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Autoencoder



Autoencoder

* Unsupervised learning
e Let the learning algorithm figure out the structure of the data (without
supervised information)
 Compact representation
* Sparse representation

* Representation learning (related to dictionary learning)

input output

code

p: X = F

Y F = A

argmin | X — (¢ 0 ¢) X|?
b,

decoder
encoder

Both the input and the output are x



Denoising Autoencoder

* Artificially add some noise to the input

* The higher level representations are relatively stable and robust to the
corruption of the input;

* It is necessary to extract features that are useful for representation of the
input distribution.



Sparse Autoencoder

* We can make the hidden layer larger, and at the same time encourage
the sparsity of the code

* By adding sparsity encouraging regularization term. E.g.

Jsparse (W, b) = J(W, b) + .fz KL(p||p;)s— Average activation of neuron
j=1 jin the hidden layer

p : Bernoulli(0.05)

e or manually zeroing all but the few strongest hidden unit activations



Variational autoencoder (VAE)

* Bayesian approach

* Perspective from variational inference

[ Prior of the code ]
L(¢,0,x) = —Dkr(gs(2[x)||ps (2)) + Ey, (a1x) (log po(x|2))

The distr learnt by encoder to the decoder
approximate the posterior
distribution p(z|x)

Distr generated by}




A quick intro to variational inference

» Typically, the posterior is hard to compute and sample from (MCMC approach can be pretty slow )

* We wish to use q (from some parametric family) to approximate the posterior p(z|x)

q"(z) = argminkw (q(z)||p(z]x)) .

q(z)e2

KL (q(2)llp(z[x)) =E
KL (q(2)|lp(z]x)) =E

logq(z)

logq(z) ]

—E [log p(z|x)]
— E [logp(z,x) | + log p(x).

Minimizing KL is equivalent to maximizing ELBO (since evidence logp(x) doesn’t depend on z)

ELBO: evidence lower bound ELBO(q) = K [logp(z, X)] — K [logq(z)]
ELBO(q) =E [logp(z) ] +E [logp(x|z)] —E [logq(z)]
= [logp(x|z)] — kL (q(2)llp(2)) -

ELBO<=logp(x)



Contractive autoencoder (CAE)

* Perspective from manifold learning

* Encourage the encoding to be contractive

encoder doesn't need to be

sensitive to this variation

E : 2
E{I: Ilr ) _I_ _.}‘. ‘ ‘ v:[: hi- ‘ ‘ (not observed in training set)
1

Frobenius norm of the Jacobian
matrix of the encoder activations
with respect to the input

2=

: '('NIIX""\ F %
|V o h(x'*))| |3 Y‘Y‘( - )

Related reading material: http://www.deeplearningbook.org/version-2015-10-03/contents/manifolds.html



Spatial Transformer Networks
-an attention mechanism

Jaderberg et al, “Spatial Transformer Networks”, NIPS 2015



* Would like to pay attention to certain areas of an image

Input image:
HxWx3 Cropped and
rescaled image:
KXY X3

Box Coordinates:
(xc, yc, w, h)



Idea: Function mapping
pixel coordinates (xt, yt) of

Can we make this output to pixel coordinates
function differentiable? (xs, ys) of input
n — 4
(x', yt) i < :L'f ) _ [ 911 012 013 ] Z;
yi o1 Oy O3 '1'

Input image:
HxWx3 Cropped and
rescaled image:
XX ¥ %3

Box Coordinates:
(xc, yc, w, h)

|



Can we make this
function differentiable?

Input image:

HxWx3 Cropped and

rescaled image:

XXY X3

Box Coordinates:
(xc, yc, w, h)

Idea: Function mapping
pixel coordinates (xt, yt) of
output to pixel coordinates
(xs, ys) of input

7t
( -’Uf ) - [ 61 6o b3 ] 'y;
y; o1 O o o

1
To(G)

0: parameters we
need to learn

|

/ . Repeat for all pixels
Zail =S in output to get a
sampling grid

Affine transformation.

