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Abstract—In this paper, we propose an energy efficient
device discovery protocol,eDiscovery, as the first step to
bootstrapping opportunistic communications for smartphones,
the most popular mobile devices. We chose Bluetooth over
WiFi as the underlying wireless technology of device discovery,
based on our measurement study of their energy consumption
on smartphones.eDiscovery adaptively changes the dura-
tion and interval of Bluetooth inquiry in dynamic environ-
ments, by leveraging history information of discovered peers.
We implement a prototype of eDiscovery on Nokia N900
smartphones and evaluate its performance in three different
environments. To the best of our knowledge, we are the first to
conduct extensive performance evaluation of Bluetooth device
discovery in the wild. Our experimental results demonstrate
that compared with a scheme with constant inquiry duration
and interval, eDiscovery can save around 44% energy
at the expense of discovering only about 21% less peers.
The results also show thateDiscovery performs better
than other existing schemes, by discovering more peers and
consuming less energy. We also verify the experimental results
through extensive simulation studies in the ns-2 simulator.

Index Terms—Device discovery, opportunistic communica-
tions, energy efficiency, smartphones, Bluetooth.

I. I NTRODUCTION

Mobility itself is a significant problem in mobile net-
working. On the one hand, protocols designed for mobile
networks should solve the challenges caused by the mo-
bility of wireless devices. For example, routing protocols,
such as DSR (Dynamic Source Routing) [16], are required
to handle frequent routing changes and reduce the cor-
responding communication overhead. On the other hand,
mobility can increase the capacity of wireless networks
through opportunistic communications [14], where mobile
devices moving into wireless range of each other can
exchange informationopportunisticallyduring their periods
of contact [7], [21].

Opportunistic communications have been widely ex-
plored in delay-tolerant networks [34], mobile social ap-
plications [21] and mobile advertising [1], to facilitate
message forwarding, media sharing and location-based ser-
vices. Meanwhile, there are more and more applications
leveraging opportunistic communications for various pur-

poses. For example, LoKast1 is an iPhone application that
provides mobile social networking services by discover-
ing and sharing media content among users in proximity.
Nintendo 3DS’s StreetPass2 enables players to exchange
game data with other users they pass on the street, through
the direct device-to-device communication between 3DS
systems. Other similar applications include Sony PS Vita’s
Near and Apple’s iGroups.

Device discovery is essentially thefirst step of oppor-
tunistic communications. However, there are very few prac-
tical protocols proposed for it and most of the existing work
mainly utilizes (trace-driven) simulation to evaluate the
performance of various device discovery protocols [9], [31].
Moreover, although there are several real-world mobility
traces in the CRAWDAD repository3 which were collected
using Bluetooth device discovery, most of them used very
simple discovery protocols withfixed inquiry duration
and interval. A recently proposed opportunistic Twitter
application [26] also uses a 2-minute inquiry interval for
Bluetooth device discovery. It is known that these kinds of
discovery protocols are not energy efficient [31] and thus
may not be desirable for power-constrained mobile devices,
such as smartphones. In this paper, we bridge this gap
by developing anenergy-awaredevice discovery protocol
for smartphone-based opportunistic communications and
evaluating its performance in practice.

There are two major challenges in designing, imple-
menting and evaluating energy efficient device discovery
protocols for smartphones. First, the selection of underlying
communication technology is complicated by the multiple
wireless interfaces on smartphones, such as Bluetooth and
WiFi (a.k.a., IEEE 802.11).4 Although Bluetooth is a low-
power radio, its device discovery duration is much longer
than WiFi (∼10s for Bluetooth vs.∼1s for WiFi active
scanning), which may cause more energy consumption on
smartphones. Similarly, WiFi is known to be power-hungry
for mobile devices [24], [28]. Thus, it is not clear which of

1http://www.lokast.com/
2http://www.nintendo.com/3ds/features/
3http://crawdad.cs.dartmouth.edu/
4We prefer Bluetooth and WiFi to 3G, as they are local

communication technologies with almost no monetary cost.



2

them is more suitable for device discovery on smartphones.
Second, given the dynamic nature of human mobility, we

need to adaptively tune the parameters of device discovery,
such as inquiry duration and interval, to reduce smartphone
energy consumption. Schemes with constant inquiry inter-
vals have been proven to be optimal in terms of minimizing
discovery-missing probability [31]. However, their energy
consumption is usually higher than the adaptive ones,
which may miss more devices during discovery procedures.
Therefore, there is a tradeoff between energy consumption
and discovery-missing probability.

We make the following contributions in this paper.

• We present a systematic measurement study of the
energy consumption of Bluetooth and WiFidevice
discoveryon smartphones, by measuring both the elec-
trical power and the discovery duration (Section IV).
Based on our measurement results, we chose Bluetooth
as the underlying wireless technology. We emphasize
that although previous works have studied the power
of Bluetooth/WiFi devices [9], [11], [24], they either
focus on only Bluetooth [9] or ignore the duration of
device discovery [11], [24], without which it is hard
to evaluate theenergy consumptionof these devices.

• We design an energy-aware device discovery protocol,
namedeDiscovery, as the first and very important
step to bootstrapping smartphone-based opportunistic
communications (Section VI). By trading energy con-
sumption for a limited discovery loss, we demonstrate
thateDiscovery is highly effective in saving energy
on smartphones.eDiscovery dynamically tunes the
discovery duration and interval according to history
information of the number of discovered peers. It
also introduces randomization into device discovery,
in order to explore the search space further.

• Our major contribution is an extensive performance
evaluation ofeDiscovery and other existing device
discovery protocols in different realistic environments,
through a prototype implementation on Nokia N900
smartphones (Section VII). We conduct experiments in
a university campus, a metro station and a shopping
center. Our experimental results verify the effective-
ness ofeDiscovery in practice. Compared with
the STAR protocol proposed by Wang et al. [31],
eDiscovery consumes less energy and discovers
more peers.eDiscovery also performs better than
another protocol in the literature. We also port the im-
plementations ofeDiscovery and STAR into the ns-
2 simulator enhanced with the UCBT Bluetooth mod-
ule5 and get similar simulation results (Section VIII).

II. RELATED WORK

In this section, we briefly review the literature of device
discovery in wireless networks and mobile opportunistic
communications.

5http://www.cs.uc.edu/∼cdmc/ucbt/

A. Wireless Device Discovery in General

Device discovery has been widely studied in various
wireless networks, such as ad-hoc networks [20], [30],
mobile sensor networks [10], [17] and delay-tolerant net-
works [31].

