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Adversarial Robustness
and Score-based generative model



A Brief Introduction to
Adversarial Robustness
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Adversarial Training

Training adversarially robust classifiers
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we would repeatedly choose a minibatch BEDuw.in, and
update 0 according to its gradient
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By Daskin theorem
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https://adversarial-ml-tutorial.org/introduction/



Adversarial examples

« Solving the inner maximization problem (adversarial attack):

mai.|}§|ilipize E(hﬂ (m) ) y)

« The Fast Gradient Sign Method (FGSM)

— First compute the gradient g at x (use BP, gradient w.r.t. x)

— In order to maximize loss, we want to adjust delta in the direction of this
gradient, and project to epsilon |_infinity ball
0 := clip(ag,[—€,€]). Or &:=e-sign(g).

Original image Adversarial image
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* Sgn(Val(0.2,0) | esign(v,J(6,2,y))
“panda” “nematode” “gibbon” Many artifacts
57.7% confidence 8.2% confidence 99.3 % confidence Prediction: car mirror Prediction: sunglasses

— Sometimes, FGSM requires large eps in order to succeed (human-perceptible)



Adversarial examples

Projected gradient (steepest) descent (PGD)
(also known as I-FGSM which expands for Iterative-Fast Gradient Sign Method)

xt = clip_. o(x +y - sign(ZLC (1 w), )

« for those pixels with perturbation size larger than eps, “clip” truncates it to eps

« Another difference: PGD uses random initialization, by adding random noise to
the original image from a uniform distribution in the range (-eps,eps)

Original image Adversarial image

Egyptian cat

Prediction: baboon Prediction: Egyptian cat
Fewer artifacts
than FGSM

Other powerful attacks: Carlini and Wagner attack (C&W Attack), One-pixel Attack
https://hongyanz.github.io/slides/cs886_s22 Lecture3.pdf



Adversarial Training
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Danskin’s theorem only technically applies to the case where we are
able to compute the maximum exactly

The key aspects of adversarial training is incorporate a strong attack
Into the inner maximization procedure

Projected gradient descent is one of the strongest attacks

Repeat:
1. Select minibatch B, initialize gradient vector g := 0

2. For each (z,y) in B: . .
a. Find an attack perturbation §* by (approximately) optimizing In praCtlcei use PG D to flnd the

0* = argmax £(hy(z + 9),y) iInner maximizer

§||<e
b. Add gradient at §*
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3. Update parameters 6
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Adversarial Purification:
Another approach for the adversarial
defense Is to purify attacked images

before feeding them to classifiers



Adversarial Purification

e Learn a purification model whose goal is to remove any
existing adversarial noise from potentially attacked
Images into clean images so that they could be correctly
classified when fed to the classifier.

« The purification model is usually trained independently of
the classifier

« The most common way is for adversarial purification to
learn a generative model:

Generate clean images from attacked images.



High level idea

Adversarial purification can be understood as a denoising procedure

Learning scores in diffusion models is equivalent to learning the noise
(denoising)
Recall the objective for learning the score network s
L
, | L, )
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Purification (deterministic update): zo =2 +&, &~N(O, HEI)

Ty =Tp_1+ Q—_189(Tp—1)-

Since the norm of v is bounded due to the perceptual
indistinguishability constraint, the added noise € can “screen out” the
relatively small perturbation v.

The score network s is trained to denoise images perturbed by
Gaussian noises. Adding Gaussian noises makes x_0 more similar to
the data used to train the score network.

Adversarial purification with score-based generative models



Figure 5. Examples of corrupted and purified images. From left: {Gaussian, shot, impulse} noise, {Defocus, glass, motion, zoom} blur,
{snow, frost, fog, brightness} weather, {contrast, elastic, pixelate, JPEG} digital corruptions.



DiffPure
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Figure 1. An illustration of DiffPure. Given a pre-trained diffusion
model, we add noise to adversarial images following the forward
diffusion process with a small diffusion timestep t* to get diffused
images, from which we recover clean images through the reverse
denoising process before classification. Adaptive attacks backprop-
agate through the SDE to get full gradients of our defense system.

Diffusion Models for Adversarial Purification
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(b) Eyeglasses
Figure 2. Our method purifies adversarial examples (first column)
produced by attacking attribute classifiers using PGD /., (e =
16/255), where t* = 0.3. The middle three columns show the
results of the SDE in Eq. (4) at different timesteps, and we observe
the purified images at =0 match the clean images (last column).
Better zoom in to see how we remove adversarial perturbations.



Table 4. Standard accuracy and robust accuracies against unseen threat models on ResNet-50 for CIFAR-10. We keep the same evaluation
settings with (Laidlaw et al., 2021), where the attack bounds are e = 8 /255 for AutoAttack £, € = 1 for AutoAttack /2, and € = 0.05
for StAdv. The baseline results are reported from the respective papers. For our method, the diffusion timestep is ¢* = 0.125.

Method Standard Acc ——— R"b“;: Ace —

Adv. Training with £, (Laidlaw et al., 2021) 86.8 49.0 19.2 4.8

Adv. Training with /3 (Laidlaw et al., 2021) 85.0 395 47.8 7.8

Adyv. Training with StAdv (Laidlaw et al., 2021) 86.2 0.1 0.2 53.9

PAT-self (Laidlaw et al., 2021) 82.4 30.2 349 46.4

ADV. CRAIG (Dolatabadi et al., 2021) 83.2 40.0 339 49.6

ADV. GRADMATCH (Dolatabadi et al., 2021) 83.1 39.2 34.1 48.9
Ours 88.2+0.8 70.0+1.2  70.9+0.6 55.0+0.7

Benign adversarial
Figure 6: Flow visualization on CIFAR-10. The example is misclassified as bird.



