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Abstract

Abstract

The rapid economic development enables a continuing expansion of both urban
population and volume of vehicles. However, the limitation of urban infrastructure and
environment capacity causes inconvenience in people’s daily commutes. Such inconve-
nience manifests in many ways, especially in traffic congestion and difficulty in getting
cabs. It leads to low traffic efficiency, high energy consumption and environmental

pollution, which have become bottlenecks of urban development.

At the same time, the wide usage of GPS embedded devices and mobile apps
has produced a variety of massive data (e.g., vehicle mobility, traffic patterns, and
online car-hailing data). The massive data collected in urban spaces contains valuable
information about a city. Analyzing such data with machine learning and deep learning
methods brings new opportunities for building a better intelligent transportation system
(ITS)!! to alleviate the traffic congestion and improve the human life quality in daily
commute. The ITS recommends better route plans to people to avoid the congested
roads, based on the prediction of traffic conditions and travel time estimation of given
path. Meanwhile, by forecasting the commute demands, the ITS can dispatch the taxis
to balance the supply-demand in advance and reduce the gas consumptions of no-load
taxis. In this thesis, we focus on solving three important prediction problems in the

ITS using spatio-temporal traffic data.

The first problem we study in this thesis is to predict the real-time car-hailing
supply-demand. This is one of the most important component of an effective schedul-
ing system. We present an end-to-end framework called Deep Supply-Demand (DeepS-
D) using a novel deep neural network structure. Our approach can automatically dis-
cover complicated supply-demand patterns from the car-hailing service data while only
requires a minimal amount hand-crafted features. Moreover, our framework is highly
flexible and extendable to utilize multiple data sources. Our model has achieved com-

petitive prediction result (No.2 among 1648 teams in Di-tech Algorithm Competition

I
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2016).

The second problem we study in this thesis is the real-time prediction of the traffic
condition. For this problem, we propose an Ensemble based Traffic Condition Predic-
tion System (ETCPS) for predicting the traffic conditions of any roads in a city, based
on the current and historical GPS data collected from floating vehicles. We observe
two useful correlations in the traffic condition time series, and propose two different
models called Predictive Regression Tree (PR-Tree) and Spatial Temporal Probabilistic
Graphical Model (STPGM) based on the two observations. Our best quality prediction
is achieved by a careful ensemble of the two models. Our system provides high-quality
prediction and can easily scale to very large datasets.

The third problem we study in this thesis is estimating the travel time estimation
for the given path. We propose an end-to-end framework for Travel Time Estimation,
called DeepTTE. Our model estimates the travel time of the whole path directly, based
on deep recurrent neural networks. In our model, we consider the spatial and temporal
dependency in the path as well as various factors which may affect the travel time such
as the driver’s habit, the day of the week, etc. Our model has achieved competitive
prediction result (No.3 among 1578 teams in Travel Time Estimation Competition in
DataCastle 2017).

Key words: Deep Learning; Machine Learning; Spatio-temporal traffic data
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% 1E Introduction

1.1 Background and Challenges

Nowadays, the rapid expansion of many large cities has lead to the population
explosion. As a consequence, the commute demands in these cities increase sharply.
People suffer the traffic congestion and the difficulty in getting cabs. According to
the 2015 Urban Mobility Scorecard from the Texas Transportation Institute?!, traffic
congestion problem caused urban Americans to travel an extra 6.9 billion hours and
purchase an extra 3.1 billion gallons of fuel for a congestion cost of $160 billion, for
the 471 urban areas of the USA in 2014.

Meanwhile, the location based services (LBS) and GPS embedded devices be-
come ubiquitous. Such GPS embedded devices and mobile apps affect people’s daily
life profoundly. For example, people use their smart phones to plan their routes, call for
car-hailing services, find the trip partners, and search the destinations, etc. Large vol-
ume of location based data is generated by these devices and apps routinely, including
the online car-hailing orders, GPS trajectories, map queries, and geo-tagged check-in
data etc.

Analyzing such spatio-temporal traffic data with machine learning and deep learn-
ing methods brings new opportunities for building a better intelligent transportation
system (ITS)!!! to alleviate the traffic congestion and improve the human life quality
in daily commute. The ITS recommends better route plans to people to avoid the con-
gested roads, based on the prediction of traffic conditions and travel time estimation
of given path. Meanwhile, by forecasting the commute demands, the ITS can dispatch
the taxis to balance the supply-demand in advance and reduce the gas consumptions of
no-load taxis. In this thesis, we focus on solving three important prediction problems
in the ITS using spatio-temporal traffic data.

e Online Car-hailing Supply-Demand Prediction. Online car-hailing app-
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s/platforms (such as Uber, Didi, and Lyft) have emerged as a novel and pop-
ular means to provide on-demand transportation service via mobile apps. By
incentivizing private cars owners to provide car-hailing services, it enlarges the
transportation capacities of the cities. As more passengers and more drivers use
the service, it becomes increasingly important to predict the supply-demand of
online car-hailing services, based on which the scheduling system can dispatch
the drivers in advance to minimize the waiting time of passengers and maximize
the driver utilization.

e Traffic Condition Prediction. It has been shown by many studies>~%! that a well
performed traffic condition prediction system plays an essential role in improving
the traffic efficiency. For example, the governments can use it as a reference,
when they make decisions about changes to traffic regulations (e.g., change a
normal lane to a bus lane), or constructions of additional roads (e.g., add extra
lanes); it can also give suggestions to the civil engineers when they plan for
construction zones (e.g., how a short-term construction would impact traffic)!”.

e Travel Time Estimation. Estimating the travel time for a given path is a fun-
damental problem in route planning, navigation, and traffic dispatching. An ac-
curate estimation of travel time helps people better planning their routes and
avoiding congested roads, which in turn helps to alleviate traffic congestion. Al-
most all the electronic maps and online car-hailing services provide the travel

time estimation in their apps, such as Google Map, Uber, Didi, etc.

Although such problems are widely studied*~%), there still exist a large number of
challenges due to the massiveness and irregularity of the corresponding traffic data. To
be more concrete, we first illustrate the challenges of learning and prediction over such

data.

e The traffic data usually contains both spatial (locations) and temporal (times-
tamps) attributes, which we also refer to as spatio-temporal data. Such spatio-
temporal data contains spatial and temporal correlation patterns at the same time.
For example, the traffic condition of a road is affected by its previous conditions

as well as the conditions of its adjacent roads. To capture the spatial correlation
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and temporal correlation pattern at the same time is not easy.

The patterns in spatio-temporal data always vary dynamically due to different
geographic locations and time intervals. For example, in the morning the car-
hailing demand tends to surge in the residential areas whereas in the evening the
demand usually tends to surge in the business areas. Furthermore, the supply-
demand patterns under different days of a week can be extremely different. Prior
work usually builds several sub-models for different days of the week 811, Such
implementations, on one hand, make the model tedious, on the other hand, each
sub-model only utilizes a small part of data which may suffer from the lack of
training data.

Moreover, the spatial temporal data usually contains multiple attributes. For
example, in the online car-hailing supply-demand problem, order data contain-
s attributes such as the timestamp, passenger ID, start location, destination etc,
as well as several “environment” factors, such as the traffic condition, weather
condition etc. These attributes together provide a wealth of information for pre-
diction. However, it is nontrivial how to use all the attributes in a unified model.
Currently, the most standard approach is to come up with many “hand-crafted”
features (i.e., feature engineering), and fit them into an off-the-shelf learning
algorithm such as logistic regression or random forest. However, feature en-
gineering typically requires substantial human efforts and there is little general
principle how this should be done.

Finally, the spatial temporal data is usually quite massive. For example, in this
thesis, the trajectory data we use in the experiment part of the travel time estima-
tion problem (Chapter A.5) contains 9,653,822 trajectories and 1.4 billion GPS
records in total. To deal with such massive data efficiently, we usually need to
take advantages of big data platforms, such as Hadoop, Spark. Moreover, com-
pared with the traditional machine learning methods, deep learning techniques
show great potential for mining massive data. However, to the best of our knowl-
edge, there is no standard deep learning model to deal with such massive, noisy,

and multi-attribute spatio-temporal data we mentioned above.
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In this thesis, we focus on solving three important prediction problems in the
ITS using carefully devised machine learning and deep learning models to address
the above challenges. We present the concrete problems and our contributions in the

following sections.

1.2  Supply Demand Prediction for Online Car-hailing Services

In Chapter A.3, we study the problem of predicting the real-time car-hailing
supply-demand, which is one of the most important component of an effective schedul-
ing system. Our objective is to predict the gap between the car-hailing supply and de-
mand in a certain area in the next few minutes. Based on the prediction, it is possible
to balance the supply-demands in advance by dispatching the cars and dynamically ad-
justing the price. After observing the data, we find that the car-hailing supply-demand
varies dynamically due to different geographic locations and time intervals. Further-
more, the supply-demand patterns under different days of a week can be extremely

different. It is difficult to predict such heterogeneous data.

Contributions: We present an end-to-end framework called Deep Supply-
Demand (DeepSD) using a novel deep neural network structure. Our approach can
automatically discover complicated supply-demand patterns from the car-hailing ser-
vice data while only requires a minimal amount hand-crafted features. Moreover, our
framework is highly flexible and scalable. Based on our framework, it is very easy to u-
tilize multiple data sources (e.g., car-hailing orders, weather and traffic data) to achieve
a high accuracy. We conduct extensive experimental evaluations, which show that our
framework provides more accurate prediction results than the existing methods. Our
experimental results also show that embedding method can “cluster” the areas with
similar supply-demand patterns, and enable different areas to share historical records,

which improves data utilization and prediction accuracy.
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1.3 Traffic Condition Prediction

In Chapter A.4, we study the problem of predicting the traffic condition of each
road after a few minutes, when the current and historical traffic conditions of the road
network are given. Ubiquitous location based services enable us to collect a large
volume of traffic data from GPS-embedded devices. Our prediction is based on such
GPS data. Despite there exist several researches and products for traffic prediction
based on the GPS data, most of them only focused on the arterial roads and did not
consider the urban roads. After observing the data, we find that by transforming the
traffic condition time series into two different forms of time series (expectation-reality
gap and first order difference of traffic condition series), the new time series reveal
very strong autocorrelations. We hope these observations can provide useful insight in
further study of the travel condition prediction problem and related problems.

Contributions: We propose an Ensemble based Traffic Condition Prediction Sys-
tem (ETCPS) for predicting the traffic conditions of any roads in a city based on the
current and historical GPS data collected from floating vehicles. We have observed two
useful correlations in the traffic condition time series, which are the bases of our de-
sign. In order to exploit these two correlations for prediction, we propose two different
models called Predictive Regression Tree (PR-Tree) and Spatial Temporal Probabilis-
tic Graphical Model (STPGM). Our best quality prediction is achieved by a careful
ensemble of the two models. Our system provides high-quality prediction and can

easily scale to very large datasets.

1.4 Travel Time Estimation

In Chapter A.5, we study the problem of travel time estimation for a given path,
driver and start time. Although the problem has been widely studied in the past years,
providing an accurate travel time is still a challenging problem. Prior work usually
focuses on estimating the travel times of individual road or sub-paths, and then sum-
ming up these estimated travel times. However, such approach leads to an inaccurate

estimation, since the travel time is not only affected by the traffic condition, but also
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affected by the number of road intersections or traffic lights in the path, and the estima-
tion errors for individual road may accumulate. Furthermore, the travel time of a given
path for a specific driver is also affected by the driving style of the driver.
Contributions: We propose an end-to-end framework for Travel Time Estimation
called DeepTTE. Our model estimates the travel time of the whole path directly, based
on deep recurrent neural networks, which can easily process variable-length GPS tra-
jecto. In our model, we consider the spatial and temporal dependency in the path as
well as various factors which may affect the travel time such as the driver’s habit, the
day of the week etc. We conduct extensive experiment on a large scale dataset. The
experiment result shows that our model significantly outperforms the other existing
methods. To the best of our knowledge, this is the first time that the trajectory is taken

as a whole to estimate the travel time for arbitrary origins and destinations.

1.5 Organization

The rest of the thesis is organized as follows: In Chapter 1, we provide an intro-
duction to this research work giving the background, challenges and the main contribu-
tions of this thesis. In Chapter 2, we provide some background on the machine learning
and deep learning methods used in the rest of this thesis. We cover topics such as tree-
based models (including decision tree, random forest and gradient boosting), and deep
learning (including basic structure, embedding method, recurrent neural network, and
residual network). In Chapter A.2, we present a brief overview of the related work.
Applications of deep learning techniques in spatio-temporal data are also included. In
Chapter A.3, we present an end-to-end framework called DeepSD using a novel deep
neural network structure to predict the supply-demand for online car-hailing services.
In Chapter A.4, we introduce an Ensemble based Traffic Condition Prediction System
(ETCPS) for predicting the traffic conditions of any roads in a city. In Chapter A.5,
we present an end-to-end framework for travel time estimation called DeepTTE based
on deep recurrent neural networks. Our conclusion and future courses of action are

followed in Chapter A.6.
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In this chapter, we review some preliminary knowledge that is necessary for latter
chapters. We introduce some useful models that we use in the thesis, including the tree

based models, and deep learning models.

2.1 Tree-based Methods

Tree-based methods are widely used in spatio-temporal data analysis. As we men-
tioned in the Chapter 1, the spatio-temporal data is usually highly noisy and irregular.
The tree-based methods such as random forest and gradient boosting can be easily
used to deal with such non-structured data and obtain a reasonable performance. In
this section, we briefly introduce the decision tree method, random forest and gradient

boosting.

2.1.1 Decision Tree

The decision tree method is a non-parametric supervised learning method used for

classification and regression!!?!

. The goal of decision tree method is to build a model
that can determine the best decisions. It predicts the value (class) of a target variable

(class) by learning simple decision rules inferred from the data features.

To be more concrete, we assume the data is associated with n features. Each time,
we select one feature and partition data into small chunks according to the value of the
feature based on the certain criterions. Each chunk represents a node. The feature and
split-point are chosen to achieve the best fit. We continue partition these chunks into
smaller chunks, until some stopping rule is applied. The common criterions are Gini
Index (CART method)!!3!, Information divergence (ID3 method!'?)), Information Gain
Ratio (C4.5 method!'*)).
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2.1.2 Random Forest

Random forest!'! is an ensemble of classification or regression trees. These trees
are generated through changing the training set and feature set using the same strat-
egy as bagging. The new training sets are created by re-sampling n times from the
original data set. The new feature sets are created by re-sampling m times from the
original feature set. Prediction is made by aggregating (majority vote for classification
or averaging for regression) the predictions of the ensemble. Random forest generally
exhibits a substantial performance improvement over the single tree classifier such as
CART and C4.5.

Random forest increases the classification or regression accuracy by decreasing
the variance of the classification or regression errors. In another word, it taps on the
instability of a classifier or regression. “Instability” of a classifier or regression means
that a small change in the training samples may result in comparatively great changes

in accuracy!!3.

2.1.3 Gradient Boosting

Gradient boosting!'6~18] is also an ensemble of classification or regression trees.
For a given data set, it builds M models. Each model may be very simple (like decision
tree), which we call it weak learner. As a kind of boosting methods, gradient boosting
builds the model in a forward stage-wise manner, which is quite different from bag-
ging methods (such as random forest). In each stage, it introduces a weak learner to
compensate the “shortcomings” of existing weak learners.

To be more concrete, we define the training data as (x;, y;), where i € [1, N]. The
loss in using F'(x) to predict y on the training data is defined as L(f) = Zfi | LOis f(x0))
where L(f) is a derivable loss function. The goal is to minimize L(f) with respect to
f, where here f(x) is constrained to be a sum of trees. Forward stage-wise boosting is
a greedy strategy. In each stage 1 < m < M of gradient boosting, we assume that there
is some imperfect model f,,. The gradient boosting constructs a new weak learner 7,
that can maximally reduces the loss L(f) = f\; 1 LOiy fn(xi) + T(x;)). Then, the new

model is defined as f,,,+1(x) = f.(x) + T,,(x). To construct the weak learner 7,,(x), we
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calculate the negative gradient vector dL(y;, f(x;))/0f(x;) and fit such vector to obtain
T() 113,

2.2 Deep Learning

The deep learning method!'*?°! becomes the hottest topics in machine learning
area since 2006 and it has already been successfully applied in computer vision, speech
recognition, natural language processing etc. The traditional machine learning meth-
ods usually require a large quantity of carefully hand-crafted features. However, fea-
ture engineering typically requires substantial human efforts and there is little general
principle how this should be done. Alternatively, the deep learning methods learn to
represent the data by combining the simple features into more sophisticated features
with its deep architecture automatically. Thus, the deep learning methods are capable
of achieving more accurate results with less human effort.

Currently, most of deep learning architectures focus on the image?!-??, text!23-24]
and speech data!?-2"1, Compared with such data, the spatio-temporal traffic data has
both spatial and temporal patterns and it usually contains multiple attributes. More-
over, we usually have to handle city-level data which is in a very large scale. Due
to the characteristic of spatio-temporal traffic data, few work utilizes deep learning
methods in spatio-temporal traffic data analysis and prediction. We carefully devise
several deep architectures to solve some classical problems using such data (Chapter
A.3, A.5)281. Our results demonstrate the strength of deep learning in prediction over
massive spatio-temporal traffic data. In this section, we first illustrate the basic struc-
ture in deep learning and then continue by introducing several useful deep learning

architectures in spatio-temporal traffic data learning and prediction.