Neighbor/device discovery is one of the first steps to ini-
tialize large wireless networks. McGlynn and Borbash [20]
examine the problem of neighbor discovery during the
deployment of static ad-hoc networks, where the discovery
may last only a few minutes. Inspired by the birthday
paradox, a pair of nodes perform neighbor discovery by
transmitting and listening onk independently and randomly
chosen slots amongn slots (the ratiok/n is relatively
small). Vasudevan et al. [30] show that an existing ALOHA-
like neighbor discovery algorithm reduces to the classical
Coupon Collector’s Problem when nodes are not capable
of collision detection. They also propose an improved
algorithm based on receiver status feedback when nodes
have a collision detection mechanism. Differently from the
above works that are based on abstract communication
models, our focus is practical Bluetooth device discovery
for smartphone-based opportunistic communications.

Dutta and Culler [10] propose an asynchronous neighbor
discovery protocol, called Disco, for mobile sensing appli-
cations. Disco can address the challenge of operating the
radios at a low duty cycle and ensuring fast and reliable
discovery in bounded time through the adaptation of the
Chinese Remainder Theorem. U-Connect [17] is another
asynchronous neighbor discovery protocol for mobile sen-
sor networks that selects carefully the time slots to perform
discovery and that has been proven theoretically better than
Disco. Recently, Bakht et al. [2] propose Searchlight, a
protocol that combines both deterministic and probabilistic
approaches to further reduce the discovery latency for
mobile social applications. Disco, U-Connect and Search-
light mainly aim to achieve a tradeoff between discovery
latency and energy consumption. For example, U-Connect
uses the power-latency product metric for performance
evaluation. Differently from them, we are interested in
the tradeoff between energy consumption and discovery-
missing probability.

Cohen and Kapchits [6] investigate a slightly different
neighbor discovery problem in asynchronous sensor net-
works. Instead of study the initial neighbor discovery, they
are interested in continuous neighbor discovery after the
initial discovery phase. To leverage the discovered neighbor
relationship during the initialization, they propose to make
sensors in a connected segment collaborate on the discovery
task and thus speed up the discovery of a new sensor node.

The goal ofeDiscovery is similar in spirit to that
of Wang et al. [31] who investigate the tradeoff between
the contact probing frequency (which determines energy
consumption) and the missing probability of a contact for
delay tolerant applications. They also design a contact
probing algorithm, named STAR (Short Term Arrival Rate),
to dynamically change the contact probing frequency based
on the contact arrival process. Without specifying the com-
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munication technologies, they assume that every probing
message is just an impulse and consumes no time. As op-
posed to STAR, we also dynamically change the duration of
Bluetooth inquiry to further reduce the energy consumption.
We compare the performance ofeDiscovery with STAR
in Section VII through extensive real-world experiments
and simulation studies.

B. Bluetooth Device Discovery

Bluetooth specifies a detailed device discovery pro-
tocol [3]. Salonidis et al. [27] identify the bottlenecks
of asymmetric device-discovery delay of Bluetooth. They
introduce a randomized symmetric discovery protocol to
reduce this delay. Based on Bluetooth specification v1.1,
Peterson et al. [25] derive rigorous expressions for the
inquiry-time probability distribution of two Bluetooth de-
vices that want to discover each other and validate them
through simulation studies. Chakraborty et al. [5] present
an analytical model of the time of Bluetooth device discov-
ery protocol. They investigate the discovery time pattern
through extensive simulation studies.

Liberatore et al. [18] solve the problem of long discovery
duration of Bluetooth due to its half-duplex discovery
process by the addition of another Bluetooth radio. Through
analysis and simulation studies they demonstrate that this
dual radio technique can improve both discovery duration
and connection frequency. Drula et al. [9] study how to
select Bluetooth device discovery parameters according to
the mobility context and thus reduce the energy consump-
tion of device discovery. They present two algorithms that
adjust these parameters (e.g., the time spent in inquiry and
scan phases and the duration and interval of scan) based
on recent activities and the location of previous contacts,
and evaluate their performance through simulations. In
our previous work [15], we compare energy consumption
of Bluetooth and WiFi device discovery on Nokia N900
smartphones, using battery life as a metric. We evaluate
the Bluetooth device-discovery probability in an office
environment using a static phone and a moving phone.

Besides the above works, although there is a large body
of literature about Bluetooth device discovery, most of them
focus on the improvements of discovery latency between
two Bluetooth devices by tuning various parameters or
changing the protocol itself, which may not be feasible
to implement on smartphones. Differently from them, we
study how to dynamically change the inquiry window and
interval to achieve the tradeoff between discovery-missing
probability and energy efficiency. Particularly, we design
an energy-aware Bluetooth device discovery protocol and
evaluate its performancein the wild through a prototype
implementation on smartphones.

C. Opportunistic Communications

There have been many applications of opportunistic com-
munications in mobile social networks and delay-tolerant
networks. To encourage social participation from mobile
users in information sharing applications, Garyfalos and

Almeroth [12] propose Coupons, an incentive scheme that
allows users to opportunistically share data over a wireless
medium. Previously, we have proposed to leverage oppor-
tunistic communications and social participation to offload
cellular traffic to mobile-to-mobile communications and
thus alleviate traffic load on 3G networks [15]. The above
works can benefit from our proposed scheme to facilitate
their opportunistic communications.

McNamara et al. [21] propose a content source selection
scheme, Media Sharing, to share media content among co-
located mobile users in urban transport. With this scheme,
mobile devices can select the best content sources (the peers
who can remain co-located long enough to complete data
transfer) and perform content sharing and distribution. The
authors confirm the feasibility of the proposed prediction
scheme using underground transport traces collected from
a large metropolitan mass transit system. Differently from
Media Sharing, we aim to develop an energy efficient
device discovery protocol, which is an essential stepbefore
the selection of the best peers.

III. D EVICE DISCOVERY IN BLUETOOTH AND WIFI

In the following, we discuss device discovery of Blue-
tooth and WiFi, the two most commonly available local
wireless communication technologies on smartphones.

A. Bluetooth

The Bluetooth specification (Version 2.1) [3] defines
all layers of a typical network protocol stack, from the
baseband radio layer to the application layer. Bluetooth
operates in the 2.4 GHz ISM (Industrial, Scientific and
Medical) frequency band, shared with other devices such
as IEEE 802.11 stations, baby monitors and microwave
ovens [13]. Therefore, it uses Frequency-Hopping Spread
Spectrum (FHSS) to avoid cross-technology interference,
by randomly changing its operating frequency bands. Blue-
tooth has 79 frequency bands (1 MHz width) in the range
2402-2480 MHz and the duration of a Bluetooth time slot
is 625 µs. In the following we focus on device discovery
and refer interested readers to Smith et al. [29] for further
study of the Bluetooth protocol stack.