But it can be a more general transform




A module can be inserted to any place of a network
* Used several times in later deepmind papers

A small
Localization network
predicts transform 0 \

The set of sampling points

Localisation net

| Output: Region of
b interest from input

v
v

Input: .
Full image

Spatial Transformer
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Grid generator uses 0 to
compute sampling grid ?}*...
A small zs b Bex B Y[
Localization network ( ) N [ Oy 02 0o } "’1

T N

predicts transform 0 F——
\ Localisation net K8 / (x7,y7) €Ty (G) indicates WhICh

The localization network can be FC network or a CNN.
pomts in U we want to fOCUS on

The last layer should a regression layer to produce 6

Output: Region of
interest from input

Input: .
Full image

\nnplcr

Spaual Transformer

Sampler uses
bilinear interpolation V; = Z Z Us,, max(0,1 — |z{ — m|) max(0,1 — |y} — n|)

to produce output nom

Output V is determined by input U and sampling
points (x7,y;7) € Te(G)
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To = MyB, where B is a target grid representation
 We can even learn the target grid B (using “thin plate spline”) (again through backprop)

Insert spatial transformers into a
classification network and it learns
to attend and transform the input

(a) (b) (c)
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Differentiable “attention /
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Multimodal representation learning
---lmage Caption 2

Kires et al. Unifying Visual-Semantic Embeddings with
Multimodal Neural Language Models



a young boy standing a wooden table
on a parking lot and chairs arranged
next to cars . in a room ,

there is a cat a plate with a fork a black and white
sitting on a shelf. and a piece of cake . photo of a window

d

=

a kitchen with a car is parked a ferry boat on a Iittle‘boy with
stainless steel of cattle out in the middle a marina with a a bunch of friends
appliances . in the field . of nowhere . group of people . on the street ,

o XENTREE a 5 §

N .n'!z
R+ 7

a giraffe is standing  the two birds are . the handlebars a woman and

next to a fence trying to be seen @ Parked car while are trying to ride a bottle of wine

in a field . in the water . driving down the road . piva rack . in a garden .
(hallucination) (counting) (contradiction) (nonsensical) (gender)

Figure 1: Sample generated captions. The bottom row shows different error cases. Additional results

can be found athhttp://www.cs.toronto.edu/~rkiros/lstm _scnlm.html



Overview

Map CNN codes and RNN
code to a common space

SC-NLM Decoder

content

Details of SC-
NLM. Please
see the paper

structure

Steam  ship at the dock

CNN - LSTM Encoder

Figure 2: Encoder: A deep convolutional network (CNN) and long short-term memory recurrent
network (LSTM) for learning a joint image-sentence embedding. Decoder: A new neural language
model that combines structure and content vectors for generating words one at a time in sequence.



Nearest images

Nearest images

-dog + cat = - blue + red =
- cat + dog = - blue + yellow =
- plane + bird = | -yellow + red =
-man 4+ woman = - white + red =
(a) Simple cases (b) Colors
Nearest images Nearest images
- day + night = night
- flying + sailing = sailing
m - bowl + box = box
-
- box + bow| = bowl
(c) Image structure (d) Sanity check

Figure 4: Multimodal vector space arithmetic. Query images were downloaded online and retrieved
images are from the SBU dataset.



Vear =~ Ibcar — Vblue
Vied + Vear =~ Ibcar — Vblue + Vied
I:r‘c:ar' ~ Ibcar — Vblue + Vred

=

(a) Colors (b) Weather

Figure 5: PCA projection of the 300-dimensional word and image representations for (a) cars and
colors and (b) weather and temperature.



Details

e LSTM notations used in this work

Let X; denote a matrix of training instances at time {.
matrix of word representations for the ¢-th word of each sentence in the training batch.

In our case, X; 1s used to denote a
Let

(I, Fi, Ci, Of, M;) denote the input. forget. cell, output and hidden states of the LSTM at time

step ¢. The LSTM architecture in this work is implemented using the following equations:

M i

o(Xe - Wgei + M1 - Wy +Ciy - W, + by)

o(Xy - Wop+M,_ - Wy +Ciy - W,s+by)
F,eC;_| +I;etanh(X; W, .+ M;_1 - W;.+b,)
o(X¢ Weo +Mi—1 - Wi +C;- W, +by,)

O; e tanh(Cy)

(1)
(2)
(3)
(4)
(5)

where (o) denotes the sigmoid activation function, (-) indicates matrix multiplication and (e) indi-
cates component-wise multiplication.