2.2.1 Basic Structure

A deep learning model is a neural network which consists of many layers of
non-linear information processing stages and hierarchical architectures?**-%_ Such

structure benefits from joint learning of representations with increased levels of ab-
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Figure 2.1 Illustration of a neural network (picture from [*2))

straction and classification/regression. Formally, a layer can be viewed as a non-linear
mapping f(.). For the input data x, the layer maps it into f(x; ) where 6 is the parame-
ter of this layer. We show a simple example in Fig. 2.1. We use f;(.; 8;) to represent the
i-th layer in the model. The lower layers extract the simple features from the original
data and the deeper layers combine them into more complicated features®!. The final
output can be represented as the compound function = f; o ... o f,(x). The loss
function is denoted as E(y, y), where y is the label of input x.

We stress that all the parameters are initialized randomly. To train the model, we
first calculate the loss function E and update the parameters in the last layer 6, with

corresponding gradient gTE. We then calculate the gradient of 6,_; by the chain rule

OE _OE 86, 0f

0011—1 B a0}1 6fn—1 69}1—1

and update the corresponding parameters accordingly. We call such method back-
propagation. Moreover, to enhance the learning ability of deep learning model-
s , several improved architectures were devised, such as Convolutional Neural Net-
work (CNN)B331 Recurrent Neural Network (RNN)P** and Residual Neural Net-
work (ResNet)!®]. We introduce three useful architectures in spatio-temporal traffic

data analysis in Section 2.2.2 to Section 2.2.4.
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2.2.2 Embedding Method

el36371 Tt is widely used in deep

36,38,39

Embedding method is a feature learning techniqu
learning models, especially in natural language processing (NLP) tasks! I Ttisa
parameterized function which maps the categorical values to the real numbers.

Specifically, neural networks treat every input as a real value. A simple way to

[40] " For exam-

transform categorical values to real numbers is one-hot representation
ple, suppose the value of a categorical feature is 3 and the corresponding vocabulary
size (highest possible value) is 5. Then, its one-hot representation is (0, 0, 1, 0, 0). How-
ever, using such representation can be computationally expensive when the vocabulary
size is huge. Moreover, such representation does not capture the similarity between
different categories.

The embedding method overcomes such issues by mapping each categorical val-
ue into a low-dimensional space (relative to the vocabulary size). For example, the
categorical value with one-hot representation equal to (0,0, 1,0, 0) can be represented
as the form of (0.2, 1.4,0.5). Formally, for each categorical feature, we build an em-
bedding layer with parameter matrix W € R™©. Here I is the vocabulary size of input
categorical value and O is the dimension of the output space (which we refer to as the
embedding space). For a specific categorical value i € [I], we use onehot(i) € R/
to denote its one-hot representation. Then, its embedded vector embed(i) € R'? is
equal to onehot(i) multiply the matrix W, i.e., the i-th row of matrix W. We usually
have that O < I. Thus, even the vocabulary size is very large, we can still handle these
categorical values efficiently.

Furthermore, an important property of embedding method is that the categori-
cal values with similar semantic meaning are usually very close in the embedding s-
pace!l. Here we give an example of word embedding, which embeds words into real
vector, W : words — R". As shown in the figure 2.2, we visualize the embedded
words with t-SNE, a sophisticated technique for visualizing high-dimensional data.
The words with similar semantic meaning are very close, such as the words represent-
ing numbers are embedded in the left, and the words representing jobs are embedded

in the right region. Another important property word embeddings exhibit is that analo-

11
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Figure 2.3 Male-female Difference Vector (picture from[4?))

gies between words seem to be encoded. For example, the male-female difference
vector between “man” and “woman” seems almost the same as that between “king”
and “queen”, as shown in Fig 2.3.

In general, these properties are considered as side effects. The neural network
does not explicitly map the categorical values with similar semantic meanings to the a
similar position in the vector space. These properties more or less popped out of the
optimization process. It seems that neural networks can learn better ways to represent
data, automatically.

In our problem of supply demand prediction for online car-hailing services in
Chapter A.3, we find that if two different areas share similar supply-demand patterns,
then their area IDs are close in the embedding space. See Section 4.5 for the details.
We stress that the parameter matrix W in the embedding layer is optimized with other

parameters in the network. We do not train the Embedding Layers separately.

12
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2.2.3 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is an artificial neural network which contains
an internal state and a directed cycle between units®**. It is suitable for capturing the
temporal dependency and has been used successfully in sequential learning such as the
natural language processing, speech recognition, etc!3343#1  Egpecially, an internal
state can be viewed as the “memory” of previous time steps. When RNN calculates
a new internal state, it captures the temporal dependency with all the previous input
sequences. Unlike feedforward neural networks, RNNs can use their internal memory
to process arbitrary sequences of inputs. Formally, RNN takes a sequence {x;} as input.

In each iteration, RNN calculate the “hidden state” (memory)
h[ = O-(XIWX + ht—lWh + b)

where W, fiW, is the parameters to be learned.
However, vanilla RNN failed in processing long sequences due to vanishing gra-
dient and exploding gradient problems*!. To overcome such issue, Long Short-Term

Memory was developed .

2.2.3.1 Long Short-Term Memory (LSTM)

Long Short Term Memory network (LSTM) is a special kind of RNN, capable of
learning long-term dependencies. They were introduced by Hochreiter and Schmid-
huber!*!, and were refined and popularized by many people in following work. They
work tremendously well on a large variety of problems, and are now widely used.

An LSTM contains several LSTM units. Each LSTM unit (See Fig. 2.4 for an
illustration) contains a memory cell and three gates which are used to control the flow
of information in/out of their memory. Mathematically, given the input vector x =
{xo0, x1,...,X,}, and denoting the output as y = {yo, 1, - - . , ¥}, the expected output (the

internal states of LSTM) are updated as follows:

ip = o(Wyx; + Wyyio1 + Weiciot + b)),

Ji=oWarxe + Wypyier + Weper1 + by),

13
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Cr = ﬁ ® ci-1 + it ® tanh(chxt + Wyc}’t—l + bc)
0y = O(Wyox; + Wyoyt—l + WeoCro1 + bo),

v; = 0; ® tanh(c;)

where o denotes the logistic sigmoid function and ® denotes element-wise multiplica-

tion.

2.2.4 Residual Network

Many non-trivial tasks have greatly benefited from very deep neural networks,
which reveals that network depth is of crucial importance 81, However, an obstacle
to train a very deep model is the gradient vanishing/exploding problem, i.e., the gra-
dient vanishes or explodes after passing through several layers during the backpropa-
gation?%*°1. To overcome such issue in deep neural networks, He et al.[*> proposed
a new network architecture called the residual network (ResNet). ResNet makes it
possible (easier) to train a very deep convolutional neural network successfully.

The residual learning adds the shortcut connections (dashed line in Fig. 2.5) and
direct connections (solid line in Fig. 2.5) between different layers. Thus, the input
vector can be directly passed to the following layers though the shortcut connections.
For example, in Fig. 2.5, we use x to denote the input vector and H(x) to denote the

desired mapping after two stacked layers. In the residual network, instead of learning

14
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the mapping function H(x) directly, we learn the residual mapping ¥ (x) = H(x) — X
and broadcast F (x) + x to the following layers. It has been shown that optimizing the
residual mapping is much easier than optimizing the original mapping*>!, which is the

key to the success of deep residual network.
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¥ 3E Related work

In this chapter, we review the existing related work for the three problems that
we study in this thesis respectively. There is a large body of literature on learning
and prediction over massive spatio-temporal data and we only mention a few closely
related ones. At the end of this chapter, we review the existing work which study the

prediction with spatio-temporal data using deep learning.

3.1  Supply Demand Prediction for Online Car-hailing Services
3.1.1 Taxi Route Recommendation

The taxi route recommendation aims to predict the best routes for drivers in order
to maximize their utilization. Yuan et al.!! presented an algorithm to suggest the taxi
drivers with locations towards which he/she is most likely to pick up a passenger soon.
They used a Poisson model to predict the probability of picking up a passenger for
each parking place. In their work, the pick-up locations are fixed in advance. Our work
aims to predict the supply-demand gap in every area. Wang et al.[’! investigated the
problem of recommending a cluster of roads to the taxi drivers. They used a single
hidden layer neural network with carefully selected hand-crafted features. Our work
uses a deep neural network with little hand-crafted features. Ge et al.[>!l provided a
cost-efficient route recommendation algorithm which can recommend a sequence of
pick-up locations. They learnt the knowledge from the historical data of the most
successful drivers to improve the taxi driver utilization of remaining ones. However,

such problem setting is much different from ours.

3.1.2 Taxi Demand Prediction

The taxi demand prediction studies the problem of forecasting the demands in
every pick up location. Moreira-Matias et al.’?l combined the Poisson Model and

AutoRegressive Moving Average (ARMA) model to predict the demand in each taxi
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stand. Again, they only considered the demands in several fixed locations. Moreover,
in their work they treated the data in each taxi stand separately. Such implementation

suffers from the lack of training data. In a recent work, Chiang et al.[!"]

proposed a
generative model, called Grid-based Gaussian Mixture Model, for modeling spatio-
temporal taxi bookings. Their approach was able to predict the demand of taxis in
any time interval for each area in the city. Nevertheless, on one hand, they treated the
orders in weekdays and weekends separately. On the other hand, in their approach, the
total amount of taxi bookings was decided by a Poisson model in advance. When the
real-time taxi demand changed rapidly, their approach may lead to a large prediction
error.

We stress that prior work only studied the demand prediction but ignored the sup-
ply. In the real applications such as taxi route recommendation, taxi dispatching etc, it
is important to predict the equilibrium of the supply-demand. Moreover, none of these
work studied incorporating the environment data such as the weather or traffic condi-
tions to enhance the prediction accuracy. In Di-tech Prediction Competition 20169,
the champion team proposed an accurate algorithm based on Gradient Boosting De-
scent algorithm @ and 1534 carefully hand-crafted features. Besides the basic features
(such as the area ID, day of week, the previous gap and corresponding statistics), they
also considered very detailed features such as average/standard deviation of waiting
time, calling time of different passengers during different time intervals, the ratio of
car-hailing supply/demand of different areas etc. Despite the proposed model achieves
a remarkable performance, designing such features are highly non-trivial and requires

enormous amount of human effort.

3.2 Traffic Condition Prediction

Most of prior works use the probabilistic models to predict the traffic conditions.
Hunter et al.’3 formulated the traffic condition prediction in the arterial network to a

maximum likelihood problem and estimated the travel time distributions based on the

@  http://research.xiaojukeji.com/competition/main.action?competitionld=DiTech2016&&locale=en
@ https://github.com/Microsoft/Light GBM/
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observed route travel times. Yeon et al.!>* estimated traffic conditions on a freeway
using Discrete Time Markov Chains (DTMC). However these works assumed that the
travel times on different road segments are independent without considering the cor-
relation between the traffic conditions on different roads which may lead to incorrect

prediction in the urban area!,

To capture the correlations between road segments, Hofleitner et al.!*%! formulat-
ed the transitions between states among adjacent road segments as a dynamic Bayesian
network model and predicted the traffic conditions by an EM approach. However, it
did not consider the efficiency on the large scale data.Yuan et al.!”! built a landmark
graph based on the trajectories of taxis, where each node (entitled a landmark) indi-
cates a road segment each edge indicates the aggregation of taxis’ commutes between
two landmarks. They formulated the correlations and estimated the edge travel time
distributions based on the landmark graph. However, as the landmarks are selected
from the top-k frequently traversed road segments, many of road segments with sparse

records can not be predicted.

The most related work with our model was proposed by Yang et al.’”!. They pro-
posed an algorithm called STHMM which is a spatio temporal hidden markov model.
They further presented an effective method to deal with the sparsity in the data. How-
ever, they did not consider the heterogeneity of transition patterns in different time
intervals. In our experiment section (Section 5.8), we show that our model outperform
STHMM in both the efficiency and accuracy. We stress that Chu et al.!>®! considered
the transition patterns in different time intervals and proposed a time-vary dynamic net-
work. However their goal is to reveal the causal structure in a ring road system which

differs from ours.

Furthermore, we stress two recent related works!>>°!, Wang et al.>®! presented an
efficient algorithm to estimate the travel time of any path, based on sparse trajectories
generated by taxi in recent time slots and in history, by using the tensor decomposition.
Instead of predicting the traffic conditions, they studied the estimation of travel time
for given travel paths in the current time slot. Asghari et al.>! estimated the travel time

distributions based on the historical sensor data. As their work studied the algorithm to
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find the most reliable route for the travel planning, it has a related but different scope.

3.3 Travel Time Estimation

3.3.1 Road Segment-Based Travel Time Estimation

[60-621 However, these works

Estimating travel time has been studied extensively
estimated the travel time of individual road segment without considering the correla-
tions between the roads. Yuan et al.">”! used a spatial-temporal Hidden Markov Model
to formalize the relationships among the adjacent roads. Wang et al.[*] improved this
work through an ensemble model based on two observed useful correlations in the traf-

fic condition time series. Wang et al. 64!

proposed an error-feedback recurrent Convolu-
tional neural network called eRCNN for estimating the traffic speed on each individual
road. These studies considered the correlation between different roads. However, they
focused on accurately estimating the travel time or speed of individual road segment.
The travel time of a path is affected by various factors, such as the number of road
intersections and the traffic lights in the path. Simply summing up the travel time of

the road segments in the path does not lead to an accurate result(®>,

3.3.2 Path-Based Travel Time Estimation

Rahmani et al.[%] estimated the travel time of a path based on the historical data
of the path. However, the historical average based model may lead to a poor accuracy.
Moreover, as new queried path may be not included in the historical data, it suffers
from the data sparse problem. Yuan et al.®! built a landmark graph based on the histor-
ical trajectories of taxis, where each landmark represents a single road. They estimate
the travel time distribution of a path based on the landmark graph. However, as the
landmarks are selected from the top-k frequently traversed road, the roads with few
traveled records can not be estimated accurately. Furthermore, Wang et al.!>®! estimat-
ed the travel time of the path, based on the sub-trajectories in the historical data. They
used the tensor decomposition to complete the unseen sub-trajectory and such method

enhance the accuracy effectively. Nevertheless, it still suffers from the data sparsity
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problem since there are many sub-trajectories which were visited by very few drivers.
Dai et al.[®”! proposed a new paradigm for path cost distribution estimation. Given a
departure time and a query path, they showed how to select an optimal set of weights
with associated sub-trajectories that cover the query path and compute the cost distri-
bution of the query path using the joint distribution. As they focused on estimating the
uncertainty of travel cost, it has a related but different scope. In a very recent travel
time estimation competition @, the champion team used a series of standard machine
learning models such as the random forest, the multi-layer perceptron, the LASSO etc.,
as the base estimators. They use Gradient Boosting method to combine the estimation
results of different estimators and use the combined result as the final result. However,
we stress that in practice, devising many machine learning models is very tedious and

hard to maintain. Instead, we only use a single end-to-end framework.

3.4 Deep Learning in Spatio-temporal Data

Recently, the deep learning techniques demonstrate the strength on spatio-
temporal data mining problems. An increasing number of researchers studied applying

68-711 " However, few work stud-

the deep learning technique to prediction problems!
ied the prediction with spatio-temporal data using deep learning. Lv et al.!”?! studied
predicting the traffic flow with deep neural networks. They adopted a stack autoen-
coder to train the network layer by layer greedily. They showed that the deep model is
more accurate comparing with the baseline methods. Zhang et al.!”3! designed a novel
architecture called DeepST to predict the crowd flow. Their model learned the spatio-
temporal patterns by a sequence of convolutional neural networks. They proposed
improved DeepST to ST-ResNet in!’#! by using residual learning to construct a much
deeper networks, and proposing a parametric-matrix-based fusion mechanism for mod-
eling both spatial and temporal dependencies. Song et al.!”>! built an intelligent system

called DeepTransport, for simulating the human mobility and transportation mode at

a citywide level. Dong et al.[’® studied characterizing the driving style of differen-

@® The competition information and data can be found in https://github.com/DeepTTE/DeepTTE
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t drivers by a stacked recurrent neural network. Ma et al.!”’! proposes a CNN-based
method that learns traffic as images and predicts large-scale traffic speed. To the best
of our knowledge, applying the deep learning technique to enhance car-hailing supply-
demand prediction accuracy has not been studied so far, and no prior work studies

estimating the travel time of the whole path based on the deep learning approach.
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28 45 Supply-Demand Prediction for Online Car-hailing
Services using Deep Neural Networks

The online car-hailing service has gained great popularity all over the world. As
more passengers and more drivers use the service, it becomes increasingly more im-
portant for the the car-hailing service providers to effectively schedule the drivers to
minimize the waiting time of passengers and maximize the driver utilization, thus to
improve the overall user experience. In this chapter, we study the problem of predicting
the real-time car-hailing supply-demand, which is one of the most important compo-
nent of an effective scheduling system. Our objective is to predict the gap between
the car-hailing supply and demand in a certain area in the next few minutes. Based
on the prediction, we can balance the supply-demands by scheduling the drivers in ad-
vance. We present an end-to-end framework called Deep Supply-Demand (DeepSD)
using a novel deep neural network structure. Our approach can automatically discover
complicated supply-demand patterns from the car-hailing service data while only re-
quires a minimal amount hand-crafted features. Moreover, our framework is highly
flexible and extendable. Based on our framework, it is very easy to utilize multiple
data sources (e.g., car-hailing orders, weather and traffic data) to achieve a high accu-
racy. We conduct extensive experimental evaluations, which show that our framework

provides more accurate prediction results than the existing methods. ©

41 Introduction

Online car-hailing apps/platforms have emerged as a novel and popular means
to provide on-demand transportation service via mobile apps. To hire a vehicle, a
passenger simply types in her/his desired pick up location and destination in the app
and sends the request to the service provider, who either forwards the request to some

drivers close to the pick up location, or directly schedule a close-by driver to take the

(@® This work has been published in ICDE 2017 28,
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order. Compared with the traditional transportation such as the subways and buses,
the online car-hailing service is much more convenient and flexible for the passengers.
Furthermore, by incentivizing private cars owners to provide car-hailing services, it
promotes the sharing economy and enlarges the transportation capacities of the cities.
Several car-hailing mobile apps have gained great popularities all over the world, such
as Uber, Didi, and Lyft. Large number of passengers are served and volume of car-
hailing orders are generated routinely every day. For example, Didi, the largest online
car-hailing service provider in China, handles around 11 million orders per day all over
China. @

As a large number of drivers and passengers use the service, several issues arise:
Sometimes, some drivers experience a hard time to get any request since few people
nearby call the rides; At the same time, it is very difficult for some passengers to
get the ride, in bad weather or rush hours, because the demand in the surrounding
areas significantly exceeds the supply. Hence, it is a very important yet challenging
task for the service providers to schedule the drivers in order to minimize the waiting
time of passengers and maximize the driver utilization. One of the most important
ingredient of an effective driver scheduler is the supply-demand prediction. 1If one
could predict/estimate how many passengers need the ride service in a certain area in
some future time slot and how many close-by drivers are available, it is possible to
balance the supply-demands in advance by dispatching the cars, dynamically adjusting
the price, or recommending popular pick-up locations to some drivers.