During device discovery, an inquiring device sends out
inquiry messages periodically and waits for responses, and
a scanning device listens to wireless channels and sends
back responses after receiving inquiries [3]. The inquiring
device uses two trains of 16 frequency bands each, selected
from 79 bands. The 32 bands of these two trains are selected
according to a pseudo-random scheme and a Bluetooth
device switches its trains every 2.56 seconds. In every time
slot, the inquiring device sends out two inquiry messages
on two different frequency bands and waits for response
messages on the same frequency bands during the next time
slot. After a device receives an inquiry message, it will
wait for 625 µs (i.e., the duration of a time slot) before
sending out a response message on the same frequency
band, which completes the device discovery procedure.
For scanning devices, Bluetooth controls their scanning
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Fig. 1: A 60-second snapshot of the temporal power of
periodic Bluetooth device discovery with 10-second interval.
The smartphone under test is a Nokia N900 smartphone.
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Fig. 2: A 60-second snapshot of the temporal power of
periodic WiFi device discovery with 10-second interval. The
smartphone under test is a Nokia N900 smartphone.

duration and frequency with two parameters, scan window
and scan interval.

We discuss device discovery for Bluetooth Low En-
ergy [4] which is included in Bluetooth specification Ver-
sion 4.0 and how to extend our work for this low energy
enhancement in Section IX-A.

B. WiFi

The key concept of device discovery in WiFi is well un-
derstood. WiFi stations in infrastructure and ad-hoc modes
periodically (100 ms by default) send out Beacon messages
to announce the presence of a network. A Beacon message
includes information such as SSID (service set identifier)
and capability information. The WiFi interfaces of mobile
phones should operate in ad-hoc mode and form an Inde-
pendent Basic Service Set (IBSS) to support opportunistic
communications, since infrastructure-mode interfaces can-
not form a network and thus cannot communicate directly.
Besides sending out Beacon messages, a WiFi interface also
scans wireless channels to discover peers.

There are two types of WiFi scanning, passive and
active. In passive scanning, a WiFi interface listens for
Beacon messages on each channel, broadcasted by its peers
at regular intervals. It periodically switches channels, but
does not send any probe request message. During active
scanning, a WiFi interface actively searches for its peers,
by broadcasting probe request messages on each possible
operating channel (channels 1 to 11 in North America).
It then waits for probe response messages from its peers,
which include information similar to that in Beacon mes-
sages.

We prefer active scanning to passive scanning for device
discovery of opportunistic communications mainly for two
reasons. First, although passive scanning has the advantage
of not broadcasting probe request messages, it dwells on
each channel longer than active scanning, to collect Beacon
messages from peers, and thus may consume more energy.
Second, an ad-hoc mode interface may skip the sending of
Beacon messages and thus make itself not discoverable by
passive scanning, when it tries to scan for other peers with

the same SSID (which happens frequently when it is the
only station in an IBSS).

IV. ENERGY CONSUMPTION OFDEVICE DISCOVERY

In this section, we measure the power and energy con-
sumption of Bluetooth and WiFi device discovery on smart-
phones. Based on the experimental results, we chose Blue-
tooth as the communication technology for smartphone-
based device discovery. Although previous work has mea-
sured energy consumption of WiFi and Bluetooth devices
several years ago [9], [24], these results may be invalid
given the rapid development of battery and wireless tech-
nologies [11]. To the best of our knowledge, there is no
systematic study of smartphone energy consumption of
Bluetooth and WiFi device discovery.6

A. Measurement Setup

We measure the electrical power of two states of Blue-
tooth and WiFi device discovery, idle and active probing,
on Nokia N900 smartphones using the Monsoon power
monitor7. The default OS of Nokia N900, Maemo 5, is
an open source Linux distribution (kernel version 2.6.28).
Its WiFi chipset is Texas Instruments WL1251 using the
wl12xx device driver8. Its Bluetooth chipset is Broadcom
BCM2048. We use BlueZ9, the default Bluetooth protocol
stack of most Linux distributions, to run Bluetooth device
discovery experiments. During the measurements, we redi-
rect standard output to\dev\null and turn the screen off
to minimize their impact on the measurement results. We
report the average result and standard deviation for each
configuration over 10 runs in this section.

6Although Friedman et al. [11] have recently studied the power
of Bluetooth scanning and WiFi search, they overlook the duration
of device discovery which determines the energy consumption
on smartphones. Furthermore, their measurements are for station
mode WiFi interfaces and demonstrate inconsistent results about
WiFi device discovery.

7http://www.msoon.com/LabEquipment/PowerMonitor/
8http://linuxwireless.org/en/users/Drivers/wl12xx
9http://www.bluez.org/
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# of Devices Average Standard Deviation

0 162.03 2.12

1 227.06 12.33

2 247.72 8.60

3 248.91 9.51

4 248.59 3.16

5 256.02 4.93

6 253.05 5.51

TABLE I: The electrical power (in mW) of Bluetooth
device discovery with different numbers of neighboring
devices.

B. Bluetooth

We present a 60-second snapshot of the power of
Bluetooth device discovery in Figure 1. We perform the
experiments by runninghcitool, a tool that can send
commands, such asinq (inquiry), to Bluetooth devices.
We use theflush option to clear the cache of previ-
ously discovered devices before each inquiry. During the
measurements, the phone queries neighboring Bluetooth
devices periodically with a 10-second interval. When there
is no neighboring device, the average power of Bluetooth
inquiry over 10 runs is∼162.03 mW (standard deviation:
2.12 mW). During inquiry intervals (i.e., idle states), the
Bluetooth radio is in discoverable mode with average power
∼16.54 mW (standard deviation: 1.11 mW). Note that all
results of power measurements in this paper include the
baseline power of the smartphone under test.

The average power of Bluetooth device discovery is
affected by the number of neighboring devices. We repeat
the experiments with the number of neighboring Bluetooth
devices increasing from 0 to 6 and summarize the results
in Table I. As we can see from this table, when there
is one neighboring device, the average power increases
to around 227.06 mW, due to the reception of response
messages of Bluetooth inquiry. When there are more than
one neighboring devices, the average power increases to
about 250 mW.

Defined in the standard [3], the duration of Bluetooth
device discovery should be a multiple of 1.28 seconds and
the recommended default value is 10.24 seconds, which
we used in the measurements. Figure 1 shows clearly
the configured Bluetooth device discovery duration and
interval.

C. WiFi

We present another 60-second snapshot of the power
of WiFi device discovery in Figure 2. We perform the
experiments by runningiwlist, a tool that shows the
list of access points and ad-hoc cells in range through
active scanning. During the measurements, the phone scans
neighboring devices periodically also with a 10-second
interval, which can be clearly identified in Figure 2. The
average power of WiFi active scanning over 10 runs is
∼836.65 mW (standard deviation: 8.98 mW). Even during

Environment Office Home Park

# of peers 43.52 (5.3) 14.02 (1.4) 0.01 (0.1)
duration (s) 1.07 (0.15) 0.87 (0.05) 0.52 (0.04)

TABLE II: The average number of discovered peers and
duration of WiFi device discovery in three environments.
The numbers in the parentheses are the standard deviations.

