proof of the next lemma is similar to the analysis of Theorem 1 for weighted
stochastic matching.

Lemma 10 Our expected revenue is at least
(
1− 1

e

)
1
α

(
1− 1

α − 2
3α2

) · LP(G).

Note that we have shown that E[LP(Ĝ)] is an upper bound on OPT, and
that we can get a constant fraction of LP(G). The final lemma relates these



two, namely the LP-value of the expected graph G (computed in Step 1) to the
expected LP-value of the instantiation Ĝ; the proof uses a simple but subtle
duality-based argument.

Lemma 11 LP(G) ≥ E[LP(Ĝ)].

Lemmas 9, 10 and 11, with α = 2√
3−1

, prove Theorem 3.
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