In this chapter, we study the problem of predicting the car-hailing supply-demand.
More concretely, our goal is to predict the gap between the car-hailing supply and
demand (i.e., max(0, demand — supply)) for a certain area in the next few minutes. Our
research is conducted based on the online car-hailing order data of Didi. To motivate
our approach, we first present some challenges of the problem and discuss the drawback
of the current standard practice for such problem.

e The car-hailing supply-demand varies dynamically due to different geographic

locations and time intervals. For example, in the morning the demand tends to

@O Homepage: http://www.xiaojukeji.com/en/index.html
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Figure 4.1 Car-hailing demands under four different situations.

surge in the residential areas whereas in the evening the demand usually tends
to surge in the business areas. Furthermore, the supply-demand patterns under
different days of a week can be extremely different. Prior work usually distin-
guishes different geographic locations, time intervals or days of week and build
several sub-models respectively®-'!l, Treating the order data separately and cre-
ating many sub-models are tedious, and may suffer from the lack of training data
since each sub-model is trained over a small part of data.

The order data contains multiple attributes such as the timestamp, passenger ID,
start location, destination etc, as well as several “environment” factors, such as
the traffic condition, weather condition etc. These attributes together provide a
wealth of information for supply-demand prediction. However, it is nontrivial
how to use all the attributes in a unified model. Currently, the most standard
approach is to come up with many ‘“hand-crafted” features (i.e., feature engi-

neering), and fit them into an off-the-shelf learning algorithm such as logistic
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regression or random forest!’8]. However, feature engineering typically requires
substantial human efforts (it is not unusual to see data science/ machine learning
practitioners creating hundreds different features in order to achieve a competi-
tive performance) and there is little general principle how this should be done.
Some prior work only keeps a subset of attributes for training, such as the times-
tamp, start location and drops other attributes®10:11:52791 While this makes the
training easier, discarding the attributes leads to the information loss and reduces
the prediction accuracy.

To provide some intuitions for the readers and to illustrate the challenges, we

provide an example in Fig.A.1.

Example 1: Fig. A.1 shows the demand curves for two areas on March 9th (Wednes-
day) and March 13th (Sunday). From the figure, we can see very different pattern-
s under different timeslots for the two areas. For the first area, few people require
the car-hailing services on Wednesday. However, the demand increased sharply on
Sunday. Such pattern usually occurs in the entertainment area. For the second area,
we observe a heavy demand on Wednesday, especially during two peak hours around
8 o’clock and 19 o’clock (which are the commute times for most people during the
weekdays). On Sunday, the demand of car-hailing services on this area reduced sig-
nificantly. Moreover, the supply-demand patterns change from day to day. There are
many other complicated factors that can affect the pattern, and it is impossible to list
them exhaustively. Hence, simply using the average value of historic data or empirical
supply-demand patterns can lead to quite inaccurate prediction results, which we show

in our experiments (see Section 4.5). O

To address the above challenges, we propose an end-to-end framework for supply-
demand prediction, called Deep Supply-Demand (DeepSD). Our framework is based
on the deep learning technique, which has successfully demonstrated its power in a
number of application domains such as vision, speech and natural language process-
ing (3843441 T particular, we develop a new neural network architecture, that is tailored

to our supply-demand prediction task. Our model demonstrates a high prediction ac-
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curacy, requires little hand-crafted feature, and can be easily extended to incorporate
new dataset and features. A preliminary version of our model achieved the 2nd place
among 1648 teams in the Didi supply-demand prediction competition.® Our technical

contributions are summarized below:

e We proposed an end-to-end framework based on a deep learning approach. Our
approach can automatically learn the patterns across different spatio-temporal
attributes (e.g. geographic locations, time intervals and days of week), which
allows us to process all the data in a unified model, instead of separating it into
the sub-models manually. Compared with other off-the-shelf methods (e.g., gra-
dient boosting, random forest [131) our model requires a minimal amount feature-
engineering (i.e., hand-crafted features), but produces more accurate prediction
results.

e We devise a novel neural network architecture, which is inspired by the deep
residual network (ResNet) proposed very recently by He et al. ! for image clas-
sification. The new network structure allows one to incorporate the “environment
factor” data such as the weather and traffic data very easily into our model. On
the other hand, we can easily utilize the multiple attributes contained in the order
data without much information loss.

o We utilize the embedding method*%381  a popular technique used in natural lan-
guage processing, to map the high dimensional features into a smaller subspace.
In the experiment, we show that the embedding method enhances the prediction
accuracy significantly. Furthermore, with embedding, our model also automat-
ically discovers the similarities among the supply-demand patterns of different
areas and timeslots.

e We further study the extendability of our model. In real applications, it is very

common to incorporate new extra attributes or data sources into the already

@ http://research.xiaojukeji.com/competition/main.action?competitionld=DiTech2016. The preliminary model
we used for the competition was almost the same as the basic version of our model described in Section A.3.3.
Our final model, described in Section 4.4, further refines the basic model by introducing a few new ideas, and
is more stable and accurate. We are currently in an effort of deploying the model and incorporate it into the

scheduling system in Didi.
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trained model. Typically we have to re-train the model from the scratch. Howev-
er, the residual learning component of our model can utilize these already trained
parameters by a simple fine tuning strategy. In the experiment, we show that the
fine-tuning can accelerate the convergence rate of the model significantly.

e Finally, we conduct extensive experiments on a large scale real dataset of car-
hailing orders from Didi. The experimental results show that our algorithm out-
performs the existing method significantly. The prediction error of our algorithm

is 11.9% lower than the best existing method.

4.2 Formulation and Overview

We present a formal definition of our problem. We divide a city into N non-
overlapping square areas aj, dy,...,ay and each day into 1440 timeslots (one minute

for one timeslot). Then we define the car-hailing orders in Definition 1.

Definition 1 (Car-hailing Order): A car-hailing order o is defined as a tuple: the date
when the car-hailing request was sent 0.d, the corresponding timeslot o.ts € [1, 1440],
the passenger ID o.pid, the area ID of start location o.loc; € [N] and the area ID of
destination o.loc, € [N]. If the a driver answered the request, we say it is a valid order.

Otherwise, if no driver answered the request, we say it is an invalid order.

Definition 2 (Supply-demand Gap): For the d-th day, the supply-demand gap of the
time interval [z, + C) in area a is defined as the total amount of invalid orders in
this time interval. We fix the constant C to be 10 in this chapter® and we denote the

corresponding gap as gapg’t.

We further collected the weather condition data and traffic condition data of dif-

ferent areas which we refer to as the environment data.

Definition 3 (Weather Condition): For a specific area a at timeslot ¢ in the d-th day,

the weather condition (denoted as wc) is defined as a tuple: the weather type (e.g.,

@® The constant 10 (minutes) is due to the business requirement. It can be replaced by any other constant.
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sunny, rainy, cloudy etc.) wc.type, the temperature wc.temp and the PM2.5 wc.pm.

All areas share the same weather condition at the same timeslot.

Definition 4 (Traffic Condition): The traffic condition describes the congestion level
of road segments in each area: from Level 1 (most congested) to Level 4 (least congest-
ed). For a specific area a at timeslot 7 in the d-th day, the traffic condition is defined as

a quadruple: the total amount of road segments in area a under four congestion levels.

Now, we can define our problem as below.
Problem Suppose the current date is the d-th day and the current time slot is . Given
the past order data and the past environment data, our goal is to predict the supply-
demand gap gapg’t for every area a, i.e., the supply-demand gap in the next 10 minutes.

This chapter is organized as follows. We first show a basic version of our model in
Section A.3.3. The basic version adopts a simple network structure and only uses the
order data in the current day. In Section 4.4, we present an advanced version which is
an extension of the basic version. The advanced version utilizes more attributes in the
order data and it further incorporates the historical order data to enhance the prediction
accuracy. In Section 4.5 we conduct extensive experiment evaluations. Finally, we
briefly review some related work in Section A.2.1 and conclude this chapter in Section
4.6.

4.3 Basic Version

We first present the basic version of our model in this section. In Section 4.4,
we extend the basic version with a few new ideas, and present the advanced version
of our model. The basic model consists of three parts. Each part consists of one or
more blocks (recall that the block is the base unit of our model). In Section 4.3.1, we
first process the “identity features™ (area ID, timeslot, day of week) in the identity part.
Next in Section 4.3.2, we describe the order part which processes the order data. The
order part is the most important part of our model. In Section 4.3.3, we present the

environment part. The environment part processes the weather data and traffic data.
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Figure 4.2  Structure of basic DeepSD

Finally, in Section 4.3.4, we illustrate how we connect different blocks. The structure

of our basic model is shown in Fig. A.2.

4.3.1 Identity Part

The identity part consists of one block called the identity block. We call the
features which identify the data item we want to predict as the “identity features”. The
identity features include the ID of area ArealD, the timeslot TimeID and the day of
week (Monday, Tuesday, ..., Sunday) WeekID. For example, if we want to predict the
supply-demand gap of area a in the time interval [z, + 10) in the d-th day and that day
is Monday, then we have that ArealD = a, TimelID = ¢ and WeekID = 0.

Note that the features in the identity block are categorical. As we mentioned in
Section 2, we can either use the one-hot representation or embedding representation
to transform the categorical values to real numbers. In our problem, since the vo-
cabularies of ArealD and TimelD are very large, the one-hot representation leads to
a high cost. Moreover, the one-hot representation treats the different areas or times-

lots independently. However, we find that different areas at different time can share
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Figure 4.3 Identity Block

similar supply-demand patterns, especially when they are spatio-temporally close. For
example, the demands of car-hailing are usually very heavy for all the areas around
the business center at 19:00. Clustering these similar data items helps enhance the pre-
diction accuracy. In our model, we use the embedding method to reduce the feature
dimensions and discover the similarities among different areas and timeslots.
Formally, the structure of the identity part is shown in Fig. 4.3. We use three Em-
bedding Layers to embed ArealD, TimeID and WeekID respectively. We then concate-
nate the outputs of three Embedding Layers by a Concatenate Layer. The Concatenate
Layer takes a list of vectors as the input and simply outputs the concatenation of the
vectors. We use the output of the Concatenate Layer as the output of the identity block,
denoted as X;;. Furthermore, we stress that prior work 21071 also clusters the similar
data items to enhance the prediction accuracy. However, they treat the clustering stage
as a separate sub-task and they need to manually design the distance measure, which
is a non-trivial task. Our model is end-to-end and we can optimize the embedding
parameters together with other parameters in the neural network. Hence we do not
need to design any distance measure separately. The parameters are optimized through

backpropagation towards minimizing the final prediction loss.

4.3.2 Order Part

The order part in the basic version consists only one block called the supply-
demand block. The supply-demand block can be regarded as a three layer perceptron,
which processes the order data. For a specific area a, to predict the supply-demand

gap gapg” of the time interval [z, + 10) in the d-th day, we consider the order set with
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Figure 4.4 Structure of Supply-demand Block

timestamp in [f — L, t) of the d-th day, which we denote as § 4t Here L is the window
size which is specified as 20 minutes in the experiment section (Section 4.5). We then

aggregate S into a real-time supply-demand vector.

Definition 5 (Real-time supply-demand vector): For a specific area a, we define the
real-time supply-demand vector in the d-th day at timeslot ¢ as ij. Vi’j is a 2L-
dimensional vector, which consists of two parts. We denote the first L dimensions of

V;fj as VA?EJZ . The ¢-th dimension of VAfj 1s defined as:
Valit)=l{oloisvalid Ao € S™ Aots =1t~ ¢}

In another word, VAfj (€) describes the amount of valid orders at r — ¢ in the current day.
Similarly, we define the remaining part as VBZI;; which corresponds to the invalid orders

in the previous L minutes. O

We use Vi’; as the Input Layer of the supply-demand block. We then pass Vi’;
through two Fully-Connected (abbr. FC) layers. A Fully-Connected Layer with input

x is defined as
FC,(x) = f(x- W +b)

where sz is the corresponding output size, W, b are the parameters and f is the activation
function which we specify in Section 4.5. We use FCg, as the first Fully-Connected
Layer and the FCj3, as the second Fully-Connected Layer. The output of the supply-
demand block is the output of FCs,, denoted as X,,;. See Fig 4.4 for illustration.
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4.3.3 Environment Part

In the environment part, we incorporate the information from the weather data
through adding the weather block to the network and the traffic data through the traffic
block.

For the weather condition, we first create a weather condition vector Vfﬁ’f. We
show the structure of the weather block in Fig. 4.5. The vector Vfﬁf consists of L
parts. For a specific £ € [L], we have the weather condition wc at timeslot # — £ in
the d-th day and we embed the weather type wc.type into a low dimensional space.
Then the ¢-th part of V4! is defined as the concatenation of the embedded weather type
wc.type, the temperature wc.temp and the PM 2.5 wc.pm. Furthermore, note that the
weather block also receives the output of the supply-demand block X, through a direct
connection. We concatenate X, and Vfi’cz by a Concatenate Layer and pass the output of
the Concatenate Layer through two Fully-Connected layers FCgq and FCs,. We denote
the output of FCs;, as R,,.. Then, the output of the weather block X, is defined as:

Xye = Xsa ® Ryye

where @ is the element-wise add operation and X, is obtained through the shortcut
connection.

Note that the structure we used here is similar with ResNet as we mentioned in
Section 2.2.4. Howeyver, there are two main differences between our model and ResNet.
First, instead of adding shortcut connections between layers, we add the shortcut con-
nections between different blocks. Second, in ResNet, a layer only receives the input
from previous layers through a direct connection whereas in our model a block receives
the inputs from both the previous block and the dataset. Such structure on one hand is
more suitable for handling the data from multiple sources. On the other hand, we show
that in Section 4.5.8, such structure is highly extendable. We can easily incorporate
new datasets or attributes into our model based on such structure.

For the traffic condition, recall that at each timeslot the traffic condition of a spe-
cific area can be represented as the total amount of road segments in four different

congestion levels. We thus create a traffic condition vector Vi’t with L parts. Each part
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Figure 4.5 Weather Block and Traffic Block

consists of four real values corresponding to the traffic condition at that time slot. We
construct the traffic block in the same way as we construct the weather block. Then,

we use X, = X, ® R, as the output of the traffic block, as shown in Fig. 4.5.

4.3.4 Block Connections

We then connect all the blocks. Note that the supply-demand block, the weather
block and the traffic block are already connected through the residual learning. The
output vector of these stacked blocks is X;.. We then concatenate the output of the
identity block X;; and X,. with a Concatenate Layer. We append a Fully-Connected
Layer FCs; and a single neuron after the Concatenate Layer. The single neuron finally
outputs the predicted supply-demand gap with the linear activation function, as shown
in Fig. A.2. We stress that our model is end-to-end, once we obtain the predicted value,
we can calculate the loss based on the loss function and update each parameter with its
gradient through backpropagation.

We further illustrate the intuition of our model. To predict the supply-demand gap,
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the most relevant and important data is the car-hailing order data. We use the supply-
demand block to learn the useful feature vector from the order data. In our model,
the learnt feature corresponds to the output of the supply-demand block, X;;. The
environment data can be regarded as the supplementary of the learnt features. Thus,
we add the weather block to extract the residual R, and adjust the previous learnt

features by adding R,,. to X,;. The same argument holds for the traffic block.

4.4 Advanced Version

In this section, we present an advanced version of our model. Compared with the
basic model, the advanced model replaces the order part in Fig. A.2 with an extended
order part as shown in Fig. 4.6, which is composed of three blocks. The first block
extended supply-demand block extends the original supply-demand block with a well-
designed structure. Such structure enables our model to learn the dependence of the
historical supply-demand over different days automatically, which we present in Sec-
tion 4.4.1. In Section 4.4.2, we present the remaining two blocks, the last call block and
the waiting time block, which have the same structure as the extended supply-demand
block. Compared with the basic version where we only use the number of orders, the

new blocks contains passenger information as well.