Pidle Pprobe

Bluetooth 16.54 (1.11) 253.05 (5.51)
WiFi 791.02 (5.23) 836.65 (8.98)

TABLE III: The average power of Bluetooth and WiFi
device discovery in mW.

scanning intervals, the average power is∼791.02 mW
(standard deviation: 5.23 mW), because the WiFi radio is
in ad-hoc mode and sends out Beacon messages with 100
ms intervals.

Differently from Bluetooth, the duration of WiFi active
scanning is not fixed and may depend on the number of
operation channels and the amount of neighboring peers.
We measure the duration of WiFi device discovery in
three different environments: a campus office building,
an apartment, and a national park, and summarize the
results in Table II. In each environment, we repeat the
experiments 100 times and report the average values and
standard deviations. As we can see from this table, when
the number of discovered peers increases, the duration
of WiFi device discovery grows from∼0.52 seconds to
∼1.07 seconds, which is much shorter than the duration of
Bluetooth inquiry.

D. Energy Consumption

We summarize the average power of Bluetooth (with
6 neighboring devices) and WiFi device discovery in Ta-
ble III. Suppose the power isPidle for the idle state and
Pprobe for the inquiry/scan state of Bluetooth/WiFi devices,
the duration of Bluetooth inquiry/WiFi scan isTprobe and
the inquiry/scan interval isTidle. Then the estimated energy
consumption is

E = Tidle · Pidle + Tprobe · Pprobe

Given the high power of WiFi device discovery in both
active probing and idle states, we prefer Bluetooth to WiFi
for device discovery of smartphone-based opportunistic
communications. We note that no matter how long the
duration of Bluetooth inquiry is, the overall energy con-
sumption of Bluetooth device discovery should always be
lower than that of WiFi, because the power of Bluetooth
inquiry is even lower than that of the WiFi idle state (253.05
vs. 791.02 mW). To perform device discovery, the major
problem of WiFi ad-hoc mode is that the radio needs to
send out Beacon messages periodically and power saving
mechanisms for WiFi ad-hoc mode are not available on
most mobile phones [28].

Although the communication range of WiFi is longer
than Bluetooth and may discover more peers, making its
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Fig. 3: A 60-second snapshot of the temporal power of
periodic Bluetooth device discovery with 10-second interval.
The smartphone under test is a HTC Hero smartphone
(Android 1.5).
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Fig. 4: A 60-second snapshot of the temporal power of
periodic WiFi device discovery with 10-second interval. The
smartphone under test is a HTC Hero smartphone (Android
1.5).

device discovery energy efficient requires substantial mod-
ifications of the WiFi protocol, which may not be feasible
on most smartphones. In this paper, we aim to design a
device discovery protocol without changing the underlying
communication protocol and thus make its deployment
easy. This is another reason why we chose Bluetooth over
WiFi. However, we emphasize that if energy consumption
is not a major concern and the design goal is to discover
as many peers as possible or to transfer a large amount
of data efficiently, we should use WiFi as the underlying
communication protocol (which is out of the scope of this
paper), because it has a larger coverage area.

E. Android Smartphones

We also measured the power of Bluetooth and WiFi de-
vice discovery using a HTC Hero smartphone with Android
1.5. We plot the results in Figure 3 for Bluetooth and
Figure 4 for WiFi. On this smartphone, the average power
is 432.84 mW (standard deviation: 7.86 mW) for Bluetooth
inquiry and 900.25 mW (standard deviation: 21.54 mW) for
WiFi scan. There are two differences of the experiments
on the Nokia N900 and HTC Hero smartphones. First,
the experiments on HTC Hero were performed with the
screen on due to the operational requirements and thus the
baseline power of HTC Hero is higher than that of Nokia
N900. Second, the WiFi interface on HTC Hero does not
support ad-hoc mode and we cannot measure the average
powerPidle on it. However, these results still clearly show
the significant power difference (467.41 mW) of Bluetooth
inquiry and WiFi scan.

V. DEVICE DISCOVERY M ISSING PROBABILITY

In this section, we analyze the missing probability of a
device discovery protocol with constant Bluetooth inquiry
window and interval (referred asConstant in the fol-
lowing). Based on the analysis, we propose a scheme that
dynamically change the inquiry window and interval in the
next section.

First, we introduce some notations. For a given devicei,
we assume that the contact durationstD(i) are independent

T T T

W V

contact #2

contact #1
L

L

x

x

1

2

1

2

Fig. 5: Two contact cases for analyzing the device discovery
missing probability.

and identically distributed random variables with common
PDF (probability density function)p(L) = d

dL
Pr[tD ≤

L]. We assume the inter-contact time (the time between
subsequent contacts)tC(i) are stationary random variables.

If a scanning device is in the discovery/contact range of
an inquiring device for a consecutive interval ofx seconds
(we call such an interval acontact intervalof length x),
it can be discovered with probabilityR(x). We can easily
deriveR(x) from the analysis of the probability distribution
of the inquiry time for Bluetooth devices by Peterson et
al. [25]. For Bluetooth device discovery,R(x) is a mono-
tonically increasing function ofx. Let R(x) = 1 − R(x).
Assume that for different devices, or for the same device
in different contact intervals, the discovery probabilities are
independent of each other. For any real numberx, we let
x+ = max{x, 0}. We usePmiss to denote the probability
that a contact is missed (i.e., the scanning device is not
discovered by the inquiring device).

Now, we analyzePmiss for theConstant protocol that
repeatedly performs Bluetooth inquiry forW seconds and
sleeps for nextV seconds. LetT = W + V . Suppose the
scanning device arrives at timenT +x for some very large
integer n and x ∈ [0, T ] and the contact durationtD is
a fixed realL. We usePmiss(x,L) to denote the missing
probability under the above condition. Letk = L+x−T

T
.