Details

Let q € RP denote an image feature vector
* D: length of the CNN code (CNN can be AlexNet, VggNet, or ResNet)

x = Wy -q € RE be the image embedding

image description S = {wi,...,wy} with words wy, ..., wy
{wy,....wn}.W; € RE i = 1,...,n denote the corresponding word representations to words
w1, ...,wy (entries in the matrix Wr). The representation of a sentence v is the hidden state of

the LSTM at time step NV (i.e. the vector my,). :
Wy precomputed using e.g.

word2vec (we don’t learn it)

Multimadal space

i !
: CNN - LSTM Encoder ;
& -------------------------------------'



Details

* Optimize pairwise rank loss (0:parameters needed to be learnt: I
and LSTM parameters)

min max{0,.a — s(X,v)+ s(xX. V) + max<{0,a — s(v.X) + s(v, Xy,
> 2 max{0.a —s(x,v) +s0xvi)} + 3 ) max{
k v k

6
X

Max-margin formulation. @ margin ]

scoring function s(X,v) = X - V.
Vi 1s a contrastive (non-descriptive) sentence for image embedding x, and vice-versa with xy.



Neural Uring MaChine |Graves et al.]



“Memory”
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Overview
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Addressing Mechanism (overview)

Where to look at in the memory

Al
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Controller
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Figure 2: Flow Diagram of the Addressing Mechanism. The key vector, k;, and key
strength, [3;, are used to perform content-based addressing of the memory matrix, M;. The
resulting content-based weighting is interpolated with the weighting from the previous time step
based on the value of the interpolation gate, g;. The shift weighting, s;, determines whether
and by how much the weighting is rotated. Finally, depending on ~;, the weighting is sharpened

and used for memory access.

Sharpening




Addressing (details)
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Addressing (Details)
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Go over the process

Go over Ha Wt pracess  ( Copy)
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cost per sequence (bits)

J ST ——
NTM with LSTM Controller — =

NTM with Feedforward Controller

200 400 600 800
sequence number (thousands)

Figure 3: Copy Learning Curves.

1000



Targets

Outputs

Targets

Outputs

Figure 4: NTM Generalisation on the Copy Task. The four pairs of plots in the top row
depict network outputs and corresponding copy targets for test sequences of length 10, 20, 30,
and 50, respectively. The plots in the bottom row are for a length 120 sequence. The network
was only trained on sequences of up to length 20. The first four sequences are reproduced with
high confidence and very few mistakes. The longest one has a few more local errors and one
global error: at the point indicated by the red arrow at the bottom, a single vector is duplicated,
pushing all subsequent vectors one step back. Despite being subjectively close to a correct copy,
this leads to a high loss.




Outputs

10.6

10.5

0.4
Targets 11
0.2
0.0

Time >

Figure 5: LSTM Generalisation on the Copy Task. The plots show inputs and outputs
for the same sequence lengths as Figure 4. Like NTM, LSTM learns to reproduce sequences
of up to length 20 almost perfectly. However it clearly fails to generalise to longer sequences.
Also note that the length of the accurate prefix decreases as the sequence length increases,
suggesting that the network has trouble retaining information for long periods.



Outputsv

speay

Location ——

Time ——» Time ——»»

Write Weightings Read Weightings

Figure 6: NTM Memory Use During the Copy Task. The plots in the left column depict
the inputs to the network (top), the vectors added to memory (middle) and the corresponding
write weightings (bottom) during a single test sequence for the copy task. The plots on the right
show the outputs from the network (top), the vectors read from memory (middle) and the read
weightings (bottom). Only a subset of memory locations are shown. Notice the sharp focus of
all the weightings on a single location in memory (black is weight zero, white is weight one).
Also note the translation of the focal point over time, reflects the network’s use of iterative
shifts for location-based addressing, as described in Section 3.3.2. Lastly, observe that the read
locations exactly match the write locations, and the read vectors match the add vectors. This
suggests that the network writes each input vector in turn to a specific memory location during
the input phase, then reads from the same location sequence during the output phase.
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Figure 9: NTM Memory Use During the Repeat Copy Task. As with the copy task the
network first writes the input vectors to memory using iterative shifts. It then reads through
the sequence to replicate the input as many times as necessary (six in this case). The white dot
at the bottom of the read weightings seems to correspond to an intermediate location used to
redirect the head to the start of the sequence (The NTM equivalent of a goto statement).
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Figure 12: NTM Memory Use During the Associative Recall Task. In “Inputs,” a se-
quence of items, each composed of three consecutive binary random vectors is propagated to the
controller. The distinction between items is designated by delimiter symbols (row 7 in “Inputs”).
After several items have been presented, a delimiter that designates a query is presented (row 8
n “Inputs”). A single query item is presented (green box), and the network target corresponds
to the subsequent item in the sequence (red box). In “Outputs,” we see that the network cor-
rectly produces the target item. The red boxes in the read and write weightings highlight the
three locations where the target item was written and then read. The solution the network finds

is to form a compressed representation (black box in “Adds” of each item that it can store in
a single location. For further analysis, see the main text.