441 Extended supply-demand block

Recall that in the basic version, we use the real-time supply-demand vector Vi’i’ to
predict the supply-demand gap. In the extended order block, we further incorporate the
historical order data to enhance the prediction accuracy, i.e., the car-hailing orders with
date prior to the d-th day. We present the extended supply-demand block in two stages.
In the first stage, we obtain an empirical supply-demand vector in time interval [t — L, t)
in the d-th day. Such empirical supply-demand vector is an estimation of ij based on
the historical order data. In the second stage, we use the real-time supply-demand vec-

tor and the empirical supply-demand vector to construct our extended supply-demand

block.
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4.4.1.1 First Stage

We first extract the empirical supply-demand vector in [¢# — L, ¢) in the d-th day,
denoted as Efld’ . It has been shown that due to the regularity of human mobility, the
patterns in the traffic system usually show a strong periodicity in time on a weekly
basis!6:3-1052.631 However, for different days of week, the supply-demand patterns can
be very different. For example, in Huilongguan, a district in Beijing where most of
IT employees live, the demand of car-hailing services in Monday morning is usually
much more than that in Sunday morning. Motivated by this, we first consider the
historical supply-demands in different days of week. Formally, we use M to denote all
the Mondays prior to the d-th day. For each day m € M, we calculate the corresponding
real-time supply-demand vector in that day, denoted as V;"d” as we defined in Definition

5. We average the vectors V:;’t for all m € M. We call such average the historical

supply-demand vector on Monday, denoted as Hgon)’d”. Thus, we have that,

(Mon),d,t __ 1 m,t
Hsd - IM| Z Vsd :
meM

Similarly, we define the historical supply-demand vector on the other days of week:

(Tue),d,t (Wed),d,t (Sun),d,t
A & N &

The empirical supply-demand vector Ei’; is defined as a weighted combination of
(S HS Y We refer to the weight vector as combining weights of different
weekdays, denoted as p. In our model, such weight vector p is automatically learnt
by the neural network according to the current ArealD and WeekID. The network
structure is shown in Fig. 4.7. We first embed the current ArealD and WeekID into
a low-dimensional space. We concatenate the embedded vectors and pass it into a
Softmax Layer. A Softmax Layer takes the concatenation x as the input and outputs

the weight vector p by

o_ e
1) _ . —
p _Zjex’w-f’w 1...7

where W is the j-th column of the parameter matrix W in the Softmax Layer. Then,
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we have that

dit _ (1) (Mon),d,t 7) (Sun),d,t
E,=p~ -H, +...+p"”-H, . (4-1)

We stress that most of prior work simply distinguish the historical data in week-

days and weekends separately [8-10-79:801,

However, on one hand, such method may
suffer from the lack of training data. We only utilizes part of the data when we calcu-
late the historical supply-demand vector. On the other hand, different areas can show
different dependences over days of week. For example, in our experiment (Section 4.5),
we find that for some areas, the supply-demands in Tuesdays are very different from
the other days of week. Thus, to predict the supply-demand in Tuesday, we mainly
consider the historical data in the past Tuesdays. For some other areas, the supply-
demands in all the days of week are very similar. In this case, taking all the historical
data into consideration leads to a more accurate result. Obviously, simply separating

the historical data in weekdays and weekends can not such patterns.

4.4.1.2 Second Stage

Next, we use the obtained empirical supply-demand vector and real-time supply-
demand vector to construct our block. First, using the same method as we obtain Ef’t,
we calculate another empirical supply-demand vector in time interval [t— L+ 10,7+ 10)

in the current day, denoted as E%/*'%. Note that E%/*' is the empirical estimation of
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t

the real-time supply-demand vector Vi’i”O. If we can estimate ij”o accurately, we

can easily predict the currently supply-demand gap.

In our model, we use the empirical estimations Ei’; , E‘;j“o and the real-time
supply-demand vector Vi’l’ to estimate Vi’; 19 We first use the Fully-Connection Lay-
ers to project these three vectors onto the same low-dimensional space (in our experi-
ment we fix the dimensionality to be 16). We denote the projected vectors as Proj(Vi}’ ),
Proj(Efj) and Proj(Efj”O). Instead of estimating Vi’f 10 directly, we estimate the pro-
jection of ij”o. We denote the estimated projection as PFOj(ij“O) and we have

that,
Proj(V4*1%) = Proj(V%/) — Proj(E%!) + Proj(E%!*19).

Finally, we concatenate Proj(ij), Proj(Ei’l’), Proj(Ef[’;“O), PFoj(Vi’[“O), with a
Concatenate Layer and pass it through two Fully-Connected layers FCg4 and FCs,. We
use the output of FCj3; as the output of the extended supply-demand block. See Fig. 4.8

for an illustration.

We explain the reason that we estimate V419 4n such way. The vector Proj(Vi’f) -

sd
Proj(Ei’;) indicates how the real-time supply-demand of [t — L,t) deviates from its
empirical estimation. We thus estimate Proj(Vi}’”o) by adding such deviation to the
projection of empirical estimation Proj(Efj“O). Moreover, the projection operation on
one hand reduce the dimension of each supply-demand vector from 2L to 16. On the

other hand, we find that using the projection operation in our experiment makes our
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Figure 4.8 Extended Supply-demand Block

model more stable.

4.4.2 Last Call Block and Waiting Time Block

In this section, we present two additional blocks, called the last call block and
the waiting time block. Note that the order data contains multiple attributes. However,
when calculating the supply-demand vector, we did not consider the attribute o.pid.
Thus, the supply-demand vector Vi’f does not contain any “passenger information”.
From Vd’t,

sd
did not get the rides in the last 5 minutes” or “how many passengers waited for more

we can not answer the questions such as “how many unique passengers

than 3 minutes” etc. However, we find that the passenger information is also very
important to supply-demand gap prediction. For example, if many passengers failed on
calling the rides or waited for a long time, it reflects that the current demand exceeds
the supply significantly which can lead to a large supply-demand gap in the next few
minutes. We use the last call block and the waiting time block to provide the passenger
information. Both of these two blocks have the same structure as the extended supply-
demand block. In another word, we just replace the real-time supply-demand vector
Vi’; in the extended supply-demand vector with the real-time last call vector and real-

time waiting time vector.

For the last call block, we define the last call vector as follows.
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Definition 6 (Real-time last call vector): For a specific area a at timeslot ¢ in the d-
th day, we first pick out the last call orders in [t — L, t) for all passengers, (i.e. for a
specific passenger pid, we only keep the last order sent by pid), and denote the order

set as S 4

. Then, the real-time last call vector VZ_’t is defined as a 2L-dimensional
vector. We denote the first L dimensions as VAfc’t. For the ¢-th dimension of VAfc’t, we

have that

Val(6) = l{pid | o € S 1" s.t. 0 is valid A o.pid = pid

Ao.ts =t — "L}

V(0% describes the amount of passengers whose last call is at ¢ — £ and she/he suc-
cessfully got the ride. Similarly, we define VB;lc’t which corresponds to the passengers

who did not get the rides. O

We explain the reason that we define the real-time last call vector. In our data, we
find that if a passenger failed on calling a ride, she/he is likely to send the car-hailing
request again in the next few minutes. Especially, the last calls near timeslot ¢ are
highly relevant to the supply-demand gap in [¢, ¢ + 10).

Based on Vldc’t, we can further obtain the empirical last call vector E;lc’t with the
same way as we obtain Ei’; . We thus construct the extended real-time last call block
with the same structure as the extended supply-demand block.

For the waiting time block, we define the real-time waiting time vector V%' € R*

in the same way as we defining V4" and V4,
sd le

Definition 7 (Real-time waiting time vector): For a specific area a at timeslot 7 in the
d-th day, we define the real-time waiting time vector as Vfi’f . The ¢-th dimension in
the first part V4% (first L dimensions) is the total number of passengers who waited
for £ minutes (from her/his first call in [t — L, t) to the last call) and did get the rides at
last. Similarly, we define the second part VBCVIV’,’ which corresponds to the wait time of

passengers who did not get the ride.

We thus construct the extended waiting time block with the same structure of the

extended supply-demand block.
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Figure 4.9 Incorporating extra feature

Finally, we connect the supply-demand block, the last call block and the waiting
time block through residual learning, as shown in Fig. 4.6. These three blocks together
form the extended order part in the advanced model. We use the extended order part to

replace the original order part and we thus obtain the advanced version of DeepSD.

4.4.3 Extendability

Finally, in this section we present the extendability of our model. In real appli-
cations, it is very common to incorporate new extra attributes or data sources into the
previous model. For example, imagine that we have already trained a model based on
the order data and the weather data. Now we obtained the traffic data and we want to
incorporate such data to enhance the prediction accuracy. Typically, we have to discard
the already trained parameters and re-train the model from beginning. However, our
model makes a good use of the already trained parameters. In our model, such scenario

corresponds to that we have trained a model with the order block and the weather block.
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As we show in Fig. 4.9, to incorporate the new data (such as POI data, traffic accident
data, and special event data from social network), we construct the “Add Block™ (we
can design a totally new block for the new data, or a block similar to weather block)
and connect the “Add Block” with previous blocks through the residual link. Instead
of re-training the model from the scratch, we use the already trained parameters as the
initialized parameters and keep optimizing the parameters of the new model through
back propagation. We refer to such strategy as fine-funing. In the experiment (Section
4.5), we show that the fine-tuning accelerates the convergence rate significantly and

makes our model highly extendable.

4.5 Experiments

In this section, we report our experimental results on a real dataset from Didi. We
first describe the details of our dataset in Section 4.5.1 and the experimental setting in
Section 4.5.2. Then, we compare our models with several other most popular machine
learning algorithms in Section 4.5.3. In Section 4.5.4 to Section 4.5.6, we show the
effects of different components in our model. The advanced DeepSD can automatically
extract the weights to combine the features of different days of a week. We present
some interesting properties of the weights in Section 4.5.7. Finally, we show some

results about the extendability of our model in Section 4.5.8.

4.5.1 Data Description

In our experiment, we use the public dataset released by Didi in the Di-tech
supply-demand prediction competition® .

The order dataset contains the car-hailing orders from Didi over more than 7 week-
s of 58 square areas in Hangzhou, China. The city map is subdivided with Geohash 5
by Didi in the competition. Geohash is a geocoding system. It is a hierarchical spa-
tial data structure which subdivides space into buckets of grid shape, which is one of

the many applications of Z-order curve, and generally space-filling curves. Each area

@ http://research.xiaojukeji.com/competition/main.action?competitionld=DiTech2016& &locale=en
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(grid) 1s about 4.9km x 4.9km large. The order dataset consists of 11,467,117 orders.
Each order includes the passenger id, the driver id, the area ids of the start location and
the destination, and the time of oder was sent. During our experiment, all the passen-
ger 1ds and driver ids were anonymized. We only have the Geohash 6 area ids of start
location and destination, instead of the GPS location. There are only car-hailing orders
from part of the city (37 areas) are given in the competition data. The gaps in our
dataset are approximately power-law distributed. The largest gap is as large as 1434.
On the other hand, around 48% of test items are supply-demand balanced, i.e., gap = 0.
Auxiliary information include weather conditions (weather type, temperature, PM 2.5)
and traffic conditions (total amount of road segments under different congestion levels

in each area).

The training data is from 23th Feb to 17th March (24 days in total). To construct
the training set, for each area in each training day, we generate one training item every
5 minutes from 0:20 to 24:00. Thus, we have 58(areas) x 24(days) x 283(items) =
393,936 training items in total. Due to the restriction of test data, we set the window
size L = 20.

The test data is from 18th March to 14th April (28 days in total). During
the test days, the first time slot is 7:30 and the last time slot is 23:30. We selec-
t one time slot ¢ every 2 hours from the first time slot unit the last time slot, i.e.,
t =7:30, 9:30, 11:30, ..., 23:30. For each time slot ¢, we generate one test item. We use

T to denote the set of test items.

451.1 Error Metrics

We evaluate the predicted results using the mean absolute error (MAE) and the
root mean squared error (RMSE). Formally, we use pred‘ai’t to denote the predicted
value of gapg’t. Then, the mean absolute error and the root mean squared error can be

computed as follows:

1
MAE = — | gap®' — pred?’
|T| (a,d%:eT
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Table 4.1 Embedding Setting

Embedding Layers Setting Occurred Parts

Embedding of ArealD ~ R*® — R®  Identity Part, Extended Order Part
Embedding of TimeID R4 — R® Identity Part
Embedding of WeekID R’ > R*®  Identity Part, Extended Order Part

Embedding of we.type R0 — R? Environment Part

RMSE = \/Ilﬂ Z (gapZ”—predZ”)z.

(ad,peT

452 Model Details

We describe the model setting in this section.

4.5.2.1 Embedding

Recall that we map all the categorical values to a low-dimensional vector via
embedding (in Section 4.3.1 and Section 4.3.3). The detailed settings of different em-
bedding layers are shown in Table 4.1.

4 5.2.2 Activation Function

For all Fully-Connected layers, we use Leaky Rectified Linear Unit (LReLU)®!]

as the corresponding activation function. An LReLU function is defined as:

ifx>0
LReLU(x) =
0.001-x ifx<0

For the final output neuron, we simply use the linear activation.

4.5.2.3 Optimization Method

We apply the Adaptive Moment Estimation (Adam) method #?! to train our model.

Adam is a robust mini-batch gradient descent algorithm. We fix the batch size to be
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64. To prevent overfitting, we further apply the dropout method 33! with probability 0.5
after each block (except the identity block).

4524 Platform

Our model is trained on a GPU server with one GeForce 1080 GPU (8GB DDRY)
and 24 CPU cores (2.1GHz) in Centos 6.5 platform. We implement our model with

Theano 0.8.2, a widely used Deep Learning Python library (84,

4.5.3 Performance Comparison

We train both the basic model and advanced model for 50 epochs. We evaluate
the model after each epoch. To make our model more robust, our final model is the
average of the models in the best 10 epochs.

To illustrate the effectiveness of our model, we further compare our model with
several existing methods. The parameters of all the models are fine-tuned through the
grid search.

e Empirical Average: For a specific ¢ in area a, we simply use the empirical
average gap ﬁ 22deDy gapﬁf” as the prediction for the supply-demand gap in
time interval [z, + 10).

e LASSO™3: The Lasso is a linear model that estimates sparse coefficients. It
usually produces better prediction result than simple linear regression. Since
LASSO can not handle the categorical variables, we transform each categorical
variable to the one-hot representation. We use the LASSO implementation from
the scikit-learn library 81,

¢ Gradient Boosting Decision Tree: Gradient Boosting Decision Tree (GBDT) is
a powerful ensemble method which is widely used in data mining application-
s. In our experiment, we use a fine-tuned and efficient GBDT implementation
XGBoost! 81,

e Random Forest: Random Forest (RF) is another widely used ensemble method
which offers comparable performance with GBDT. We use the RF implementa-

tion from the scikit-learn library 83,

44



% 4 ¥  Supply-Demand Prediction for Online Car-hailing Services using Deep Neural Networks

Table 4.2 Performance Comparison

Error Metrics

Model
MAE RMSE
Average 14.58 52.94
LASSO 3.82  16.29
GBDT 372  15.88
RF 392 17.18

Basic DeepSD 3.56 15.57

Advanced DeepSD  3.30 13.99

For fair comparisons, we use the same input features for the above methods (ex-
cept empirical average) as those used in DeepSD, including:
- ArealD, TimelD, WeekID
- Real-time supply-demand vector Vi’i’; Historical supply-demand vector of differ-
ent days of week Hgon)’d”, e Hiflun)’d’t.

- Real-time last call vector Vl‘i’t; Historical last call vector of different days of week
H(Mon),d,l H(Sun),d,t

le e e
- Real-time waiting time vector Vi}’; Historical wait time vector of different days
of week HSVM,‘m)’d’t, o HEVStun)’d’T.
- Weather conditions; Traffic conditions.

Table 4.2 shows the comparison results. From Table 4.2, we can see that the em-
pirical average gap is much larger than that of the other methods. By carefully tuning
the parameters, LASSO provides a much better prediction result than the empirical av-
erage. GBDT achieves the best prediction accuracy among all existing methods, for
both MAE and RMSE. The overall error of the RF is somewhat worse than that of
LASSO. Our models significantly outperform all existing methods. Basic DeepSD on-
ly uses the real-time order data, yet already outperforms the other methods even when

they use more input features. The advanced DeepSD achieves the best prediction re-
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Figure 4.10  Accuracy under different thresholds

Table 4.3 Effects of Embedding

Basic DeepSD Advanced DeepSD
Representation
Time Time
MAE RMSE MAE RMSE
(per epoch) (per epoch)

One-hot 3.65 16.12 26.4s 342 1452 49.8s
Embedding 356 1557 22.8s 330 13.99 34.8s

sults for both MAE and RMSE, which demonstrates its prediction power. The RMSE
of the advanced DeepSD is 11.9% lower than the best existing method.

In Fig. 4.10, we further enumerate a threshold and compare the models under
different thresholds. For a specific threshold, we evaluate the models on a subset of test
data which has the gaps smaller than the threshold. Basic DeepSD shows a comparable
result with GBDT for RMSE. However, for MAE, Basic DeepSD is significantly better
than GBDT. For all the thresholds, Advanced DeepSD gives out the best result for both
evaluations.

Fig. 4.11 shows the prediction curves of the advanced model and that of GBDT
(which performs the best among all other methods). The figure shows that GBDT
is more likely to overestimate or underestimate the supply-demand gap under rapid
variations. See the curves in the circles in the figure. Our model provide a relatively

more accurate prediction result even under very rapid variations.
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Table 4.4 Distance of embedded areas

ArealD
3 4 19 24
ArealD

3 0.00 8237 1016 11599
4 82.37 0.00 7577 @ 26.67
19 10.16 7577  0.00  133.98
24 11599 26.67 133.98 0.00

4.5.4 Effects of Embedding

Our model uses the embedding representation instead of one-hot representation
for the categorical values. To show the effectiveness of embedding, we list in Table
4.3 the errors of different models with both embedding representation and one-hot rep-
resentation respectively. The experimental results show that utilizing the embedding

methods improves both the time-cost and the accuracy.