Based on the value ofk, we distinguish the following two
cases, as shown in Figure 5.
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1) If k < 0 (i.e., L + x < T ), it is easy to see that

Pmiss(x,L) = 1 − R(min{L, (W − x)+})

= R(min{L, (W − x)+})

= PFmiss(x,L)

2) If k > 0, there may be more than one inquiry
cycles (inquiry window plus inquiry interval). Let us
consider them one by one. In(nT, (n + 1)T ), the
scanning device is not discovered by the inquiring
device with probabilityR((W −x)+). In each of the
next ⌊k⌋ periods, the two devices are in the contact
range forW seconds and the missing probability is
R(W ). In the last possible period, the contact interval
is of lengthmin(y,W ), wherey = L+x−T −⌊k⌋T .
Overall, we can see that

Pmiss(x,L) = R((W − x)+)R(W )⌊k⌋R(min(y,W ))

= PSmiss(x,L)

If the inter-contact time follows a nonlattice distribution,
by Blackwell’s Theorem in renewal theory [31], we have
that, whenn → ∞,

Pmiss =

∫ T

0

∫ ∞

0

Pmiss(x,L)p(L)dLdx

=

∫ T

0

∫ T−x

0

PFmiss(x,L)p(L)dLdx

+

∫ T

0

∫ ∞

T−x

PSmiss(x,L)p(L)dLdx

Similar with the analysis by Wang et al. [31], the missing
probability is independent of the inter-contact time distri-
bution. The major difference is that we also consider the
inquiry window duration in our analysis, besides the contact
duration and inquiry interval. A key observation here is that
by increasing the duration of inquiry windowW , we can
increaseR((W −x)+), R(W ) andR(min(y,W )) and thus
reduce the device discovery missing probability.

VI. EDISCOVERY DESIGN

In this section, we presenteDiscovery, an energy-
aware device discovery protocol that adaptively changes the
duration and probing interval of Bluetooth inquiry.

The major design principle ofeDiscovery is to reduce
smartphone energy consumption of device discovery, while
not missing too many peers. To achieve this goal, we
dynamically change the duration and interval of Bluetooth
device discovery, based on the number of discovered peers.
In theory, if a mobile device knows the density of its peers
at any given time, it may be able to select the optimal
values for these two Bluetooth device discovery parameters.
However, in practice it is hard to estimate this density,
especially in dynamic environments, such as shopping malls
and train stations. Therefore, we present a heuristic adaptive
inquiry approach ofeDiscovery in Algorithm 1.

There are two approaches to control the duration of
Bluetooth device discovery: (1) specifying the length
of the inquiry window explicitly or (2) specifying the

number of received responses before device discov-
ery stops. Accordingly, there are two parameters of
hci_inquiry, the device discovery function of BlueZ,
inquiry window and num responses. This function stops
inquiry after 1.28×inquiry window seconds or it has re-
ceivednum responsesinquiry responses.

We focus on the control of the inquiry window in this
paper, as it is hard to predict the number of neighboring
peers in practice. Moreover, a peer can respond to an
inquiry more than once. Suppose there are 3 neighboring
peers, A, B, and C, and we setnum responsesto be 3.
If all the first 3 responses are sent by peer A, device
discovery will stop after receiving them and thus discover
only peer A. We note thateDiscovery sits between
mobile applications and Bluetooth device discovery and
thus the contention/collision of Bluetooth device discovery
messages are resolved at the MAC layer of Bluetooth
protocol stack.

The two key parameters in Algorithm 1 ofeDiscovery
are the threshold of the number of discovered peersN and
the increment/decrement of inquiry intervalI. The outputs
of Algorithm 1 are inquiry window and inquiry interval,
which control the duration and interval of Bluetooth inquiry.
The main body of this algorithm is a while loop that
performs Bluetooth inquiry1.28∗inquiry window seconds
and then sleepsinquiry interval seconds.

After each Bluetooth inquiry, we adapt the values of
inquiry windowbased on the number of discovered peers.
If this number is larger thanN , we keep the default initial
value base W, aiming to discover more peers. If it is
smaller or equal toN , we set the nextinquiry window
to besmall W + r, wherer is defined as

r =







1 with probability (1 − p)/2
0 with probability p
−1 with probability (1 − p)/2

By changinginquiry window in this way, we can reduce
the duration of Bluetooth inquiry and thus save energy
on smartphones when the number of neighboring peers is
small.

We adapt the value ofinquiry interval to the number
of discovered peers in a similar way. When a smartphone
discovers no peers for two consecutive inquiries, we in-
creaseinquiry interval by inc NP + r and reset it to
base I + r after the smartphone discovers new peers.
Moreover, if the current number of discovered peers is
larger than the previous one, we decreaseinquiry interval
by I, and vice versa. An implication of this algorithm
is that inquiry interval will not change if the number of
discovered peers does not vary. We allowinquiry interval
to vary between 10 – 200 seconds. The random variable
r is refreshed for every inquiry. We use it for improving
the robustness ofeDiscovery for dynamic environments.
Furthermore, it can avoid synchronization of Bluetooth
inquiry which may make Bluetooth devices not be able to
discover each other [15], [25].

The intuition behind these adaptations is that we can
reduce the inquiry duration and increase the inquiry interval
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Algorithm 1 Adaptive Inquiry Algorithm ofeDiscovery
1: inquiry window= base W, inquiry interval = base I ;
2: while (TRUE) do
3: peers = hci_inquiry(inquiry window,

MAX RSP);
4: if (peers> N ) then
5: inquiry window= base W;
6: else
7: inquiry window= small W + r;
8: end if
9: if (peers== 0 andlast peers== 0) then

10: inquiry interval += inc NP + r;
11: else if (peers<> 0 and last peers== 0) then
12: inquiry interval = base I + r;
13: else if (peers> last peers) then
14: inquiry interval −= I;
15: else if (peers< last peers) then
16: inquiry interval += I;
17: end if
18: last peers= peers;
19: sleep(inquiry interval);
20: end while

Parameter Description Default

N Threshold of discovered peers 5
I Increment of inquiry interval 1

base W Base of inquiry window 8
base I Base of inquiry interval 10

MAX RSP Maximum number of scanned peers 255
small W Smaller inquiry window 5
inc NP Increment of interval when no peers 10

r Random variable for robustness 0
p Probability ofr = 0 0.8

TABLE IV: The parameters in Algorithm 1 and their default
values.

when the number of neighboring peers is small, because
doing this will not miss too many peers. By changing
the values ofN and I, we can achieve different tradeoff
between the number of discovered peers and smartphone
energy consumption. SmallerN and I lead to more ag-
gressive Bluetooth inquiry, which may discover more peers
but also consume more energy on smartphones.

We list the default values of the parameters of Algo-
rithm 1 in Table IV. These values are not set arbitrarily. We
set the initialinquiry windowto be 8 (i.e.,8∗1.28 = 10.24
seconds) because it is the default standard value of Blue-
tooth inquiry. We setMAX RSPto be 255 (the suggested
value in BlueZ protocol stack). We setsmall W to be 5.
Thus when the number of discovered peers is smaller than
N , the smallest inquiry window5+r would be 4, as this is
the minimum inquiry window to perform a complete scan of
all possible frequency bands. Moreover, Peterson et al. [25]
demonstrate that by setting theinquiry window to be 4, a
Bluetooth device can locate 99% of neighboring devices
within its transmission range in astaticenvironment. When
deciding the probabilityp in r, essentially, we want to
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Fig. 6: The ratio of the number of discovered peers for
Constant and eDiscovery to the ground truth, with
different N andI.

