v

N

Memory-Efficient Search Trees for
Database Management Systems

efficiencg

@huanchenzhang llarnegie Mellon University

Memory is precious
S/GB

100

10

0.1

2005 2009 2013 2017

[Source: https://www.jcmit.net/memoryprice.htm]

Databases face tight memory budgets

An Example mid-tier Amazon EC2 Instance optimized
for database workloads

vCPU Mem(GB) SSD(GB)

4 305 1:30 950
f RocksDB —— 1 100

Modern applications demand more

Example: Alibaba’s e-commerce platform on Singles’ Day
=> Average response time: < 0.5 ms
=> Peak throughput: 70 million txn/s

s

Working set must fit in memory

Insufficient =§> Memory- =§> Higher Database
Memory Efficiency Performance

With Less Do More

Search trees consume a lot of memory

Statistics from H -Store

Benchmark Tree Index Memory
TPC-C 58%
Voter 55%
Articles 34%

Block compression works well on disk

—T1=11 CPU cost
ﬁ:? ————— =
Memory Hidden
'[')' _k """""""" ZAS """""""""
= Reduced
/O cost

zlib, snappy, LZ4

Block compression is slow in memory

Memory Expensive
CPU cost

zlib, snappy, LZ4

Thesis goal: a Pareto improvement

Performance- Data Structures
Optimized Trees in This Thesis

)

ol -

- S

(V] ~ .

= N

- \

O \

Y= \

Q |

all

Existing
Compressed Trees

Memory-Efficiency

Thesis Statement:

Compressing in-memory search trees via efficient
algorithms and careful engineering improves the

performance and resource-efficiency of database
management systems.

10

Build fast static search trees with
maximum structural compression

Memory-Efficiency

2

Support dynamic operations
with bounded & amortized cost

O

Compress input keys efficiently
while preserving their order

11

Part |
Compressing Static Search Trees

Dynamic-to-Static Rules
Fast Succinct Tries
Succinct Range Filters

Memory overhead in dynamic trees

4

L~

/ ~
24 = H#2
3 / \\&
3|4 5|5 5 {910 11 | 12
cl|d e g 'kl m|n

12

#1 Compaction:

Remove duplicate entries and make every
allocated memory block 100% full.

#2 Reduction:

Remove pointers and structures that are
unnecessary for efficient read operations.

15

#1 Compaction on B+trees

4

L~

D fe—

11

12

14

#1 Compaction on B+trees

\

10

11

12

1
>

(¢

14

#2 Reduction on B+trees

9

N

\

~

7

8

10

11

12

1
>

¢V

15

#2 Reduction on B+trees

11

12

¢V

15

Compact B+tree vs. Regular B+tree

30 — 50% smaller
5/619 3 — 10% faster
//// /// ', \\
// /’ y \\
,’// // ,', \\
e 4 4 X
112|13|4|5|16|7]|8|]9]|10]|11]12
alblc]|d \ hl]i]j]lk]|]l]|m]|n
y
e|f|g

16

Part |
Compressing Static Search Trees

Dynamic-to-Static Rules
Fast Succinct Tries
Succinct Range Filters

Challenges in compressing tries

17

The information-theoretic lower bound

%/, The minimum number of bits needed to
] distinguish any object in a class

ISl=n =P log,n bits

kn+1
n-node tries | _ (n) _
| of degree k | = kn+1 4 ?(logzk T 109262 bits
[—_——— = ———
v
256 9.4n

18

Warm-up: succinctly encode a binary tree

Level-Order Encoding
11010000

2n bits

19

Our succinct trie representation

label: aidht ft
Has-Child: 1100000
Structure: 1010010

Limit = 9.4 bits/node 10 bits/node

20

Rank & Select on bit vectors

% _rank(bv, i) = # 1's up to position i in bv
/7,
1 select(bv, i) = position of the i-th 1 in bv

0 5 *1' 10
bv: 110111011000000
rank(bv, 6) =5 Time: Constant

select(bv, 6) =7 Space: 3-10% sizeof(bv)

21

Search the encoded trie efficiently

Label: a i d h t[f]t
Has-Child: 1100000
Structure: 1010010

Value: vl v2v3v4v5

moveToChild(p) = select(Structure, rank(Has-child, p) + 1)
moveToValue(p) = p - rank(Has-child, p)

22

Trade small space for performance

Fast Bitmaps 1

Cold Succinct Encoding 64 €& ¢ oo

< 1% space overhead
3X speed-up

23

More performance optimizations

@ Vectorized Label Search
abcdefghijklmnop | SIMD Search

@ Memory Prefetching

Label: a ildlht f t
Has-Child: 1 1/0|/0 000
structure: 1 01110010 S09% speed-up

24

The Fast Succinct Trie (FST)

=> Small

~10 bits per key for 64-bit integers
~14 bits per key for emails

=> Fast

~200 ns per query for 10M 64-bit integers

= state-of-the-art performance-optimized trees

25

Part |
Compressing Static Search Trees

Dynamic-to-Static Rules
Fast Succinct Tries
Succinct Range Filters

Filters answer approximate membership queries

i f Is Billionare?