Moreover, recall that in Section 4.3.1, we claim that the embedding technique
can cluster the data with similar supply-demand patterns to enhance the prediction
accuracy. To verify this, we consider the embedded vectors of different areas. We
compare the supply-demand curves of different areas. We find that if two area IDs are
close in the embedding space, their supply-demand patterns are very similar. As an
example, we show the pairwise Euclidean distances among four different areas in the

embedding space in Table 4.4. We can see that in the embedding space, Area 3 is very
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Figure 4.12 Effects of Embedding. (a) and (b): Areas that have similar patterns are also
closer in Euclidean distance in the embedding space. (c) and (d): Areas 46 and 4 have similar
demand pattern, but at different scales.

close to Area 19 and Area 4 is very close to Area 24. We plot the car-hailing demand
curves in 1st March in these areas, as shown in Fig. 4.12(a) and Fig. 4.12(b). From
the figure we can see that for the areas which are close in the embedding space, their
demand curves are very similar. Meanwhile, for the areas which are far apart from each

other, the corresponding demand curves are very different.

More importantly, in the experiment, we find that our model is able to discover the
supply-demand similarity under different scales. In another word, our model discovers
the similarity of supply-demand “trends” regardless of the scales. For example, Fig.
4.12(c) shows the demand curves of Area 4 and Area 46. The demands in these two
areas are in different scales and the demand curves do not even overlap. However,
the distance of these two areas obtained by our model in the embedding space is only

13.34. Actually, if we plot two demand curves under the same scale (as shown in Fig.
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4.12(d)), we can see that the curves are very similar, i.e., they have similar supply-

demand trends.

455 Effects of Environment Part

In our model, we incorporate the environment data (e.g., weather, traffic) to further
improve the prediction accuracy. To show the effectiveness of supplementary part, we
compare the performances of the models under different cases. In Case A, we only
use the order part/extended order part. In Case B, we further incorporate the weather
block. In Case C, we use all the blocks as we presented in this chapter. Fig. 4.13 shows
the prediction accuracies under different cases. Clearly, incorporating the environment
data further reduce the prediction error for both the basic and advanced versions of

DeepSD.
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Table 4.5 Effects of Residual Learning

With Without
Model Residual Learning Residual Learning
MAE RMSE MAE RMSE

Basic DeepSD 3.56 15.57 3.63 16.40
Advanced DeepSD  3.30 13.99 3.46 15.06

4.5.6 Effects of Residual

We adopt the residual learning technique to connect different blocks. To show
the effects of residual learning, we eliminate all the shortcut/direct connections and
simply concatenate all the blocks by a Concatenate Layer. We show the structure of
basic DeepSD without residual learning in Fig 4.14. The advanced DeepSD without
residual learning can be constructed in the same way. The experimental results are
shown in Table 4.5. We find that the residual learning improves the prediction accuracy

effectively. In contrast, simply concatenating different blocks leads to a larger error.

4.5.7 Combining Weights of Different Weekdays

Our DeepSD model learns the relative importance for different days of a week,
and use a weight vector to combine the features for different days. Specifically, from
the current ArealD and WeekID, we obtain a 7-dimensional vector p, which indicates
the weights of different days of week (See Equ.(4-1)). We visualize the weight vec-
tors in two different areas at different days of week, as shown in Fig. 4.15. The blue
bars correspond to the weight vector at Tuesday, and the red bars correspond to the
weight vector at Sunday. As we can see, the weight vector on the Tuesday is extremely
different from that on the Sunday. If the current day is Sunday, the weight is only con-
centrated on the weekends. This also explains the effectiveness of distinguishing the
data in weekdays and weekends which is used in prior work 81039 However, even for
the same day of week, the weights in different areas can be different. For example in

Fig. 4.15(a), the weight of Tuesday is significantly higher than the other days whereas
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Figure 4.15 Weight vectors combining different days of a week.

in Fig. 4.15(b) the weight of all the days are relatively uniform.

4.5.8 Extendability

As we claimed in Section A.3.1, our model is highly extendable. When intro-
ducing new attributes, we can utilize the previous trained model instead of re-training
from the beginning. For example, we first train an advanced DeepSD model without
the weather block and the traffic block. Now, as the weather data and the traffic da-
ta become available, we want to incorporate them to improve the prediction accuracy.
For our model, we only need to add the weather block and the traffic block on top of
the previous (trained) model and keep fine-refining the parameters. Fig 4.16 shows
the training curves of re-training and fine-tuning respectively. The experimental result
shows that refining the parameters when incorporating new extra attributes effectively

accelerates the convergence rate.

4.6 Conclusion

In this chapter, we study the problem of predicting the real-time car-hailing
supply-demand. We propose an end-to-end framework called Deep Supply-Demand
(DeepSD), based on a novel deep neural network structure. Our approach automat-
ically discovers the complicated supply-demand patterns in historical order, weather

and traffic data, with minimal amount of hand-crafted features. We conduct extensive
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Figure 4.16 Convergence results of re-training and the fine-tuning method..

experiments on a real-word dataset from Didi. The experimental results show that our
model outperforms the existing methods significantly. Furthermore, our model is high-
ly flexible and extendible. We can easily incorporate new data sources or attributes
into our model without re-training. We extend the future direction of this work in the

Chapter 7.2.
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% 5 & Traffic Condition Prediction System

Real-time prediction of the traffic condition is an important ingredient for a vari-
ety of applications. In this chapter, we propose an Ensemble based Traffic Condition
Prediction System (ETCPS) for predicting the traffic conditions of any roads in a city
based on the current and historical GPS data collected from floating vehicles. We have
observed two useful correlations in the traffic condition time series, which are the bases
of our design. In order to exploit these two correlations for prediction, we propose t-
wo different models called Predictive Regression Tree (PR-Tree) and Spatial Temporal
Probabilistic Graphical Model (STPGM). Our best quality prediction is achieved by a
careful ensemble of the two models. Our system provides high-quality prediction and
can easily scale to very large datasets. We conduct extensive experimental evaluation-
s with a large GPS data set collected from more than 12,000 taxis in Beijing during
two months. The experimental results demonstrate the effectiveness, efficiency, and

scalability of our system. ©

5.1 Introduction

Real-time prediction of the traffic condition becomes increasingly important. A
well-performed traffic condition prediction system is the fundamental ingredient of var-
ious real applications. Examples include the traffic management®®!, routing service!”’,
taxi ride sharing!®”! etc. Such problem has been widely studied in recent years!>>37->91,
Generally, given the current and historical traffic conditions of the road network, our
goal is to predict the traffic condition of each road after a few minutes or hours.

Most prior works on traffic condition prediction are based on the data generated
by the road side loop sensors. However, such loop sensors are usually expensive and
only embedded in highways and part of urban main roads. Alternatively, ubiquitous

location based services enable us to collect a large volume of traffic data from GPS-

(@ This work has been published in DASFAA 2016131,
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embedded devices. Such GPS data provides valuable information for analyzing and
predicting the traffic conditions. Despite there exist several researches and products
for traffic prediction based on the GPS data, most of them only focused on the arterial

roads and did not consider the urban roads.

In this chapter, we study the efficient and scalable models for traffic condition
prediction based on the GPS data collected from floating vehicles (taxis in our data).
To make our exposition more concrete, we first illustrate several challenges in our

problem.

e Large volume of GPS data has been generated routinely, especially for some
metropolises such as New York or Beijing. Most prior works are based on prob-
abilistic graphical models®>36831  The state spaces explode in these algorithms
under very large scale datasets. Thus, it takes a very long time to run the algo-
rithms.

e The traffic conditions and their transition patterns (i.e., the patterns in which the
traffic condition varies) for each road vary significantly under different time inter-
vals. For example, if the traffic is in a jam during a peak hour, it usually lasts for
a long time. However, if such congestion happens in a non-peak hour, the traffic
usually becomes light soon. Such traffic pattern is changing over time. Prior
works based on the Markov Chain and Hidden Markov Model (HMM)>3-37-881
can not capture such feature since the states of transition matrices are not related
with time.

e The taxis sometimes slow down or even stop for picking or attracting the pas-
sengers. It is hard to distinguish whether such low travel speed is due to the
congestion of the traffic. Such records may lead to erroneous estimations of the

traffic condition.

To address the above challenges, we propose the Ensemble based Traffic Con-
dition Prediction System (ETCPS). Our system combines two different models called
Predictive Regression Tree (PR-Tree) and Spatial Temporal Probabilistic Graphical

Model (STPGM). We summarize our technical contributions below:

e We present two useful observations in the traffic condition time series which

54



%5 5 ¥ Traffic Condition Prediction System

are the bases of our design. We first present the correlations between the gaps
of the traffic condition and its expected traffic condition. Then, we show the
autocorrelations in the first order difference of the traffic condition series (See
Section 5.3).

We propose a regression tree-based model called PR-Tree. PR-Tree can effec-
tively capture the proposed correlations and thus predict the traffic conditions
with a high accuracy. PR-Tree is very efficient on large scale datasets. Given a
training set with 103 roads, it only takes 3.26 minutes to train a PR-Tree and the
prediction of PR-Tree is real-time (See Section 5.5).

We propose a probabilistic graphical model called STPGM. STPGM can cap-
ture the correlations between adjacent roads. It formulates the state transitions
in different time intervals separately. Thus, the state space for STPGM is much
smaller than the prior works!>>%88] " On the other hand, STPGM captures dif-
ferent traffic patterns in different time intervals. We show that in the experiment
STPGM is more efficient and accurate than the algorithms in prior works (See
Section 5.6).

We propose a prediction system called ETCPS which combines PR-Tree and
STPGM. We evaluate our model with real dataset which consists of GPS points
generated by over 12,000 taxis collected in two months. It provides an exper-
imental evidence that ETCPS is efficient, scalable in terms of supporting large

size road networks, and achieves a high-quality prediction (See Section 5.7).

5.2 Problem Statement

5.2.1 Road Network

We are given a data set consisting of GPS records of taxis. The GPS records of the

J-th taxi is represented by T'r; = {p1, p2,..., p|T,j|}. Each p; represents a GPS record

(cid, time, location, speed) indicating the id of the j-th car, the time stamp when the

record is generated, the latitude and longitude of the current location and the instan-

taneous speed respectively. We define a real urban road network as a directed graph
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G = (V,E) where V is the set of nodes representing the terminal points of road seg-
ments and E is the set of road segments. A road segment r; is a directed edge associated
with a start point vy, an end point v, with length /;. See Figure 5.1 for an illustration.
Utilizing the technique of map-matching®!, each GPS record p; on the trajectory T'r g

can be located to a road segment r; in which the car j is traveling on.

5.2.2 Traffic Condition

We define the traffic condition for a road segment r; during a specific period as
below. Given a GPS data set collected during D days, we split the period of D days
into several intervals, and each time interval spans A minutes. We assume that the
traffic condition of a specific road segment remains unchanged in one interval. Such
assumption is widely used in the transportation literature >>71,

As each day has M = % time intervals, for a GPS data set collected during D
days, there are T = M - D time intervals. The -th interval is [f - A, (¢ + 1) - 1). For
example, if we set 4 = 15, D = 31, then we have M = 96, T = 2976, and the interval
34 is a time period from 8 : 30 to 8 : 45 in the first day.

By mapping each GPS record to a road segment, we consider the average speed
of all the records observed in the #-th interval on a road segment. For example, in Table
5.2, the observed average speed for r; in the 35-th interval is (60+58+15)/3. However,
some taxis may run at a very low speed or even stop for boarding or balling when the
road is not congested. We regard such records as the noise which is eliminated in the

pre-processing stage (see Section 5.8 for details). Then, the traffic condition of a road
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segment 7; in the #-th interval is defined as the average speed of all the GPS records
observed in this road segment during the ¢-th interval, denoted as of. Note that for
some road segments, there may not exist any GPS record in the #-th interval and thus
we can not define the corresponding traffic condition. We explain how we deal with
such case in Section 5.8 . Currently, we simply assume o' is well-defined for all i and
t. Moreover, we use Orgi = {Oli, e, oiT} to denote the traffic condition time series of

road segment r;.

Expected Traffic Condition Note that the traffic conditions usually have the “dai-
ly pattern”. For example, a road segment is usually in a jam during 6:00-9:00 each
day whereas from 9:00 to 11:00 it is usually light. For the #-th interval, we define
t mod M as its daily index, i.e., it is the t mod M-th interval in its corresponding day.
For example, if we set M = 96, then the 226-th interval represents the time period
from 8 : 30-8 : 45 in the third day and its daily index is 226 mod 96 = 34. Let
A§ = {0;'/ ¢ = t mod M} be the set of traffic conditions observed in road segment r; dur-
ing the t mod M-th interval for all days. For example, in Table 5.2, the 34-th interval
is a time period from 8 : 30 to 8 : 45 on the first day. Then, Ag 4 18 the set of traffic
conditions of the road segment 7; in all days from 8 : 30 to 8 : 45. We call the mean
of Al the expected traffic condition of r; in time interval ¢, denoted as @’ = Y aial |AL].
Essentially, the expected traffic condition @' indicates the value that traffic conditions
are usually around, in the r mod M-th interval of a day. We use Avg' = {a"l, cees aiT} to
denote the expected traffic condition time series of the road segment r;. Note that Avg'
is a periodic series and once we have the training data, a! is always available for all

te’Z.

Problem Definition Given the historical traffic conditions before time interval T,
Org' = {o',..., 0"} for all i, our goal is to predict the traffic condition on the T + 1-th
interval oiT ., or even longer for each road segment r;. For convenience, for any 7, we

use p, to denote the predicted traffic condition in the time interval ¢.
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5.3 Useful Observations

Most of prior works predict the future traffic conditions directly based on the
traffic condition time series. However, it is difficult to extract the patterns in the traffic
condition time series Org’. We find that by transforming the Org’ into two different
forms of time series, the new time series reveal very strong autocorrelations. We hope
these observations can provide useful insight in further study of the travel condition
prediction problem and related problems.

Expectation-reality gapThe traffic condition time series of the same road seg-
ment in each day usually exhibits strong periodic pattern which we refer to as the
“daily pattern”. We eliminate the daily pattern from the traffic condition series by sub-
tracting the corresponding expected traffic condition from each of the traffic conditions.
Specifically, we set ¢! = o' —a! and we thus obtain a new series Gap' = {gi[t = 1,...,T}.
Intuitively, if g; < 0, it means that the traffic condition in the time interval ¢ is more
congested than usual. We find that there exists a strong correlation between g;,; and
g:. Fig. 5.3 and Fig. 5.4 show the scatter diagram of (o, 0,+1) and (g;, g,+1) of a specific
road segment respectively. As we can see, by transforming the traffic condition series
Org' to the gap series Gap', we essentially extract the “pattern” of the traffic condition
series.

First order difference of traffic condition series We use ! = ol — o'_, to repre-
sent the first order difference of traffic condition series, denoted as Diff(Org). We use

ACF (Auto Correlation Function) to analyze the autocorrelation in the time series of
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§!. The autocorrelation of a random process describes the correlation between values
of the process at different times with a time lag 7. Given a time series and time lag,
ACF returns a value between +1 (total positive correlation) and —1 (total negative cor-
relation) inclusive. If the absolute value of ACF is beyond +0.05, we usually think the
time series is autocorrelated at time lag 7. In Fig. 5.5, we show the ACF value of the
time series 0; of a random road segment. The horizontal axis represents the time lag 7,
and vertical axis represents the ACF value at lag 7. As the ACF value at lag 7 = 1 is
far beyond the threshold —0.05, we conclude that there exists a correlation between 6,

and 6,,1.

5.4 System Overview

The framework of our proposed traffic condition prediction system is illustrated in
Fig. A.3. We develop a system that utilizes the historical and real time taxi GPS records
to estimate the current travel condition and predict the travel conditions in the next
time intervals. It is composed of four major components: Pre-processing, Predictive
Regression Tree Model (PR-Tree) , Spatial Temporal Probabilistic Graphical Model
(STPGM) and Ensemble.

Taxi GPS RecordsII
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Figure 5.6 Overview of system framework.

In the pre-processing phase, first, we map match the GPS trajectories to road

371, Then, we eliminate the records which

networks using the ST-Matching algorithm!
are under boarding or balling state. We then deal with the sparsity issue that no GPS

record is observed for some roads during some time intervals. With the pre-processing,
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we thus obtain two time series Org and Avg as defined in Section 5.2. The details are
presented in the experiment part (Section 5.8). In Section 5.3, we illustrate two useful
observations. Next, in Section 5.5, we use a regression tree based model called PR-Tree
to predict the future traffic conditions based on our observed correlations. We further
adopt a probabilistic graphical model called STPGM in Section 5.6 which captures both
our observations and the correlations between the road segments. Finally, we combine
two models in the ensemble stage as shown in Section 5.7. We show that combining

two different models enhances the accuracy of the prediction in Section 5.8.

5.5 Predicting The Traffic Condition with PR-Tree

In this section , we define a regression tree based model called PR-Tree to predict
the traffic condition of each road segment individually. We first describe the structure
of PR-Tree in detail and how we predict the traffic condition on this tree in Section

5.5.1. Then in Section 5.5.2, we present the training algorithm of PR-Tree.

5.5.1 Description of PR-Tree

Recall that the time series Gap shows a strong autocorrelation as we claimed in
Section 5.3. We can thus approximate g,;; by an estimation g,.; based on g, and
predict the traffic condition in the ¢ + 1-th interval by p;.; = a;41 + &:41 (the expected
traffic condition a,; is always available as we claimed in Section 5.3). From Fig.
5.4, it is reasonable to set g,,; = 6 - g; since the scatter diagram shows a nearly linear
correlation. However, we find that the ratio g,, /g, varies when g; takes different values.
For example, if g; is close to —10, g;,; is usually around 1.2 times g; whereas if g; is
close to —8, g;+1 1s usually around 1.4 times g,;. Motivated by this, instead of estimating
g:+1 by 0 - g;, we use a proper function R(g;) and estimate g;,; by g; - R(g;).