Parameters Constant eDiscovery Percentage

N = 5, I = 1 220.83 (7.21) 123.93 (7.08) 56.12%
N = 7, I = 3 209.02 (5.65) 113.84 (15.55) 54.46%
N = 15, I = 10 210.80 (8.78) 105.60 (1.68) 50.09%

TABLE V: The estimated energy consumption (in Joules)
of eDiscovery with different N andI and the compar-
ison with Constant.

set the parameters to be their default values under certain
conditions with a high probability (by defaultp = 0.8) and
slightly change their values by 1 with a low probability.

We evaluate the performance ofeDiscovery with
different combinations ofN andI in Section VII. We also
evaluate how other parameters, such asbase W, base I and
the choice of random variabler, affect the performance
of eDiscovery in Section VIII-A. Finally, we note that
there may be a diminishing return for some applications
for which the change from discovering nothing to one peer
is more important than that from discovering, for example,
10 to 11 peers. In this case, we need to invest more energy
when the number of peers is small, the opposite behavior
of our eDiscovery protocol.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our
proposedeDiscovery protocol through a prototype im-
plementation on Nokia N900 smartphones and compare it
with other schemes. Although previous work has evaluated
device discovery protocols using simulations [9], [31], a
recent study demonstrates that even contact-based simu-
lations using real-world mobility traces may not be able
to accurately evaluate the performance of opportunistic
networks [26]. Moreover, it is also not clear how Blue-
tooth device discovery performs in the wild, under cross-
technology interference [13].

We implementeDiscovery in C language using the
BlueZ protocol stack and compare its performance with
three other approaches: theConstant protocol in Sec-
tion V, the STAR algorithm by Wang et al. [31] and
the Recent Activity Level (RAL) scheme by Drula et
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al. [9]. The two metrics we are interested in are the ratio
of discovered peers, compared to the ground truth, and
the estimated energy consumption on smartphones. To get
the ground truth, we perform Bluetooth inquiry with the
default 10.24-second duration continuously. Based on the
ground truth, we can know how may peersConstant
can discover by aggregating the inquiries in the ground
truth with only odd/even indices. We did all experiments
three times and report the average results with standard
deviations.

A. Impact ofN and I

We first evaluate the performance ofeDiscovery for
different combinations ofN andI, usingConstant as the
baseline. During a single experiment, we run the continuous
Bluetooth inquiry on one phone andeDiscovery on
another simultaneously. We conducted the experiments in
and around the Stamp Student Union of the University of
Maryland. We walked along a pre-defined route for around
30 minutes during the experiments. Most of the Bluetooth
devices discovered by us should be on mobile phones,
although they can also be on other mobile devices such
as tablets and laptops.

We plot the percentage of discovered Bluetooth devices
of eDiscovery and Constant in Figure 6. We also
summarize their estimated energy consumption in Table V.
The experimental results show that increasingN and I
can save smartphone energy consumption at the expense
of a higher missing probability. WhenN = 5 and I = 1,
eDiscovery consumes only 56% energy ofConstant,
and discovers 21% less peers than it. These results also
partially verify experimentally the theoretical analysisby
Wang et al. [31] that the probing scheme with constant
inquiry intervals achieves the minimum discovery-missing
probability among all probing methods with the same
average inquiry interval. The ratio of discovered peers
betweenConstant and the ground truth is higher than
80% for all experiments.

B. Dynamic Environment

We then compare the performance ofeDiscovery
(N = 5 and I = 1) with Constant and STAR [31] in
three different environments: the Student Union of the Uni-
versity of Maryland, the Union Station of Washington D.C.
and the Mall at Short Hills in New Jersey. We also chose
a pre-defined route in the other two locations, including
both indoor and outdoor environments, and the duration
of experiments was about 30 minutes too. Generally, there
are much more peers in the indoor environment than the
outdoor environment in these three locations. We limit the
inquiry interval of STAR to be 10 – 200 seconds, the same
aseDiscovery.

We plot in Figure 7 the percentage of discovered peers
of eDiscovery, Constant and STAR, compared with
the ground truth. In each group of experiments, we run
Constant along with eithereDiscovery or STAR.
Thus there are two bars forConstant for each location in
Figure 7. We also plot in Figure 8 the energy consumption
of eDiscovery and STAR, compared withConstant.
As we can see from these figures,eDiscovery performs
better than STAR in all three locations. In particular,
eDiscovery discovers more peers than STAR but con-
sumes much less energy on smartphones.
eDiscovery outperforms STAR for the following two

reasons. First,eDiscovery takes into account not only
the inquiry interval, but also the duration of inquiry, to
further reduce smartphone energy consumption. As shown
in Section IV, the active probing state consumes much more
energy than the idle state of Bluetooth inquiry. Second,
it adapts to environmental changes (i.e., the number of
neighboring peers) much more quickly than STAR, which
is important in dynamic environments.

C. An In-Depth Look at the Traces

To verify the above, we took an in-depth look at the
traces collected for the experiments we did in the Mall
at Short Hills. We plot the start time, duration, and the
number of discovered peers of a single experiment for
STAR in Figure 9a and foreDiscovery in Figure 9b. For
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Fig. 9: Detailed traces ofeDiscovery and STAR experiments.

a Bluetooth device discovery starting ats and ending att
that discoversp peers, we plot a horizontal bar from (s, p) to
(t, p). We note that in these two figures, a Bluetooth device
may be counted several times if it appeared in multiple
device discoveries. In each figure, we use the red color to
plot the ground truth and the black color for either STAR
or eDiscovery. During both experiments, we discovered
more than 100 peers in the ground truth. The percentage
of discovered peers is around 60% foreDiscovery and
40% for STAR.

There are two main observations from Figure 9a and
Figure 9b. First, on average the duration of Bluetooth de-
vice discovery ineDiscovery is shorter than STAR (6.79
seconds vs. 10.25 seconds), which is demonstrated by the
narrower black bars in Figure 9b. Second,eDiscovery
increases the intervals of device discovery much faster than
STAR when there are few peers and decreases the intervals
much quicker when there are more peers. For example,
from 300 seconds to 600 seconds of both experiments,
there were at most 3 peers found by each Bluetooth device
discovery. During this quiet period,eDiscovery per-
formed Bluetooth inquiry only 10 times, 3 times less than
STAR. Moreover, during the period from 800 seconds to

1,000 seconds when there were more peers,eDiscovery
performed Bluetooth inquiry 7 times, 4 times more than
STAR. On the one hand, the shorter discovery duration
and less frequent Bluetooth device discovery during the
quiet period translate into less energy consumption of
eDiscovery than STAR. On the other hand, the more
frequent device discovery when there are many peers is
one of the reasons that the discovery-missing probability
of eDiscovery is lower than STAR.