Memory Network
[Weston et al.][Sukhbaatar et al.]



I\/Iemory Network [Weston et al.][Sukhbaatar et al.]

CSam moved to the garden>

CSam went to the kitchen. > / out-of-order

CSam drops the apple t}@

QQ: Where was the apple after the garden?
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Memory Vectors

E.g.) constructing memory vectors with Bag-of-Words (BoW)
1. Embed each word

2. Sum embedding vectors

“Sam drops apple” — Usam + Udrops + Vapple = Tﬁz\
Y N
Embedding Vectors Memory Vector

E.g) temporal structure: special words for time and include them in BoW

“Sam moved to garden” | |
Time embedding

“Sam went to kitchen”
“Sam dr Ops apple” — USam T+ VUdrops = Vapple ms3



Q&A Example
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Generative Adversarial Nets (GAN)
|Goodfellow et al.}



Generative Models

* Most work on deep generative models focused on provided a
parametric specification of a probability distribution function (like
Deep Belief Net, Pixel CNN, PixelRNN)

* Train these models by maximizing the log likelihood
Max );;log P(x®,yW)
e Difficulty: Intractable probabilistic computations



Generative Adversarial Nets

 Two neural networks: a generative model and a discriminative model
« A two-player minimax game

» One network for generation (e.g., generating images), one for classification
(distinguishing the true data from the generated data)

« Hence, If the generative model produces the same distribution as the true data
distribution, the discriminative model wouldn’t be able to distinguish them.
This Is an point!

* But in practice, we can’t achieve this point. The discriminative model is a bit too strong
for the current generative model.



The discriminative model D tries to distinguish whether x is from
the original data distribution or from the generated distribution.

D tries to D tries to
output 1 output 0

Differentiable Differentiable
function D function D

x sampled X sampled
from data from model

Differentiable
function G

Input noise




Generative Adversarial Nets

p-(2z) :Prior noise (e.g., Gaussian) for the generative model
D(x;04) : the discriminative model outputs a single scalar, which is the
Prob[x is from the data (rather than from the generative model)]

Generative model wants to minimize log[1 — D(G(2))]
Discriminative model wants to assign correct labels (from g or from data)
The value of the minmax game:

m&n max V(D,G) = Egrpyu(a)log D(x)] + E,p. (2)[log(1l — D(G(2)))].

D wants it large
G has no control on this D wants it small

* The goal is to reach an . G wants it large



Training

A variant of best-response to reach an equilibrium

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1),. .., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(V),...,2(™)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23" [10g 0 () + 1og (1 - D (¢ (=)

1=

D: maximization

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior py(2).
e Update the generator by descending its stochastic gradient:

Vo, 3105 (1- 0 (6 (=)

G: minimization

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Training Process

After training G

Data distribution }

5o dsmpnr ”Aﬁerf:g’:angJ
////////| ////////| TN

(a) (c)

Another visualized training process, see http://cs.stanford.edu/people/karpathy/gan/



http://cs.stanford.edu/people/karpathy/gan/

Experiments

Model MNIST TFD
DBN [3] 138 = 2 1909 + 66
Stacked CAE [3] | 121 £ 1.6 | 2110 £ 50
Deep GSN [5] 214+ 1.1 | 1890 % 29
Adversarial nets 225+ 2 | 2057 + 26




Final Notes

* We have covered the basics, and several recent “end products”. There are many
important ideas developed by many researchers that lead to those cool stuffs

you see today
A fast growing area (2000+ppl in NIPS 2013, now 8000+ ppl this year NIPS)

* [n many cases, the design is more of an art than a science
* Butit doesn’t mean that DL is just “tuning parameters”

* Important Things We didn’t cover

Things related to graphical models, Bayesian Approaches
Deep Belief Net (Restricted Boltzmann Machine)
Autoencoder (Variational Autoencoder, Stacked Autoencoder)
Stacking traditional “shallow” models ......

Lots of applications in NLP (word2vec, topic models)
Unsupervised learning

Transfer learning

Theoretical results



* Deep Reinforcement Learning
* Play games
* Playing Atari with Deep Reinforcement Learning
 https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

e Search technique (Monte-Carlo Tree Search) — AlphaGo
* Open Source facebook Go engine:
* https://github.com/facebookresearch/darkforestGo


https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

 Some slides borrowed from cs231n at Stanford, slides for “End-To-End
Memory Networks” by Sukhbaatar et al. and from wiki

e Variational inference, Blei.
* Thank Jianbo Guo for preparing some slides of GAN