Structure To learn a proper function R, we propose a regression tree based model
called PR-Tree. Specifically, PR-Tree splits the input space into several subspaces.
Each subspace is associated with an output parameter 6. Given the input g,, we find the

subspace corresponding to g, and return the corresponding 6 as R(g;). Formally, each
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Figure 5.7 An example of PR-Tree

inner node of PR-tree has a splitting value and each leaf node has an output parameter
6. To find the corresponding subspace of g;, we search on PR-Tree as follows. Initially,
the current node is the root of PR-Tree. If g, is less than or equal to the splitting
value of the current node, we search the left child recursively. Otherwise, we search
the right child. We perform such search until it reaches a leaf node and returns the
corresponding € on the leaf node as R(g,). For simplicity, we use R to represent the

corresponding PR-Tree.

We show an example of a PR-Tree in Figure 5.7. The PR-Tree contains four inner
nodes (the splitting value of these nodes are {4, 11, 16,23}), and five leaf nodes (their
values are {0.4,0.7,0.6,1.1,0.7}). We take g; = 5 as the input. As the splitting value of
the root node is 16 and g, < 16, we search its left child recursively and finally reach a

leaf node with output parameter 6 = 0.7.

Prediction To predict the traffic condition in the time interval ¢ + 1, we simply set
841 = R(gy) - g, and predict 0,41 by p;s1 = a;41 + R(g,). Fig. 5.7 shows an example.
Given the current traffic condition o, = 45, assuming the expected traffic condition on
tand r + 1 are a; = 40, a,. = 43, we get g, = o, — a, = 5. By taking g, as the input of
PR-Tree, we get R(g;) = 0.7. Then, we estimate 0,1 by a;+| + R(g;) - g = 46.5.

5.5.2 Training PR-Trees

First, we present the objective for training PR-Trees. Recall that we predict o,
as pir1 = am1 + R(g) - g Given the training set Org' = {o},..., 0}, our goal is

to minimize the squared error ¢y 7y (Pr+1 — 0:1+1)>. Equivalently, we need to find an
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Algorithm 1 PR-Tree Splitting (Split)

Require: Node root, Training sequence TR, cross validation sequence CV

Ensure: Update the PR-Tree.

1

2

3

4:

5:

a

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

: ergr = f(TR,0ut(TR))

D €min = 0
fori=1,...,|TR|—1do

TR, < first i elements in TR
TR, « T\TR,

emin = f(TR;, 0ul(TR))) + f(TR,,0ul(TR,))
TR; =TR;,TR; = T\TR;
end if
end for
If e,,;, > es — y return
root.lc < a new node corresponds to TR;
root.rc < a new node corresponds to TR}
if bestcy > Q(CV) then
bestcy = Q(CV)
Split(root.lc, TR;, CV), Split(root.rc, TR}, CV)
set the splitting value of root as MaXgeR: S.U
else
root.lc = None, root.rc = None
set the output value of root as out(TR)
return
end if

it #(TR,,0Ut(TR))) + f(TR,,0Ut(TR,)) < €min then

> update the best TR,

> split root
> split root
> qualify the splitted PR-Tree
> update the global best value

> inner node

> leaf node

op

timal PR-Tree (function R*) that

R =argmin )" (g1 —R(2)- 2 (5-1)
R

te[1,T)

Our training algorithm is slightly different from the standard regression tree train-

ing algorithm. To train the PR-Tree, given the time series Gap = {g"l, cees giT}, we
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construct another sequence S = {(u,v)lu = g,v = g1,Vt = [1,T)}. Each ele-
ment s € S indicates a pair of values (g, g;+1). We use s.u to denote the first val-
ue in pair s and s.v to denote its second value. We sort § by increasing order of
s.u. For any subsequence S, C S and any PR-Tree R, we define the cost of S, as
O ) = Yes, (5.v—R(s.u) - s.u)?. which represents the squared error if we use PR-
Tree R to fit the set S ,.

Our training algorithm works as follows. During the training phase, each node
corresponds to a subsequence of S, C S. For a specific node, if it is an inner node, we
use S, S, to denote the corresponding subsequences of its left child and its right child
respectively. Then, its splitting value is max,eg, s.u. Otherwise, it is a leaf node. We
define f(S,, @) = Zsesx(s.v—a-s.u)z. The output 6 of this leaf node is argmin, (S, @),
denoted as out(S ,).

Initially, we have a singleton tree. There is the only one node which corresponds

to §. We split the PR-Tree recursively. For each node, there is a best splitter S7, i.e.,
§7 = argmin {f(S;,0ut(S)) + f(S\S, out(S\S )}
Sy

We enumerate the first i elements of S, as §; (S, = §\§)) to search the best splitter §;
(line 3 to line 10 in Algorithm 1). Note that since S is sorted and f(S;, @) is the sum of
quadratic terms which is still quadratic. To obtain the best splitter S}, we can maintain
the coefficients of f(S;, @) and the minimum of the quadratic term can be calculated
in O(1) time. Each time when we enumerate a new subsequence, we only need to
update the coefficients. Thus, we can obtain the best splitter in O(|S|) time efficiently.
We denote S, = §,\S;. If f(S;,0ut(S))) + f(S;,0ut(S;)) < f(Sxout(Sy) — vy, we
split the current node into two child nodes with subsequences S; and S respectively
where vy is a threshold to be specified (line 12 to line 13). Otherwise, we terminate the
recursion (line 11).

The readers may notice that such splitting procedure may cause a serious over-
fitting problem, i.e., the PR-Tree keeps splitting until each node only contains a very
short subsequence. To remedy this issue and reduce the generalization error, we split

S into two parts, the training part 7R and the cross validation part CV. We use TR to
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train PR-Tree, each time when a node is split, we qualify the current PR-Tree on the
cross-validation set CV and check whether if Q(CV) decreases (line 14). If the qual-
ification on CV does not decrease, we undo the splitting operation (linel9 to line21)
and terminate the recursion. Otherwise, we continue the splitting operation (line 15
and line 17) and split its children nodes recursively (line 16). See Algorithm 1 for the

pseudo code.

5.6 Predicting Traffic Condition with STPGM

Despite that the PR-Tree performs well in most of our data (which we show in
Section 5.8), it does not consider the correlations between the road segments. Some
roads are easily affected by its neighbors, the congestions of its neighbors usually lead
to the congestion of itself in the next few time intervals. For such roads, PR-Tree does
not perform well. Motivated by this, we propose a probabilistic graphical model called
STPGM which is used in combination with the PR-Tree in our system.

We first construct a spatial temporal probabilistic graph (STPG) G, which corre-
sponds to a road network G. If a vehicle can travel from the road segment 7; to the road
segment r; (or from r; to r;) directly, we say that r; and r; are adjacent. We construct a
vertex v; in G, which corresponds to a road segment 7; in G. We add an edge between
v; and v; if and only if the road segments r; and r; are adjacent. For a specific v;, we use
Neib(v;) to denote all the adjacent vertices of v;. Intuitively, the adjacent road segments
affect each other much more significantly than the other road segments. Thus, each

edge in G, represents a “‘strong effectiveness” in the road network.

5.6.1 States of STPGM

We first discretize the traffic conditions into different states. Recall that as we
claimed in Section A.4.1, the traffic conditions and the transition patterns are very dif-
ferent not only at different road segments, but also at different time intervals. However,
for a specific road segment, we find that the traffic conditions and transition patterns
are usually similar for the time intervals with the same daily index. For example, if the

traffic is congested in 8 : 00, it usually stays congested in next several time intervals.
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However, if the traffic is congested in 10 : 00, the traffic becomes light in the next few
minutes with a large probability. Motivated by this, we consider different time intervals

separately and use the same state sets for the time intervals with the same daily index.

For a specific road segment r;, instead of clustering all of its traffic conditions in
series Org' (which are widely used in the prior works®~%37:81) 'we consider the traffic
conditions under different daily index separately. Formally, we consider a specific daily
index [ € [M]. Recall that A;' = {oilt = [ mod M}. We cluster the traffic condition set
A; into k clusters with K-Mediods where k is a parameter to be specified (see Section
5.8 for details). For example, if the daily index / corresponds to 8 : 30-8 : 45 in a
day, then we cluster the traffic conditions for all days during 8 : 30-8 : 45. We use
the center ci,l of each cluster to represent a state, and denote the set of the centers as
C) = {c"1 s ci ;J. The state of the traffic condition in the time interval 7 is represented

by its nearest center in C! denoted as s!. We show an example of a random

[t mod M)’
selected road segment r; where C’25 = {44,48, 52,58} and C§4 = {15, 25, 32,38} (km/h).
The time interval 25 corresponds to 6 : 00-6 : 15 where the traffic is usually light and

the time interval 74 corresponds to 18 : 30-18 : 45 where the traffic is usually heavy.

5.6.2 Parameter Learning

We predict the traffic condition of a specific vertex (corresponds to a road segmen-
t) v; based on the historical traffic conditions of itself and its neighbors. We assume that
the traffic condition of v; in the time interval 7 + 1 is only related with the traffic condi-

tions of v; and Neib(v;) in the time interval .

Formally, consider a vertex v;. Let {v;} U Neib(v;) = {v;,,...,v;,} and the corre-
l| 12
sponding states in time interval 7 are {c' Coit> Coyy > o+ 0 cx ¢} Our goal is to learn the
transition probability for all the possible states in C( 141) mod M * 1-€-5
_ A i _ in _ _in
P(St+1 x t+1|st Cxil > St ) > 8¢ Cx,»,, t)
=N in_ i i iy
P(s;,, = Ciaar1> 51 = Coyposn o8 = € )
= i _ i i i (5-2)
P(s;' = Cy oo 8 = €1 0)
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For the prediction, it is unnecessary to compute the the denominator, which we
show in Section 5.6.3. As for the numerator, the state space in Equation 5-2 explodes
exponentially whereas the training data is relatively limited. It is not sufficient to esti-

mate the numerator precisely. Thus, we approximate the numerator of Equation 5-2 by

P(s), = c ,,+1>HP<s = ¢ I8l =€) (5-3)

where P(s! = |s = ci' .+1) indicates that given the observed state in the time
J is

t+1

. ey . . Xi;
interval t + 1, the probablhty that the previous state of v;; is cl.,’t.

We define the indicator function I(s’, ¢:. ) which indicates that whether the state of

1 xt
the road segment r; in the time interval 7 equals c;’ Weuse N =3 moa m 1 (s,,, cx’t) to
represent the total days that the state of the road segment r; in the  mod M-th interval
of each day is ¢’,. Then, we calculate the probability P(s; = ') by the frequency

P(si = ¢'.,) = N/D. Similarly, for the term P(s = c 'l ;I_J .1), we have

+1

Zt’ ¢t mod M(I(St’+1’ X; t+1) I(Sl‘" jij’t))

= Clpt) = (-4

P(sfj = c |s

t+1 — j
Zt’zz modMI(st{H’ Xi; t+l)

Thus, we get the approximation of the numerator of Equation 5-2.

5.6.3 Prediction

Suppose the traffic conditions of the road network in time interval ¢ are observed.
We first construct the states for each road segment r;. To predict the traffic condition
of a road segment r;, after obtaining the states of v; and Neib(v;) in the time interval
t, we use Equation 5-2 to infer the probability of each state for v; in the time interval
t + 1. Then, we select the state with the largest probability as the predicted state and
the corresponding cluster center as the predicted traffic condition. Note that as the
denominator of Equation 5-2 is a constant value when the states of v; and Neib(v;) in

the time interval ¢ are given, it is actually unnecessary to compute this denominator.
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5.7 Model Extensions

Ensemble We find that in the experiment, the performances of PR-Tree and
STPGM differ in different roads. Some roads are rarely affected by their neighbors,
such as the arterial roads. For such roads, PR-Tree outperforms STGPM. However, as
PR-Tree does not consider the correlations of the roads, STPGM performs better than
PR-Tree for the roads which are highly affected by its neighbors, especially the road-
s that only few GPS records are observed. Our prediction for traffic condition in the
t+1-thinterval is a linear combination of the previous traffic condition of, the prediction
obtained by PR-Tree and STPGM. The weights of the linear combination is obtained
by linear regression. We show that in the experiment, by combining the models, our

system achieves a higher accuracy for the prediction.

Alternate of the input series In fact, both the PR-Tree and STPGM are the mod-
els which capture the correlations in a time series. Recall that in the PR-Tree model,
we use the time series Gap as the input. In STPGM, we use the traffic condition time
series Org as the input. Essentially, we can use the any time series related with the
traffic as the input of both models and predict the traffic condition in a proper way. For
example, if we use the Org as the input of a PR-Tree, we actually try to approximate

i

i, by 0} - 6(0}) and we predict the traffic condition directly use 6(0}). Similarly, we

0
can use the Gap as the input of STPGM. Besides the proposed two series, we can also
use the first order difference of Org (i.e., Diff(Org) as defined in Section 5.3) as our
input or the traffic conditions filtered with Kalman filtering. The details are presented

in Section 5.8.

5.8 Experiments

In this section, we evaluate the effectiveness and efficiency of the proposed mod-

els.
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5.8.1 Experiment Setting

Data Set In all experiments, we use the real dataset which consists of GPS records
collected from 12,000 taxis from November 1st to December 31st in 2012 © .The GPS
data are map matched ¥ to road network @ of Beijing. During our experiment, all
the driver id were anonymized by recoding. We evaluate our algorithms on the data
of November and December respectively. For each month, we divide the data set into
the training set (1st - 24th), and the test set (25th - the last day). We distinguish two
cases in our experiments: the standard case and the sparse case. For the standard case,
we select 10812 road segments which contains more than 140 GPS records per day in
average. In the sparse case, we select 101672 road segments in which the GPS records
occurred in more than 10 time intervals per day in average. In all experiments, we
focus on the time period from 6 : 00 to 24 : 00 in each day since there are only few
GPS records observed during 00 : 00 to 6 : 00.

Measurement We evaluate the performances of our models on the test data set
by Mean Absolute Error (MAE), Mean Relative Error (MRE) and Mean Squared
Error (MSE), ie, MAE = L3\ 37, |pi - oil, MRE = Lyl ST |pi—oll/ol,
MSE = |1le|£|1 Zthl (p! — 0%)%. Recall that we evaluate our algorithms on the datasets
of November and December respectively. For convenience, for each model, we use
the mean of the errors on the two months as the final error. All the experiments are
implemented parallelly with Python 2.7 and run on a service on Open Stack (Intel X-
eon E312 CPU of 16 cores with 2.1GHz for each core and 32GB memory on Ubuntu

14.04LTS operate system).

5.8.2 Pre-processing

Data Cleaning In the data cleaning phase, we eliminate the GPS records for taxis
which slow down or even stop for picking or attracting passengers. We distinguish
two cases of such records. One is boarding, 1.e., the passengers get on or get off the

taxi. The other is balling, i.e., the taxis slow down or stop to attract guests who need

@® This data can be downloaded in http://www.datatang.com/data/45888
@ This data can be downloaded in http://www.datatang.com/data/45422
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taxis. For the boarding state, the speed of the taxi usually varies sharply in a short time.
Therefore, once we detect such sharp variation of the speed, we eliminate such GPS
records. To handle the balling state, for a specific road, we check the speeds of all taxis
in this road in a specific time ¢. If the speeds of most taxis are relatively high, only few
of the taxis are driving at a very low speed , we think such taxis are on the balling state
and we eliminate the corresponding GPS records.

Deal with Sparsity Recall that as we claimed in Section 5.2, some road segments
may not contain any GPS record during the time interval ¢ for some ¢ € [T]. Thus,
the corresponding traffic condition o' is not defined. To solve this issue, for the road
segment r;, if the GPS record set observed in the time interval ¢ is not empty, we define
0! as the average speed of the GPS records in the #-th interval. Otherwise, we have
o = —1. Let X; = {0.] = t mod M A 9/, # —1} indicate the traffic conditions
during the t mod M-th interval in each day. We define @ as the mean of X; and the
series Bias = {b;, = 5; - a;’|v(3;' # —1}. Then, for each pair of adjacent elements in
Bias, we perform the linear interpolation to obtain the undefined b;. For example, if
Bias = {by = 3,bs = 4.5, b7 = 10.5}, we obtain a series {b; = 3,b, = 3.5,b35 = 4,b4 =
4.5,bs = 6.5,b¢ = 8.5,b7 = 10.5} after performing linear interpolation. Finally, we

have that the traffic condition o' is obtained by 0! = @' + b,.

5.8.3 Performance Evaluation

Performances of different models We present the evaluations of our models. We
first compare our model with the baseline Avg, i.e., predict the traffic condition o by its
expected value a!. Furthermore, in the recent work, Yang et al.!*”! proposed STHMM
for traffic condition prediction which is based on a spatial temporal hidden markov
model. We compare STHMM with our models as well.

The results are shown in Fig. 5.8(a) and Fig. 5.8(b). As we can see, the baseline
(Avg) performs worst in both cases. Despite that STHMM outperforms Avg in both
cases, both of our models PR-Tree and STPGM perform better than STHMM in our
data set. Moreover, in the standard case, PR-Tree performs better than STPGM as

shown in Fig. 5.8(a) whereas in the sparse case STPGM performs better. By combining
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Figure 5.8 Performance Analysis.

PR-Tree and STPGM, our system ETCPS achieves the best performance in both two
cases.