D. Comparison with Another Protocol

We also evaluate the performance of another protocol
RAL proposed by Drula et al. [9]. RAL can discover
only less than 30% of peers found in the ground truth
for the experiment we did in the Mall at Short Hills. The
possible reason may be that even for the most aggressive
discovery mode in RAL, the duration of Bluetooth device
discovery is less than 1 second, which is too short to
complete a scan of all possible Bluetooth frequency bands.
Differently from RAL, the shortest duration of Bluetooth
device discovery ineDiscovery is 5.12 seconds, which
is more suitable when the number of neighboring peers
changes dynamically. Note that although it is possible to
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Parameter / Value % of Discovered Peers Duration of Inquiry

Default 74.39 (6.86) 581.33 (32.79)

base W
4 47.48 (9.05) 323.71 (36.96)
12 74.72 (6.98) 585.69 (33.15)

base I
6 76.62 (7.05) 693.54 (44.42)
14 68.42 (6.96) 490.58 (26.15)

small W
3 47.47 (8.97) 328.24 (37.55)
7 79.40 (5.94) 748.66 (30.69)

inc NP
5 80.47 (4.95) 628.25 (19.40)
15 69.40 (8.43) 541.01 (46.19)

p
0.9 74.91 (6.58) 585.56 (31.26)
0.7 74.57 (7.03) 580.35 (33.91)

TABLE VI: Performance evaluation ofeDiscovery us-
ing different parameters. The numbers in the parentheses
are the standard deviations.

tune the parameters of RAL and STAR to improve their
performance, that is beyond the scope of this paper.

E. Summary

To summarize, our performance evaluation shows that
if energy consumption is not a major concern and the
key objective is to discover more neighboring devices,
Constant may be a good choice. It can discover more
than 80% peers but consumes only half energy of continu-
ous device discovery. However, when the major goal is to
save energy on smartphones and the missing of some peers
is acceptable, we should useeDiscovery to dynami-
cally tune the parameters of Bluetooth device discovery.
In other words, the selection betweenConstant and
eDiscovery depends on the requirements of applications
that actually use them for device discovery.

VIII. S IMULATION STUDIES IN NS-2

To perform a much more extensive evaluation of
eDiscovery, we port its implementation into the ns-
2 simulator enhanced with the UCBT Bluetooth module
(version 0.9.9.2a). This UCBT module is for Bluetooth
version 1.2 and there is no significant difference between
the device discovery specifications of Bluetooth versions
1.2 and 2.1.

A. eDiscovery Parameters

Using UCBT based simulation studies, we evaluate how
the parameters of Algorithm 1, including different val-
ues of base W, base I, small W and inc NP, and the
choice of random variabler, affect the performance of
eDiscovery. Recall that we set the default values of
these parameters as listed in Table IV.

The simulation setup is as follows. The simulation area
is a 1800x20 rectangle. The inquiring Bluetooth devices
moves from (0, 10) to (1,800, 10) with a constant speed
1 m/s and thus the simulation duration is 30 minutes. We
distribute 100 scanning Bluetooth devices in the simulation
area uniformly and randomly.

We summarize the simulation result in Table VI. The
second row of this table shows the simulation results

% of Discovered Peers Duration of Inquiry

eDiscovery 77.80 (7.78) 410.00 (28.92)
STAR 75.83 (14.5) 676.23 (77.90)

TABLE VII: Performance evaluation ofeDiscovery and
STAR in the ns-2 simulator. The numbers in the parentheses
are the standard deviations.

with the default values of these parameters. The major
observation from Table VI is that by increasing inquiry
duration or decreasing inquiry intervaleDiscovery can
discover more peers, but at the cost of high energy con-
sumption. Moreover, the performance ofeDiscovery is
more sensitive to the change of inquiry duration. Compared
with the default setup, decreasing the value ofbase W by
4, or the value ofsmall W by 2 will reduce the device
discovery probability by 36% (whereas increasing their
values by the same amount can discover about only 0.4%
and 6.7% more peers). IneDiscovery, we use the two
key parametersN andI to dynamically control the values
of inquiry duration and interval.

Another observation from Table VI is that the perfor-
mance ofeDiscovery does not heavily depend on the
choice ofr which is determined by the probabilityp. The
reason is that the mean ofr is always 0 no matter how
large or smallp is.

B. Comparison ofeDiscovery and STAR

To offer a direct apple-to-apple comparison of
eDiscovery and STAR and evaluate their performance
for more network topologies, we also port the
implementation of STAR into the UCBT Bluetooth
module. We summarize the simulation results for 1,000
generated network topologies in Table VII. The simulation
setup is similar to that in Section VIII-A. To validate
the experimental results in Section VII, we distribute
Bluetooth devices in the simulation area based on the
characteristics of our collected traces. More specifically,
we divide the area into five regions and the device density
of regions 1, 3 and 5 is much higher than that of regions 2
and 4, similar to the distribution illustrated in Figure 9. We
set the Bluetooth communication range to be 10 meters.

The two metrics that we are interested in are the per-
centage of discovered peers and the duration of Blue-
tooth inquiry. As we can see from Table VII, although
eDiscovery discovers only slightly more peers than
STAR, the standard deviation of the percentage of dis-
covered peers is much smaller foreDiscovery than
STAR. Moreover, the duration of Bluetooth inquiry in
eDiscovery is only around 60% of that of STAR, which
confirms the energy-efficiency feature ofeDiscovery.
Both eDiscovery and STAR discover more peers in the
simulations than in the field studies. One of the possible
reasons may be that there is no co-channel interference
considered in the ns-2 simulator. When two Bluetooth
devices are in the communication range of each other
(one of them is in the inquiring mode and another in the
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% of Discovered Peers Duration of Inquiry

eDiscovery 85.55 (6.99) 417.70 (25.91)
STAR 82.50 (14.8) 689.33 (71.39)

TABLE VIII: Performance evaluation ofeDiscovery
and STAR in the ns-2 simulator with interlaced inquiry
scan. The numbers in the parentheses are the standard
deviations.

scanning mode), the discovery probability is very close
to 1.0, which is not true in practice. This high device
discovery probability in the ns-2 simulator also decreases
eDiscovery’s room for improvements.

In addition to the standard inquiry scan mode described
in Section III, Bluetooth version 2.1 also introduces an
optional interlaced inquiry scan mode to increase the dis-
covery probability. When in the interlaced inquiry scan
mode, a Bluetooth device performs two back to back scans,
where the first one is on the normal hop frequencyfscan

and the second one is on frequency (fscan + 16) mod 32.
This means that the two inquiry scan frequencies will be
in different trains.

