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Recurrent Neural Networks (RNN)

CNN: parameter sharing in space
RNN: parameter sharing in time (suitable for sequences, in particular sequences with variable lengths)



Basics
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Basics

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars: ‘e’
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* Learns time dependency gradually:
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"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



“Proot” generated by RNN

* Training data — an algebraic geometry book

For @,,-, . . Where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 77 and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U =|JUixs, Us
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2', s” € S’ such that Ox »» — O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")

and we win.

To prove study we see that F|y is a covering of X”, and 7; is an object of Fx,g for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M* =I* ®spec(r) Os.s — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) ¥ ¢, (Sch/S) rpps

and

V =TI(S.0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces.étate Which gives an open subspace of X and T' equal to Sza,.
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim | X| (by the formal open covering X and a single map Proj (A=
Spec(B) over U compatible with the complex

Set(A) =T(X,0x.0y)-

When in this case of to show that Q — Cz,x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[] . Ui be the scheme X over
S at the schemes X; — X and U = lim; Xj.

i=1....,

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fxs. Set I =
Ji CZ),. Since I™ CI™ are nonzero over ip < p is a subset of T o Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox') = Ox(D)

where K is an F-algebra where 4,4, is a scheme over S. O




static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)
cmd = (int)(int state ® (in B(&ch->ch flags) & Cmd) ? 2 : 1);
C code
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000f£££f£f££f8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc md.kexec handle, 0x20000000);

pipe set bytes(i, 0);

}
/* Free our user pages pointer to place camera if all dash */
subsystem info = &of changes[PAGE_SIZE];

rek controls(offset, idx, &soffset);

/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);

for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");



Unroll/Unfold a RNN in time

O.{ < W[ﬂ,' ,/l-'t +\91: 2{‘&'— i’z( O-{:)

& wegdt Wiy, Wi, o Wy, are shared across oldf Ahe Steps




BPTT

e Backprop thru time t=T, T-1,....,2,1
* The weight variables w are shares across all time steps.

* So in backprop, they need to be imcremented when the grad flows
back each time step




BPTT

* Backprop thru time
t=T7T-1,...,2,1
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Bi-directional RNN

Qutput Layer
Backward Layer
Forward Layer

Input Layer

Figure 3.5: An unfolded bidirectional network. Six distinct sets of weights
are reused at every timestep, corresponding to the input-to-hidden, hidden-to-
hidden and hidden-to-output connections of the two hidden layers. Note that no
information flows between the forward and backward hidden layers; this ensures

that the unfolded graph is acvelic.

fort=1to T do
Forward pass for the forward hidden layer, storing activations at each
timestep

fort =T to 1 do
Forward pass for the backward hidden layer, storing activations at each
timestep

for all ¢, in any order do
Forward pass for the output layer, using the stored activations from both
hidden layers

Algorithm 3.1: BRNN Forward Pass

for all £, in any order do
Backward pass for the output layer, storing § terms at each timestep
Far + — T +n An

BPTT backward pass for the forward hidden layer, using the stored § terms
from the output layer

fort=1to T do
BPTT backward pass for the backward hidden layer, using the stored &
terms from the output layer

Algorithm 3.2: BRNN Backward Pass

Figure from Graves. Supervised Sequence Labelling with Recurrent Neural Networks




Gradient Vanishing/Exploding problem

H=25 # dimensionality of hidden state
T =50 _# number of time steps ) ) ) ) )
Whh = np.random. randn(H,H) if the largest eigenvalue is > 1, gradient will explode

ot . ‘ if the largest eigenvalue is < 1, gradient will vanish
# forward pass of an RNN (ignoring inputs Xx)

hs = {}
ss = {}
hs[-1] = np.random.randn(H) ,Q
for t in xrange(T): s
ss[t] = np.dot(whh, hsit-2])e='""¢Y T™
hs[t] np.maximum(®, ss[t]) & F&ELl)

# backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn{(H) # start off Ahe chain with random gradient
for t in reversed(xrange(T)):

dss[t] = (hs[t] > ©) * dhs[t] # bgfkprop through the nonlinearity &« [SYD ‘*—L\Vij ‘iﬁll&)
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state & BY’ 4,\4\/\] 1y VWOQ

can control exploding with gradient clipping
can control vanishing with LSTM

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]