Verifying the Observed Patterns Recall that as we claimed in Section 5.7, any
time series related with traffic can be taken as the input of both PR-Tree and STPGM,
and predict the traffic condition in the proper way. To illustrate the effects of the obser-
vations which we proposed in Section 5.3, we design four different experiments with
different time series and evaluate each experiment on PR-Tree and STPGM respective-
ly. The first two time series are Org and Gap = Org — Avg, as we used in Section 5.5
and Section 5.6. Then, we use the first order difference of Org as the input time series,
denoted as Diff(Org). The #-th element in Diff(Org) is 0,41 — 0;. Furthermore, since
the raw GPS records usually contain the noise such as the GPS drift, we use Kalman
filtering to process the traffic condition series Org. We take the first order difference of
the processed time series as the input as well, denoted as Diff(Kal).

We show the experimental results in Fig. 5.8(c), Fig. 5.8(d) and Fig. 5.8(e). Both
PR-Tree and STPGM perform badly if we use Org as input directly. However, by using

Diff(Org) and Gap instead, the performances improve significantly which verifies our
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observations.

Predict longer time intervals The PR-Tree model can be also used to predict
the traffic conditions in the longer term. Given observations in interval ¢ denoted as
0;, we first obtain the predicted traffic condition p,;; and we take p,.; as the “true
traffic condition” in the time interval # + 1 and obtain p,.,. Iteratively, we obtain the
prediction after m time intervals p;.,,. In Fig. 5.8(f), we show the performance of PR-
Tree in predicting the traffic condition in the next O to 60 minutes and comparing with
the Avg method. As m increases, the performance becomes worse, but it is still better
than Avg.

Effects of time and road length

Fig.5.9 shows the effectiveness of our prediction across time. We plot the average
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) State Parameter
Size PR-Tree

Formulation Learning

10° 0.04 1.72 0.22
10* 0.46 17.46 2.09
5%10* 2.14 88.1 10.09
10° 3.26 176.6 19.61

Figure 5.12 table: Time cost (Minutes)

mean squared error of travel speed (MSE) for the baseline Avg, STHMM and ETCP-
S respectively during different hours for all days. The result shows that our system
outperforms both the baseline and STHMM.

To illustrate the effectiveness of the road length, in the Fig. 5.10, we show the
relation between MAE and the length of road segments. The result shows that the road
segments with longer length tend to have smaller MAE, i.e., our prediction performs
better for the road segments with longer lengths.

Running time Since the predictions of both PR-Tree and STPGM are simple
which can be done in real time, we only present the running time for training our
models in Fig. 5.11 and Tab. 5.12. From Table 5.12, we can see that the training time
cost of PR-Tree is very small. It takes only 3.26 minutes to process 10° roads. However,
STPGM takes a much longer time to train as shown in Table 5.12. Especially for the
state formulation phase, clustering the traffic conditions is time costing. It takes 176.6
minutes to process the state formulation phase for 10° roads. We stress that SHTMM
applies a complicated state formulation algorithm and the state space is much larger
than STPGM. In our data set, the time consuming of SHTMM is 1718 ms per road

whereas even for STPGM, it only takes 13.3ms per road to train the model.

5.9 Conclusion

We study the effective and scalable methods for traffic condition prediction. We

propose an Ensemble based Traffic Condition Prediction System (ETCPS) which com-
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bines two novel models called Predictive Regression Tree (PR-Tree) and Spatial Tem-
poral Probabilistic Graphical Model (STPGM). Our model is based on two useful ob-
served correlations in the traffic condition data. Our system provides high-quality pre-
diction and can easily scale to very large datasets. We conduct extensive experiments
to evaluate our proposed models. The experimental results demonstrate that comparing
with the existing methods, ETCPS is more efficient and accurate. We extend the future

direction of this work in the Chapter 7.2.
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% 6 & Estimating Travel Time Based on Recurrent Neural
Networks

The travel time estimation is an important yet challenging problem. It is a funda-
mental ingredient of many location-based services such as navigation, route planning
systems etc. In this chapter, given a path and the corresponding start time, we study
the problem of estimating the time for traveling the path. Prior work usually focuses
on estimating the travel times of individual road segments or sub-paths, and then sum-
ming up these estimated travel times. However, such approach leads to an inaccurate
estimation, since the travel time is also affected by the number of road intersections or
traffic lights in the path, and the estimation errors for individual road may accumulate.
We propose an end-to-end framework for Travel Time Estimation called DeepTTE.
Our model estimates the travel time of the whole path directly, based on deep recurrent
neural networks. In our model, we consider the spatial and temporal dependency in
the path as well as various factors which may affect the travel time such as the driver’s
habit, the day of the week etc. We conduct extensive experiment result on a large s-
cale dataset. The experiment result shows that our model significantly outperforms the

other existing methods.

6.1 Introduction

Estimating the travel time for a given path is a fundamental problem in route
planning, navigation, and traffic dispatching. An accurate estimation of travel time
helps people better planning their routes. Almost all the electronic maps and online
car-hailing services provide the travel time estimation in their apps, such as Google
Map, Uber, Didi, etc. When a user searches the routes to the destination, the map
app provides several candidate routes with estimated travel times (and possibly other
measures such as gas consumptions, tolls) for the user to decide. Although the problem

has been widely studied in the past years, providing an accurate travel time is still a
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Figure 6.1 An illustration of the query path.

challenging problem. Prior work usually focuses on estimating the travel speed/time
of an individual road segment®7-62641 However, the travel time of a path is affected by
various factors, such as the number of road intersections and the traffic lights in the path
etc. Simply summing up the travel time of the road segments in the path does not lead
to an accurate estimation, as the errors may accumulate [65], Alternatively, some work
decomposes the path into several longer sub-trajectories instead of the road segments
and estimates the travel time based on the sub-trajectories>®. Although such method
enhances the estimation accuracy, it suffers from the data sparsity problem since there
are many sub-trajectories that were visited by very few drivers.

In this chapter, we view a path as a sequence of location points (see Fig. A.4 for an
illustration), and we learn to estimate the travel time from historical trajectories based
on deep learning approach. To make our exposition more concrete, we first present
some challenges in our problem.

e To estimate the travel time, we have to consider the spatial and temporal depen-
dences in the given trajectory at the same time. Prior work usually formalizes
such dependence by discretizing the trajectory into several grids!" or road seg-

ments 57

. However, on one hand discretizing the GPS points into grids causes
the information loss due to the coarse granularities. On the other hand, inferring

the travel time based on the individual road segments misses the effects of road
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intersections and traffic lights. Few work studies capturing the spatio-temporal
dependence of GPS points directly.

e The travel time of a specific path can be very different at different time intervals.
For example, in the peak hours, it usually takes much longer time than that in
non-peak hours. Even for a fixed time interval, different days of the week reveal
very different distributions of travel times. Prior work usually builds several sub-
models for different days of the week®°!. Such implementations, on one hand,
make the model tedious, on the other hand, each sub-model only utilizes a small
part of data which may suffer from the lack of training data.

e Different drivers have different driving habits. The experienced drivers are usu-
ally very familiar with the traffic conditions in the city and drive very fast. On
the contrary, the new drivers usually drive relatively slow which leads to a longer
travel time under the same condition. Most of the prior work does not consid-
er the effects of drivers (the driver information is available in our dataset) when
estimating the travel time.

e Different historical trajectories have very different values of length (i.e., the num-
ber of points) or distance. Fig. A.5 shows the distribution of the values of tra-
jectory length and distance in our dataset. It is not easy to process the variable-
length trajectories directly with the traditional machine learning models such as

Random Forest, Gradient Boosting, etc.

To address the above challenges, we propose an end-to-end framework, based
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on deep recurrent neural networks. The primary contribution of this chapter can be
summarized as follows:

e We design an end-to-end framework for Travel Time Estimation, called
DeepTTE, based on deep recurrent neural networks. We incorporate various fac-
tors which may affect the travel time (e.g., the driver, the day of the week, and
the time interval, etc.) in a unified model, instead of building several sub-models
manually.

e We devise a novel neural network architecture which can easily process variable-
length GPS trajectories. Furthermore, by carefully designing the input sequence,
our model effectively captures the spatial and temporal dependence in the trajec-
tory simultaneously without much information loss.

e We further extend our model to a multi-task learning model by introducing an
auxiliary component. The auxiliary component estimates the travel time between
each pair of adjacent GPS points which we take as the auxiliary output. We show
that the auxiliary component effectively improves the model performance.

e We conduct extensive experiments on a large scale data set which consists of
GPS points generated by over 14, 684 taxis collected in one month in Chengdu,
China. Our model achieves a high-quality prediction result with the error rate
of 12.74% which significantly outperforms several other off-the-shelf machine
learning algorithms, as shown in Section 6.4.

This chapter is organized as follows. In Section A.5.2, we formally define our
problem and present several preliminaries of our model. In Section A.5.3, we de-
scribe our model architecture in detail. We conduct extensive experiments to show
the strength of our model in Section 6.4. Finally, we present some related work and

conclude this chapter in Section A.2.3 and Section 6.5.

6.2 Problem Definition

Definition 8 (Historical Trajectory): We define a historical trajectory T as a se-
quence of consecutive historical GPS points, i.e., T = {py,..., pjrj}. Each GPS point
p; contains: the latitude (p;.lat), longitude (p;./ng) and the timestamp (p;.ts). Further-
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more, for each trajectory we record its corresponding driver ID which we denote as

driverID.

We then illustrate the our objective.

Definition 9 (Objective): Given the path S, the corresponding driver ID and the start
time, our goal is to estimate the travel time from the source to the destination through
S. We assume that the travel path S is specified by the user or generated by the route
planing apps. S to a sequence of location points by sampling. Each location is repre-

sented as a pair of longitude and latitude.

Remark: In our experiment, we remove the timestamp in the historical trajectories
and use such trajectories as the test data. During the training phase, we learn how to
estimate the travel time of the given path, based on the historical trajectories as we
defined in Definition 10. During the test phase, to make the testing data consistent with
the training data, we convert the path S to a sequence of location points by sampling.

In this chapter, we do not consider how to optimize the path S.

6.3 Model Architecture

We first describe the architecture of our model as shown in Fig. A.6. Our model
consists of four parts: the attribute component, the sequence learning component, the

residual component, and the auxiliary component.

The attribute component processes the attributes of the driver ID, the current day
of the week, and the timeslot of the start time. The sequence learning component
processes the GPS location sequence. The residual component utilizes the outputs
of the first two components to estimate of the given path. Finally, we introduce an
auxiliary component which estimates the travel times between consecutive GPS points

and helps improve the model performance.
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Figure 6.3 Overview of DeepETT.

6.3.1 Attribute Component

In the attribute component, we first process the attributes of the driver ID, the day
of the week and the timeslot of travel start® . We use driverID, weekID and timelID to
denote these three attributes respectively. Since these attributes are categorical, to feed
the attributes into the neural network, we need to transform them into real values. We
use the embedding method*®! to process each categorical attribute. The embedding
method maps each categorical value v € [V] to a low-dimensional space RE*! by a ma-
trix W € RV*E (we refer to such space as the embedding space). An important property
of embedding method is that the categorical values with similar semantic meaning are

usually very close in the embedding space. Thus, the embedding method helps us dis-

@O We divide one day into 1440 timeslots.
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cover the similarities in the data*®!. In our case, for example, for some specific paths,
driving at 7:00 A.M. usually takes similar time with that at 18:00 P.M. since they are
both peak hours. Thus, we use the embedding method to reduce the computational cost
and help us discover such similarities in the data automatically.

We further consider the attribute of travel distance. We denote Ad,, _,,, as the
travel distance from GPS point p, to p,,i.e., Ad, _,,, = Zf’;al Dis(p;, pi+1) where Dis is
the geographic distance between two GPS points. Then, we concatenate the embedded
vectors of driverID, weekID and timelD together with the travel distance Ad), _,,, to

form the output of the attribute component, which we denote as attr.

6.3.2 Sequence Learning Component

In this part, we demonstrate how the sequence learning component extracts the
compressed information from the trajectory using a novel architecture.

Recall that each trajectory T is represented by a sequence of GPS points
{pP1.....pm}. Since different trajectories have different lengths, to handle the sequences

with variable lengths, we propose two candidate processing methods.

6.3.2.1 Sampling Method

We randomly sample each trajectory to a fixed length m, as shown in Fig. 6.4. We
denote the indices of the sampled points as an ordered list L and the sampled trajectory
as T’. Furthermore, to make sure that the source and the destination are included in 7",
we have that L; = 1 and L,, = |T|. Thus, the sampled trajectory 7’ can be represented
as{pr,s---» PL,}-

Recall that the trajectory contains both the temporal and spatial dependencies. To
capture the spatio-temporal dependency, we use two stacked LSTM layers to process
the GPS point sequence. A direct way is to take the longitude and the latitude of point
pr, to the LSTM layers at each time step i. However, discovering the relative position
and the distance between two GPS points is not easy for neural networks. Instead, for
each time step i, we concatenate the coordinates of two consecutive points py,, pr,,,, the

travel distance between p;, and py,,, (which we denote as Ad), —,,, ) and the output
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Figure 6.4 Sampling m Points from Trajectory.

feature vector attr obtained from the attribute component. We use such concatenation
xi = (lat;, lon;, lat;,, lonyy, Ady, -, . attr) as the input of LSTM layers.

We pass the input sequence to two stacked LSTM layers and obtain the output se-
quence {y1,y2,...,Ym-1}. Then, we use two stacked time-distributed (fully-connected)
layers to map each y; to a hidden state vector 4;. A time-distributed fully-connected lay-
er takes a sequence of vectors and maps each vector to an output vector using the same
mapping function. We finally concatenate the hidden state sequence {hy, hy, ..., h,—1}

into a vector H, where H indicates the representation vector of the trajectory.

6.3.2.2 Pooling Method

Alternatively, since the recurrent neural network can process the variable length
sequences, we can also use the original trajectory T directly without sampling. In such
implementation, instead of using the concatenate layer, we use a mean pooling layer

as our merge layer, i.e., H = |T|+1 Z'l.ill_ ! h; and obtain the representation vector in the
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same way. We compare these two different sequence processing implementations in

the experiment part.

Path

Ti— €L Lit+1

Figure 6.5 Learn the presentation of the whole trajectory.

6.3.2.3 Discussion

When a new point pair x; = (p;, pi+1) given to a LSTM neural, we deal it with
the first i — 1 points pairs together, instead of viewing it as a isolated pair. To be more
concrete, as shown in the Fig. 6.5, when the LSTM neural transform the x; to A;, it
will also consider the abstract of the first i — 1 points pairs, e.g. h;,_;. Finally, we
concatenate the {hy, ..., h,} together as a high dimension feature vector. Such vector

is a presentation of the whole trajectory.

6.3.3 Residual Component

The residual component simply concatenates all the obtained feature vectors from
sequence learning component and the attribute component. It thus forms a high-
dimensional vector which indicates the representation of the trajectory and the related
information (driver ID, the day of the week, etc.). Then, we use three residual layers to

extract the feature vectors from this high-dimensional vector. Finally, we use a single
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neuron with linear activation to obtain the estimated travel time of the given path.

6.3.4 Auxiliary Component

In fact, the residual component is already available to estimate the travel time
of the given path. However, it only considers the “global information”of the whole
trajectory but ignores the travel time of sub-trajectories which we refer to as the “local
information”. Note that during the training phase, since the time stamps of all the GPS

points p.ts are available, we can easily infer the local information of the trajectory.

To utilize the local information, a feasible way is to estimate the travel time be-
tween each pair of consecutive GPS points and sum up the travel time of all pairs.
However, on one hand, the travel time between the consecutive points is usually very
small but has a large variance. Estimating such small values is difficult and leads to a
very inaccurate result. On the other hand, since we only care the estimation accuracy
of the whole trajectory, it is not necessary to accurately estimate the travel time of each

individual pair.

Instead, we introduce an auxiliary component to make use of the local informa-
tion, and we take the estimated travel time between the point pairs as the “auxiliary
output”. Formally, we denote the travel time of a sub-trajectory p, — p; as At,, _, .
For convenience, suppose we adopt the sampling trick in the sequence learning compo-
nent. Based on the first three components, the auxiliary component receives the hidden
state sequence {hy,...,h,_1} from the sequence learning component. Then it maps
the hidden state sequence into a real value sequence {e;,es,...,e,_1} using a time-
distributed fully-connected layer. Each real value e; corresponds to the estimated travel
time Afp, _,, ~Where L is the indices of sampled points as we defined in Section 6.3.2.
We use the estimated travel time sequence {ej, es,...,e,_1} as the auxiliary output of
our neural network. The auxiliary output is trained together with the estimated travel

time of the whole trajectory. See Section 6.3.5 for more details.
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6.3.5 Model Training

Our model is trained end-to-end. We use the mean absolute percentage error
(MAPE) as our objective function. Formally, suppose we adopt the sampling trick
in the sequence learning component. Then, the loss function of sequence learning

component is defined as
lossseq = le - Alpl_’PLml/AtPl_’PLm'

For the auxiliary component, the loss function is the average MAPE loss of each time

step, i.e.,

|
i+1

. (6-1)
m—1 i=1 Atpli_’me t€

m—1
1 le; — AtPLi —pL

losS ux =

Note that in Eq. (6-1) we use a small factor € to prevent the exploded loss values when

At

PL7PLyy, — 0.

The loss function we used during the training phase is defined as the weighted

sum of 10ssg, and 10ssy, i.e.,

loss = 1088, + @ - 10884, (6-2)

where « is the weight factor which is specified in the experiment section. Note that the
auxiliary loss is just used to improve the accuracy, we still use lossy,, to evaluate our
model performance.

Thus, we can train our model by the standard backpropagation and gradient de-

scent method.