It is hard to evaluate the performance of device discovery
protocols with the interlaced inquiry scan mode in practice
because by default Bluetooth devices use the standard
inquiry scan mode and it is impossible to change this setting
on the discovered mobile phones in our field studies. Thus,
we also evaluate the performance ofeDiscovery and
STAR in the ns-2 simulator with the interlaced inquiry
scan mode enabled and report the simulation results in
Table VIII. By comparing Table VIII with Table VII, we can
see that interlaced inquiry scans can increase the number
of discovered peers, but at the same time also increase
the duration of Bluetooth inquiry. Still,eDiscovery
outperforms STAR when the interlaced inquiry mode is
enabled.

IX. D ISCUSSION

In this section, we discuss the limitations of this paper
and some possible extensions ofeDiscovery.

A. Bluetooth Low Energy

Bluetooth Low Energy (LE) [4] operates in the 2400-
2483.5 MHz frequency band and divides this band into 40
channels with 2 MHz width, instead of 79 channels with
1 MHz width in the classic Bluetooth. Three out of these
40 channels, with channel indexes 37, 38, and 39, are used
for advertising, and the rest are data channels.

Differently from the classic Bluetooth, the LE system
leverages these advertising channels for device discovery
and connection establishment. Among the five states de-
fined in Bluetooth LE, three of them are related to device
discovery: advertising, scanning and initiating states (the
rest two are standby and connection states). After a device
enters the advertising state (directed by the host machine),
it sends out one or more advertising packets that contains

its device address on the advertising channels. These ad-
vertising packets compose the so-called advertising events.
The time between the start of two consecutive advertising
events is defined as the sum of a fixedadvInterval, which
should be an integer multiple of 625µs and in the range
of 20 ms to 10.24 s, and a pseudo-random valueadvDelay
in the range of 0 ms to 10 ms. A device in either scanning
or initiating state listens on an advertising channel with
the duration ofscanWindowand the intervalscanInterval
(i.e., the interval between the start of two consecutive scan
windows). ThescanWindowand scanIntervalparameters
should not be greater than 10.24 s.

As pointed out by Liu et al. [19], although these wide-
range parameter settings offer the flexibility for devices
to customize the discovery performance, improper settings
could significantly increase the latency and energy con-
sumption of Bluetooth LE device discovery. Although the
device discovery procedure for Bluetooth LE looks simpler
than that of the classical Bluetooth (e.g., smaller number
of channels and the elimination of switching between two
trains), they share fundamentally the same design principle
of interleaving between the transmission of multiple inquiry
messages/advertising packets and staying in the idle mode
to save energy. We can extend our proposed scheme about
how to dynamically change the duration and interval of
classical Bluetooth inquiry to control the duration of ad-
vertising events (i.e., the number of advertising packets to
send out) and theadvInterval in a similar way, and thus
further reduce the energy consumption for device discovery
in Bluetooth LE. We leave this extension as our future work.

B. Other Extensions

Device discovery is only the first step of opportunistic
communications. The next two steps are service discovery
and data transfer. There are several options of service
discovery. We can exploit the standard service discovery
protocol of Bluetooth [3], or develop our own protocols.

We plan to leverage multiple radio interfaces on smart-
phones, such as Bluetooth and WiFi, for opportunistic data
transfer. These interfaces usually have different communi-
cation ranges and diverse radio characteristics. Pering et
al. [24] have demonstrated the benefits of energy reduction
by switching between these interfaces for mobile appli-
cations. In our case, Bluetooth may be suitable for short
data transfer due to its low-power nature. For transmissions
of large amounts of data, WiFi may be more desirable,
because its data rate is higher and its communication range
is much longer than Bluetooth. Although WiFi is not energy
efficient for device discovery, we can still enable it for data
transfer after mobile phones discover each other through
Bluetooth.

C. Limitations

Although we have evaluated the performance of
eDiscovery in three different realistic environments, the
major limitation of the evaluation is that we had no control
of other mobile phones during the experiments. If all the
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mobile phones perform Bluetooth device discovery, the
number of phones discovered by us may be changed, as
Bluetooth devices that are in inquiry state at the same
time cannot discover each other [15], [25]. During our field
experiments, most of the discovered Bluetooth devices were
probably in discoverable mode only. Running experiments
on mobile testbeds, such as CrowdLab [8], may solve this
problem.

Another limitation of our work presented in this paper is
that we have evaluated the performance ofeDiscovery
on only Nokia N900 smartphones. We are planing to
port eDiscovery to other smartphone platforms, such
as Android and iPhones, and evaluate its performance on
them.

D. Privacy and Security

Currently, the number of smartphones with their Blue-
tooth devices in discoverable mode is low, around 100
during our 30-minute experiments, mainly due to the pri-
vacy concerns of mobile users. We believe that with the
proliferation of mobile social applications, such as Peo-
pleNet [22] and E-SmallTalker [33], that leverage mobile-
to-mobile opportunistic communications, more and more
people will be willing to tune the Bluetooth radio on their
smartphones to discoverable mode if we can address the
potential security threats.

Security has been a key research challenge in device
discovery in wireless networks. Security concerns for op-
portunistic communications vary depending on the envi-
ronment and upper-layer applications. Existing approaches
have exploited distance bounding, location information and
directional antennas to secure mobile device discovery [23].
We plan to investigate how to tackle security issues in Blue-
tooth device discovery for smartphone-based opportunistic
communications as our future work.

E. Other Device Discovery Technologies

There have been other technologies proposed especially
to perform device discovery. For example, FlashLinQ [32]
is a synchronous wireless PHY/MAC network architec-
ture developed by Qualcomm for direct device-to-device
communication over licensed spectrum. It aims to support
various applications of proximate Internet, including social
networking and mobile advertising. FlashLinQ enables au-
tomatic and continuous device discovery and peer-to-peer
communication between mobile devices.

Although FlashLinQ may be more energy efficient than
Bluetooth and WiFi, given its clean-slate design for ad hoc
networks, it requires special purpose hardware and also
operates in licensed spectrum. Differently from FlashLinQ,
we aim to design and implement device discovery protocols
using existing hardware and communication technologies
available on commercial smartphones.

X. CONCLUSION

In this paper, we presenteDiscovery, an adaptive
device discovery protocol for reducing energy consump-
tion of smartphone-based opportunistic communications. To

choose the underlying communication technology, we mea-
sured the power of Bluetooth and WiFi device discovery
on Nokia N900 and HTC Hero smartphones. Based on the
measurement results, we prefer Bluetooth to WiFi because
Bluetooth is more energy efficient for device discovery.
eDiscovery dynamically changes the Bluetooth inquiry
duration and interval to adapt to dynamic environments. We
verify the effectiveness ofeDiscovery through the first
experimental field study of Bluetooth device discovery in
three different environments, using a prototype implemen-
tation on smartphones. We are currently working on a more
extensive evaluation ofeDiscovery to further improve
its performance.
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