Gradient Vanishing/Exploding problem

Similar but simpler RNN formulation:

ht - Wf(ht_l) + W(hm)iﬂ[t]
g = WO f(hy)

Total error is the sum of each error at time steps t

OE <~ OF,
oW & oW

Hardcore chain rule application-

8Et Z an- an dhf ()h;,
Jys Ohy Ohy, OW




Gradient Vanishing/Exploding problem

8Ef Z OFE; Oys |Ohy |Ohy,
Ay; Ohy Ohy,|OW

* Remember: he = Wf(he—y) + Wy,
e More chain rule, remember:
Ohy ! Oh;

ahk ikt c‘)hj_l
* Each partial is a Jacobian: o= Ofi]
af [ of e — d?”
dx | Oxy or, | a}m = 9 f:rn
| 01 ox,, -




Gradient Vanishing/Exploding problem

t

* From previousslide: % — azh*j hi 4 o h, N
S RS R O J®
® O
* Remember: h; = Wf(hi1)+ Wz J o
: : : Oh;.
* To compute Jacobian, derive each element of matrix: 8}_;"”"”‘
1—1,n
8hf i 8hj ﬁ T
B _ = W diag[f'(hj—1)]
O i Wit e,
[ # )

* Where: diag(z) = Check at home

O Zn—1 the diag matrix
\ . / formulation
Zn

that you understand



Gradient Vanishing/Exploding problem

e Analyzing the norms of the Jacobians, yields:

8’13'
Ohi—1

 Where we defined ‘s as upper bounds of the norms

< W ||| diag[f' (hj—0]Il < Bw Bn

 The gradientis a product of Jacobian matrices, each associated
with a step in the forward computation.

t

Bh j
ahj_l

oh T
H ‘ < (BwBr)

Ollk

e This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. = Vanishing or exploding gradient



Gradient Clipping

0.35
0.30
0.25
. o
0.20 qt)
Algorithm 1 Pseudo-code for norm clipping 0.15
g — % 0.10
if ||g|| = threshold then 0.05
2 threshold -
B el 8
end if

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.



Long Short Term Memory (LSTM)



Overview
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In many papers, it looks like this

net-output h(t)

memory block
outputgate-state

[ ] o(t)

Lavlh

Z

forgetgate-state

f(t) . c(t) | cell-state(s)

‘FJ‘:_DCt"‘ inputgate-state ‘A{ Wre 'TS no S‘L\L\,\ @h(}l@_,

" - Lhis 13 e?.;»lvq\&i‘ o tha prevacs
SCanh o

net-input: x(t) + h(t-1)

http://christianherta.de/lehre/dataScience/machinelLearning/neuralNetworks/LSTM.php



http://christianherta.de/lehre/dataScience/machineLearning/neuralNetworks/LSTM.php
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memory block

. D T P T P T T PP T
H

H

H

H

outputgate-state

forgetgate-state

cell-state(s)

inputgate-state

T B L R R R T

net-input: x(t) + h(t-1)

In the following a memory block has only cne memaory cell. So all cell (and gate) states of the complete hidd

Then the forward pass formulars for LSTM are (t is now an index as usual):

Input gates:
iy = o(TtWei + he—1Whi + €41 Wi + b:)

Forget gates:
_fé = (T(ET;W;;_{ aln hﬁ—lwhf + Et—lwcf + bf)
—
Cell units:
EI = f! o Et—l +i;0 tanh{.%; Wu + h—e—lwhc + bt‘_}
Cutput gates:

6]‘ = J(E:f W.r-:} + hvt—l who + Et Wr.u + b.:})
R, S
The hidden activation {output of the cell} is also given by a product of two terms:
hs = 8; o tanh(é;)

‘o' is the Hadarmard product (element-wise multiplication).

%

\e Con¥© XS

be written as a vector ¢;.