6.3.5.1 Discussion

Learning to estimate the travel time of the whole trajectory and the travel time
sequence of consecutive location pairs at the same time is one of the advantages of
using deep learning model. Even though our original problem is to estimate the travel

time of the whole path, we convert it to a multi-task learning problem, and optimize

84



%% 6 ¥ Estimating Travel Time Based on Recurrent Neural Networks

multiple objectives with a shared neural network architecture. This technique allows
us to fully utilize the information contained in the training data. Multi-task learning
has been widely studied in the computer visions and the natural language processing
problems®'=31. 1t is unclear how to implement such multi-task learning using tradi-
tional machine learning techniques such as the random forest, or gradient boosting, in

our setting.

6.4 Experiments

In this section, we report our experimental results on the real world dataset. We
first describe the experimental setting and the details of dataset in Section 6.4.1. We
then compare our model with several baseline methods in Section 6.4.2. In Section

6.4.3 to Section 6.4.5 we present the effects of different components and parameters.

6.4.1 Experiment Setting
6.4.1.1 Data Description

Our dataset consists of 1.4 billion GPS records of 14864 taxis from 2014/08/03
to 2014/08/30 in Chengdu, China® . Each record contains three attributes: the longi-
tude, the latitude and the corresponding time stamp. During our experiment, all the
driver id were anonymized by recoding. The total number of trajectories is 9, 653, 822.
The shortest trajectory contains only 11 GPS location points (2km) and the longest
trajectory contains 128 GPS location points (41km).

We use the last 7 days (from 24th to 30th) as the test set and the remaining ones

as the training set.

6.4.1.2 Parameter Setting

We present the parameter settings of different components.
Attribute Component: We embed driverID to R'™!6, weekID to R and timeID to
R1X4

@® The dataset and the corresponding code can be downloaded at https://github.com/DeepTTE/DeepTTE
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Sequence Learning Component: We set the dimension of each LSTM internal state
as 128 and the dimensions of two time-distributed fully-connected layers as 128 and
64 respectively. We use leaky relu function (LReLU)B!! as the activation of the time-
distributed fully-connected layers. Moreover, we test our model under different sam-
pling rates (i.e., the number of sampled points) when we adopt the sampling trick. See
Section 6.4.3 for more details.

Residual Component: We set the dimension of all three residual layers as 128. The
activation functions of the residual layers are all leaky relu function.

Furthermore, in the auxiliary loss in Eq.(6-1), we set € = 10. In Eq. (6-2), we
set the weight factor a as 3.0. We fix the batch size of our model as 512 and we adopt
Adam'®? optimizer with learning rate 0.001 to train our model. Our model is trained
by 40 epochs.

To evaluate our model, we use 5-fold cross-validation in the training set. For
each fold, we select the best model based on the validation. We thus obtain 5 best
models. To estimate the travel time on the test set, we use each selected model to
obtain an estimation respectively and average the estimations as our final result. The

final estimation is evaluated by MAPE as we mentioned in Section 6.3.5.

6.4.1.3 Experiment Environment

Platform: Our model is trained on the server with one GeForce 1080 GPU. We
implement our model with Keras 0.8.2 (Theano backend), a widely used Deep Learning

Python library.

6.4.2 Performance Comparison

To demonstrate the strength of our model on estimating the travel time, we com-
pare our model with several popular machine learning methods. Since part of the
baseline methods cannot process the sequences with variable lengths, to make a fair
comparison, we first sample each trajectory to a fixed length of 30. The methods are

shown as follow:
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Table 6.1 Performance Comparison of Baseline Methods

Model MAPE
Gradient Boosting 20.32%
MLP-3 layers 16.17%
MLP-5 layers 15.75%
Vanilla RNN 18.85%
DeepTTE 13.14%

1. Gradient Boosting Decision Tree (GBDT): Gradient Boosting Decision Tree is a
powerful and widely used ensemble method!'?!. To estimate the travel time using
GBDT, we concatenate the all the attributes contained in our attribute component
and the input sequence in our sequence learning component. We use the concate-
nated vector as the input of GBDT. In our experiment, we use XGBoost, a widely
used GBDT library!”®!. The optimal parameters are achieved by the grid search.

2. Multi-Layer Perceptron (MLP): A multi-layer perceptron is a fully-connected
neural network with multiple hidden layers. We test our data with a 3-layer MLP
(with 3 hidden layers) and a 5-layer MLP respectively. The input vector of MLP
is the same as the input of GBDT. The dimension of each hidden layer is fixed as
128 and the activation is leaky relu.

3. Vanilla RNN: We further compare our model with a vanilla RNN architecture.
Each time step, the vanilla RNN receives the coordinates of p;, and py,,, as well
as the corresponding travel distance between them. Similarly, we build an at-
tribute component. We concatenate the output the attribute component and RN-
N, and we pass the concatenation to a 3-layer perceptron to obtain the estimated

travel time.

We show the experiment result in Table 6.1. As we can see, the GBDT results
in a large error of 20.32%. We stress that although GBDT is a powerful and widely
used method, it cannot capture the temporal dependency in the data. Furthermore,
GBDT relies on carefully hand-crafted features. However, extracting useful features

from the GPS point sequence is not easy. For vanilla RNN, it considers the temporal
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Table 6.2 Performance of Different Sampling Capacity

Sampling Capacity MAPE Time (per epoch)
DeepTTE-10 15.45% 674s
DeepTTE-30 13.14% 1729s
DeepTTE-70 13.02% 3879s

DeepTTE-100 12.74% 5484s
DeepTTE-Var 12.87% 5841s

dependency between GPS location points but it failed to process the long sequence due

to the gradient vanishing problem, as we mentioned in Section A.5.1.

6.4.3 Effects on the Sampling Rate

We compare the performances of DeepTTE when we use different sampling rates
(i.e., the length m of sampled trajectories as we defined in Section 6.3.2). We use x to
denote the lengths of sampled trajectories and DeepTTE-x to denote the corresponding
model. We further compare the performance of DeepTTE if we use the pooling trick,
which we denote as DeepTTE-Var. The experiment result is shown in Table 6.2.

The result shows that enlarging the sampling rate increases the estimation accura-
cy of our model. When the sampling rate is 100, our model achieves the best perfor-
mance of 12.74%. However, using large sampling rate also increases the training time.
For DeepTTE-100, it takes about 1.5 hours to train a single epoch. Choosing a proper
sampling rate is a trade-off between the speed and accuracy.

DeepTTE-Var achieves the estimation accuracy of 12.85% which is slightly worse
than DeepTTE-100. Although it utilizes all the information of the original trajectory T
(recall that the max length of T is 128), it causes the information loss when we simply

averaging the hidden state by the mean pooling layer.

6.4.4 Effects of the Auxiliary Component

Recall that in our model, we introduce an auxiliary component to estimate the

travel time between consecutive GPS points. To verify the effectiveness of the auxil-
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Table 6.3 Effects of Attribute Component

Experiment Setting MAPE
DeepTTE-30 13.14%
Eliminate driverID 13.37%
Eliminate weekID 13.58%
Eliminate both 13.59%

iary component, we eliminate the auxiliary component in DeepTTE-30 and train our
model under the same condition. The experiment result shows that the estimation error
increases from 13.14% to 13.95% dramatically.

Furthermore, if we directly predict the travel time between the consecutive GPS

points and use the summation as our estimation, the MAPE is as high as 28.44%.

6.4.5 Effects of the Attribute Component

To show the effects of the attribute component (driver ID, day of the week), we
compare the performance of DeepTTE-30 under three different settings. In the first
setting, we eliminate the day of the week in the attribute component. In the second
setting, we eliminate the driver ID. In the last setting, we eliminate both two attributes
and only keep the start time and the travel distance in the attribute component. The
experiment result is shown in Table 6.3.

The result shows that eliminating any attribute in our model leads to a reduction
of estimation accuracy. As we can see, dropping out the day of the week increases
the estimation loss dramatically. Moreover, if we eliminate the driver ID, the MAPE
loss increases from 13.14% to 13.37% which verifies that the driving habits affects the

travel time estimation, as we mentioned in Section A.5.1.

6.5 Conclusion

In this chapter, we study estimating the travel time of a given path. We propose an

end-to-end framework based on deep recurrent neural networks. Our model effectively
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captures the spatial and temporal dependencies in the given path at the same time.
Furthermore, our model considers various factors which may affect the travel time
such as the drivers, the day of the week etc. We conduct extensive experiments on
a very large scale real-world dataset. The experimental result shows that our model
achieve a high estimation accuracy and outperforms the other off-the-shelf methods

significantly.
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% 7E Conclusion

Currently, the wide usage of location based services and GPS embedded devices
have changed people’s life style. For example, people use their smart phones to plan
their routes, call for car-hailing services, find the trip partners and search the destina-
tions etc. A variety of massive spatial temporal data is generated routinely (e.g., vehicle
mobility, traffic patterns, online car-hailing data and geo-tagged check-in data etc). The
rapid expansion of both urban population and volume of vehicles has lead to the com-
mute demands in these cities increase sharply. People suffer the traffic congestion and
the difficulty in getting cabs. Analyzing the large volume of location based data brings
new opportunities for discovering valuable information. It enables the governments to
do the traffic analysis and urban planning, which in turn can alleviate the traffic con-
gestion and difficulty in taking cabs. Motivated by this, an increasing number of papers
empowered recently.

In this chapter, we will first summarize the contributions of this thesis, and discuss
how the frameworks/systems provided in this thesis can be applied to problems outside
the scenarios considered. Then, we will talk about the future research directions of the

prediction over massive spatio-temporal traffic data.

7.1  Summary of the Thesis

In this thesis, we focus on learning and prediction over the massive spatio-
temporal traffic data. Three specific problems are investigated, including car-hail supply
demand prediction, traffic condition prediction and travel time estimation. These three
problems are quite related, but different. They are the base of building a better intel-
ligent transportation system (ITS) to alleviate the traffic congestion and improve the
user experience in daily commute. The ITS recommend people better route plans to
avoid the congestions roads, based on the prediction of traffic conditions and travel

time estimation of given path. Meanwhile, by forecasting the commute demands, the
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ITS can dispatch the taxis to balance the supply-demand in advance and reduce the gas

consumptions of no-load taxis.

In the Chapter A.3, we study the problem of predicting the real-time car-hailing
supply-demand. We propose an end-to-end framework called Deep Supply-Demand
(DeepSD), based on a novel deep neural network structure. Our approach automatical-
ly discovers the complicated supply-demand patterns in historical order, weather and
traffic data, with minimal amount of hand-crafted features. We presented two versions
of DeepSD: a basic version and an advanced version. The basic version simply use
the real-time car-hailing order data whereas the advanced version further incorporate
the historical car-hailing data with a more complex structure. We conduct extensive
experiments on a real-word dataset from Didi. The experimental results show that our
model outperforms the existing methods significantly. Furthermore, our model is high-
ly flexible and extendible. We can easily incorporate new data sources or attributes into

our model without re-training.

In the Chapter A.4, we study the effective and scalable methods for traffic condi-
tion prediction. We propose an Ensemble based Traffic Condition Prediction System
(ETCPS) which combines two novel models called Predictive Regression Tree (PR-
Tree) and Spatial Temporal Probabilistic Graphical Model (STPGM). Our model is
based on two useful observed correlations in the traffic condition data. Our system
provides high-quality prediction and can easily scale to very large datasets. We con-
duct extensive experiments to evaluate our proposed models. The experimental results
demonstrate that comparing with the existing methods, ETCPS is more efficient and
accurate. In the future, we plan to infer the traffic conditions by incorporating more
features from heterogeneous data sources, such as the weather condition, POI informa-
tion etc. Next, we will focus on the efficient way to deal with road segments which
have extremely sparse trajectory records. Furthermore, we plan to try different ensem-
ble methods to combine the different models in order to enhance the performance of

the prediction.

In the Chapter A.5, we study estimating the travel time of a given path. We pro-

pose an end-to-end framework for Travel Time Estimation called DeepTTE based on
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deep recurrent neural networks. Our model effectively captures the spatial and tempo-
ral dependencies in the given path at the same time. Furthermore, our model considers
various factors which may affect the travel time such as the drivers, the day of the
week etc. We conduct extensive experiments on a very large scale real-world dataset.
The experimental result shows that our model achieve a high estimation accuracy and

outperforms the other off-the-shell methods significantly.

Note that, the frameworks/systems provided in this thesis can be easily applied to
problems outside the scenarios we considered. For example, in the Chapter A.3, we
proposed an end-to-end framework called Deep Supply-Demand (DeepSD) to predict
the supply-demand for online car-hailing services. In fact, supply-demand prediction
is widely studied in many fields, such as the logistics transportation, the commodity re-
tailing, the photovoltaic power generation. To be more concrete, we take the logistics
transportation as an example. The logistics companies, such as UPS, FedEX, and EMS,
need to maintain networks of warehouses for each city, to pick-up or deliver packages.
Each warehouse is responsible for a certain area. However, the number of packages
need to be handled varies dynamically due to different warehouses and time intervals.
For example, some large warehouses deliver at least 10, 000 packages each day, where-
as some warehouses in small-scale only deliver at most 50 packages. Furthermore, the
number of packages need to be handled under different time intervals of a day can be
extremely different. Obviously, an accurate prediction of the number of packages to
be handled for different warehouses and time intervals helps scheduling the employees
efficiently, which can greatly improve productivity and save cost. In fact, such problem
is quite similar to the supply-demand prediction for online car-hailing services. Cur-
rently, we are cooperating with a major logistics transportation company in China. We
help them to predict the number of packages to be handled for different warehouses in
each time intervals a month in advance. The framework we propose in the Chapter A.3

seems also quite useful in this project.
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7.2 Future Directions

There are still a few aspects which can be further optimized. For example, more
data sources should be involved in the prediction framework/system. The spatio-
temporal traffic data is affected by the complex environments, especially the unex-
pected events (e.g. extreme weather, traffic accidents, activities, etc.). Event detection
based on the search data or the social network data should be added to the prediction
system to improve the prediction accuracy in the exceptional situations.

Another interesting avenue would be to explore the feature vectors we extract from
trajectories with recurrent neural network. In the chapter A.5, we discuss using the
recurrent neural network to represent the whole GPS trajectories as a high dimension
feature vector. Although, in that work we use the vector to estimate the travel time
of the path, we think the information that the feature vector contains is far more than
that. For example, the feature vector may contain the information of driving style
of the driver, habit of the trajectory owner, and traffic condition of the roads that the
trajectory passed etc. Based on the trajectory feature vector, we can learn the similarity
between different trajectories to detect the social relationships between the owners of
trajectories.

Finally, in this thesis, we focus on the prediction in the spatio-temporal data. In
general, the prediction results provide a reference for decision making. In the next
step, we plan to using deep reinforcement learning models to help make decision in
the spatio-temporal field. For example, in chapter A.3, we can design a deep reinforce-
ment learning based architecture to decide how to schedule the drivers or recommend

a suitable price for dynamic pricing.
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FRAE, WURT LA 3 AAE e i 22 Ik 25 20 A I B R IR A e tidh, JRATTHY
HEZE A v RIS AT R i) o B T IRATTHIMESE, WTLAR 2 5 FIH 2 A A [R50
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I 18] e A R AR B AN RO oo, IX R BATY R AR R BT A B 1 IX
PRI B FRIAR O, FRATTIR Y T PRI RS TN 81 AR (R-Tree) AR 23 MR
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) A3 Y Al v SR B BT B AR AT B TR, AR R X el T A AT B
I 6] EAT IANAS 2 BRARAT BUA (8] o SRTT,  H3 AT IR 18] 48 32 B A rh I i 28 S 11 B
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PR R B RS2 00 A 1o 22 X 4 EL A T A B AR I AT IR 1] o AR FRATT RO Y
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AT AR B 5] T8 B P 00 HH A R B /R R . SR, — 7 I, AT AR E AR R Y
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BAVFIMARSE S, RAEGCIE A, DR BRS A . E20165 1%
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fiEo BR 7 EARE (ANIX 5, EIAJL, A4 75 22 8O AE B I 4t v 2040 D
Gb, EFERE T AEH VEAEBRAAE, A [R] I TR] B N A [ e 25 1R S5 457 I [R] - W L i
6], ASJR] DX R VR R 75 SR B 55 R P S B AN AR i 22 o B ARATT KA R LA
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AT, FRATDRE BB SR LA A K2 A LURT A AR (58 A AR A Y
SR AZ ARG . Hunter5 A 1531 4 32 2% 9 v ) 5 38 R B0 I 2 7 Dy e KA
SRR,  JFARE IS B ) S B B AT BN (Al THAT BRI [B] 43 AT . Yeon®5 A A H]
T U 8] S /R B REE(DTMO), (i 2 % Al SRSk oL Y. SR, X ee T
VEAR A [R] i B b AR RAT I TR) 2 SSL IR, 1T AN FEAN [ b 1) 3838 IR L 2 [A)
IR S, X AT e S S50 T 1t DX AR A R T

N T AR B AR G, Hofleitner N POLKEAH <18 6 B 2 1] IR S Fe 7

@  http://research.xiaojukeji.com/competition/main.action?competitionld=DiTech2016&&locale=en
@ https://github.com/Microsoft/Light GBM/
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45 7€ AR AT B TR . Asghari &8 N DURYE I3 S A% Bas £ £ TH A7 B i (]
oA AT TARRT S R N IRAT T RIFR B i rT SR B 2 D B . 1K 5 HRAT
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AL T R AR AT RERS TA] o ABATTASE FH 5K R 0 i 1B, XI5 AT R
THERYE. SAE L, e VIR B R R AR RIS, ORI
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@® FE: http://www.xiaojukeji.com/en/index.html
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@ http://research.xiaojukeji.com/competition/main.action?competitionld=DiTech2016
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