High-resolution image reconstruction with latent
diffusion models from human brain activity

Figure 1. Presented images (red box, top row) and images reconstructed from fMRI signals (gray box, bottom row) for one subject (subjO1).

https://sites.google.com/view/stablediffusion-with-brain/nome



Motivations

* A new method based on a diffusion model (DM) to
reconstruct images from human brain activity obtained via
functional magnetic resonance imaging (fMRI)

* Reconstructing visual images from fMRI is challenging:
— The underlying representations in the brain are largely unknown

— The sample size typically associated with brain data is relatively small
— Low signal-to-noise ratio with fMRI data

« Qverarching goal:
— use DMs for high resolution visual reconstruction

— use brain encoding framework to better understand the underlying
mechanisms of DMs and its correspondence to the brain.



Functional magnetic resonance
imaging

fMRI

fMRI measures brain activity by detecting
changes associated with blood flow.

When an area of the brain is in use, blood
flow to that region also increases

An fMRI image with yellow areas showing

increased activity compared with a control @ NUfﬂeld Department Of Cl]nl e
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Data

* Natural Scenes Dataset (NSD)

 NSD provides data acquired from a 7-
Tesla fMRI scanner over 30-40 sessions
during which each subject viewed three
repetitions of 10,000 images.

 The images used in the NSD experiments
were retrieved from MS COCO and
cropped to 425*425
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The only training required in our method is to construct linear models
that map fMRI signals to each LDM component

z as the latent representation of the original
image compressed by the autoencoder

‘Decoding Analysis

. L2-regularized linear regression
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: Copy
| : To construct models from fMRI to
5 ; -T-ré-ir-wéz the components of LDM, we used
(iif) |(Linearmodel)  L2-regularized linear regression,
i and all models were built on a per
! : subject basis
"""""""""""""""""" Text input is projected to a fixed latent

representation by a pretrained text encoder (CLIP)
We decoded latent representations of the presented image (z) and associated from fMRI signals

within early (blue) and higher (yellow) visual cortices, respectively.

These latent representations were used as input to produce a reconstructed image Xzc.




Ground Truths

Figure 4. Example results for all four subjects.



Encoding: Whole-brain Voxel-wise Modeling

Encoding: Whole-brain Voxel-wise Modeling
map representations in LDM to brain activity
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B ’ Schematic of encoding analysis. We built encoding

models to predict fMRI signals from different
components of LDM, including z, ¢, and zc.

() linear models to predict voxel activity from latent representations independently: z, ¢, and zc
(i) we incorporated them into a single model

(i) examine how zc changes through the denoising process.

(iv) we extracted features from different layers of U-Net



z produced high prediction ¢ produced the highest zc carries a representation that is very
performance in the posterior prediction performance in similar to z, showing high prediction
part of visual cortex, namely higher visual cortex. performance for early visual cortex

early visual cortex
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Figure 6. Prediction performance (measured using Pearson’s correlation coefficients) for the voxel-wise encoding model applied to held-
out test images in a single subject (subjO1), projected onto the inflated (top, lateral and medial views) and flattened cortical surface (bottom,
occipital areas are at the center), for both left and right hemispheres. Brain regions with significant accuracy are colored (all colored voxels
P < 0.05, FDR corrected).
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Figure 8. Unique variance accounted for by z. compared with z
in one subject (subj01), obtained by splitting accuracy values from
the combined model. While fixing z, we used z. with different de-
noising stages from early (top) to late (bottom) steps. All colored
voxels P < 0.05, FDR corrected.
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Figure 9. Selective engagement of different U-Net layers for dif-
ferent voxels across the brain. Colors represent the most predictive
U-Net layer for early (top) to late (bottom) denoising steps. All
colored voxels P < 0.05, FDR corrected.



Stable Diffusion: Text-to-Image

Text-to-Image Synthesis on LAION. 1.45B Model.

'A street sign that reads 'A zombie in the ‘An image of an animal ‘An illustration of a slightly ‘A painting of a "A watercolor painting of a "A shirt with the inscription:

“Latent Diffusion” ' style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!™ '

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [ "] database. Samples generated with 200 DDIM steps and 17 = 1.0. We use unconditional guidance [ ' '] with s = 10.0.



Stable Diffusion: Layout-to-Image

Figure 8. Layout-to-image synthesis with an LDM on COCO [ '],
see Sec. 4.3.1. Quantitative evaluation in the supplement D.3.



3D design
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Stable diffusion search engine
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AlIGC: Low-code/No-code

« Write python without touching the keyboard
« https://githubnext.com/projects/hey-github/?ref=aidaddy

1 githubnext.com/projects/hey-github/?ref=aidaddy B N e & A
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EFES - BXAHE 3 TALG ScholarOne... @ 2MTEEEZ Researct
© 1l
’ tnew line .

ort pandas as pd
*t matplotlib.pyplot as plt

titanic_data

pd.read_csv("https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.¢
da titanic_data[titanic_data[
get titanic csv data from the web

and assign it to variable titanic data

"].notnull()]

clean records from titanic data
where age is null




GPT-4: Build a webpage from a
hand-drawn picture