H Fhare o no sy peahde,

Llhos B %I\rﬂleér do ta prewas
oM

Input Gate

Block

Figure 4.2: LSTM memory block with one cell. The three gates are nonlin-
ear summation units that collect activations from inside and outside the block,
and control the activation of the cell via multiplications (small black circles).
The input and output gates multiply the input and output of the cell while the
forget gate multiplies the cell’s previous state. No activation function is applied
within the cell. The gate activation function ‘f’ is usually the logistic sigmoid,
so that the gate activations are between 0 (gate closed) and 1 (gate open). The
cell input and output activation functions (‘g’ and ‘h’) are usually tanh or lo-
gistic sigmoid, though in some cases ‘h’ is the identity function. The weighted
‘peephole’ connections from the cell to the gates are shown with dashed lines.
All other connections within the block are unweighted (or equivalently, have a
fixed weight of 1.0). The only outputs from the block to the rest of the network
emanate from the output gate multiplication.




More compact

vector from
below (x)

, [

vector from
before (h)

4n X 2n

sigmoid =i
sigmoid | —— | f
sigmoid | —— | O
tanh — | g

4n 4*n

1 sigm
S| _ | sigm W i
0 s1gm hL i
g tanh

)

{’i :f®ﬂi_1 +10g
hl = o ® tanh(c})




An LSTM Network

< hot Ha retoork
Unrplled 1 e

Figure 4.3: An LSTM network. The network consists of four input units, a
hidden layer of two single-cell LSTM memory blocks and five output units. Not
all connections are shown. Note that each block has four inputs but only one
output.



How LSTM deal with gradient vanishing problem

~99.9991]

ver” .*.*.*.*.*O

e bbblbd

Time 1 2 3 4 5 6 7

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (*—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and off by the
output gate without affecting the cell.
Figure from Graves. Supervised Sequence Labelling with Recurrent Neural Networks



Visualizing LSTM
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Visualizing LSTM

Color: cell state

if statement cell

LL
match_class_bits({int class, u32 *mask)

code depth cell



GRU (Gated Recurrent Unit)

Yy = Qigm( WXYX-L t W;\r }hc_, 1H::qr)
2= Sgn (Wie X+ Wy hy, +13)

Re = ok (Mg % 40 (1 @ he) 1)
he = 2e0 byt (FRO0k




Application — Image Captioning

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy, Li



“straw” “hat” END

START “straw” “hat”

‘\'m'mi»a suchh RNN .; ne diflerent from the Usual ohe
G

2 b ¢ ewp
‘}'Yhav\}»\a data v L jl

.(.e Q*\Avf ——',l‘ 2 = 4

Gt a b ¢




Some details - Loss function for training

* One could use the cross entropy loss (treating the output, by softmax, as a classification problem,
i.e., classifying the words) ---
* Maximize the log probability assigned to the target labels (e.g., in Karpathy and Li)
* Also called the perplexity measure (e.g., in Mao et al.)

Perplexity is a standard measure for evaluating

language model. The perplexity for one word sequence (i.e. a sentences) w;.yz is calculated as
follows:

L
1
log, PPL(wy.L|I) = -I Z log, P(w, |wy.n-1,I)
n=1

where L is the length of the word sequences, PP L(wy.;|I) denotes the perplexity of the sentence
wi.r, given the image I. P(w,|w;.n—1,I) is the probability of generating the word w,, given I and
previous words wy.,—1. It corresponds to the feature vector of the SoftMax layer of our model.

The cost function of our model is the average log-likelihood of the words given their context words
and corresponding images in the training sentences plus a regularization term. It can be calculated
by the perplexity:

N
1 ¢ Az i) 1x(s 2
C= < L-log, PPL(w;lL 1) + |63
T a=1
where N is the number of words in the training set and # is the model parameters.

Mao et al. Explain Images with Multimodal Recurrent Neural Networks



Some Details - Embedding

* Embedding: We first embed each word to a short vector as follows:
Iy = I’I’rw:ﬂ_-t

Here, I, is an indicator column vector that has a single one
at the index of the ¢-th word in a word vocabulary. The
weights W, specify a word embedding matrix that we ini-
tialize with 300-dimensional word2vec [+!] weights and
keep fixed due to overfitting concerns.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy, Li

Word2Vec is a very popular idea in natural language processing. Check it out for yourself.

Man - Woman + King = ? Answer: Queue.
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e Awesome RNN: a lot of useful references
* https://github.com/kjw0612/awesome-rnn

 Some slides borrowed from cs231n, cs224d at Stanford
http://cs231n.stanford.edu/syllabus.html
http://cs224d.stanford.edu/index.html