26

Filters answer approximate membership queries
e ﬁ |_> NO, 99%
i f Is Billionare?

4

False Positive Rate YES, 1%

26

Filters help reduce unnecessary I/Os

Queries E Y

NO Probably Local Memory

YES

AA

27

Existing filters only support point queries

Point Filtering

Range Filtering

Is key 65 in my set?

e

.

Bloom Filter (1970)
Quotient Filter (2012)
Cuckoo Filter (2014)

Are there keys between
60 and 66 in my set?

9

28

10 bits/node

SURF uses a truncated trie

‘, SIGMOD
S e SIGMETRICS

29

Add suffix bits to reduce false positive rate

Hashed Suffix Bits Real Suffix Bits
SIGMETRICS SIGMETRICS

OxC8 O0x20 Ox06 D O P

Ox18 x E ’(

30

Add suffix bits to reduce false positive rate
Hashed Suffix Bits Real Suffix Bits

OxC8 O0x20 0x06 D O P
== Each bit reduces FPR by half == Benefit point & range queries
== Cannot help range queries == \Neaker distinguishability

30

Bloom filters speed up point queries in RocksDB

| Cached Filters 1 / NO
<

Memory | B.B.B,.. GET(16)
DISk Ll DU nny 6, 21 B o0 o
L, cos 12,25 .[B] .-

Range queries still incur multiple 1/Os

| Cached Filters 1

Memory L B, B, B, ...
Disk
Ll ® o0 STy 6, 21
L2 ® 0 o

SuRFs save |/Os for both point and range queries

Memory L S,S, S, ..

| Cached Filters 1 / NO GET(16)
<

RANGE(14, 20)

33

Evaluation setup: a time-series benchmark

Queries: Get(t)
|||E||| T | ,

tl tz Time

G t

Rangelt,, t,)

Key: 64-bit timestamp + 64-bit sensor ID

Value: 1KB payload

.

System Config

Dataset: <100 GB on SSD
DRAM: 32 GB

.

Filter Config

Bloom filter: 14 bits per key
SuRF: 4-bit real suffix

34

SURFs act like Bloom filters for point queries

Throughput (Kops/s)

40

30

20

10

o

All-false point queries

—

No Filter

Bloom Filter

SuRF

T Worst-case Gap

35

SURFs speed up range queries

- 10 SuRF

g_)

g - '

— I

5 ° | SX

s 4 |

2 I No Filter/

< 2 e—t——e—"—"—"—""""" Bloom Filter
= O

10 20 30 40 50 60 70 80 90 99
Percent of queries with empty results

36

SURF’s impact in academia and industry

(!J Best Paper Award at SIGMOD’18
.

N

Being implemented by several
major internet companies

6x1

37

Build fast static search trees with
maximum structural compression

Memory-Efficiency

2

Support dynamic operations
with bounded & amortized cost

O

Compress input keys efficiently
while preserving their order

38

Part Il
Supporting Dynamic Operations

Hybrid Index

Hybrid Index is a dual stage architecture

Py

Dynamic Stage Static Stage

Write-optimized Compact, read-only

39

Inserts are batched in the dynamic stage

Writes Merge
Periodically

Dynamic Stage Static Stage

Write-optimized Compact, read-only

40

Reads search both stages in order

oF
Qo'
p'eg

Dynamic Stage Static Stage

Write-optimized Compact, read-only

41

Hybrid Index is memory-efficient and skew-aware

Merge

Periodically

Dynamic Stage Static Stage

Write-optimized Compact, read-only

42

Hybrid Indexes help reduce index memory

Statistics from H -Store

7% Memory by 7% Memory by Hybrid

Benchmark Original indexes indexes
TPC-C 58% 34%
Voter 55% 39%
Articles 34% 18%

43

TPC-C on H -Store

Hybrid Indexes improve the database’s capacity

mmg&‘&v

B+tree

(o))
o
A

N
o
A

60K

Throughput (txn/s)

4014

Transactions Executed

Part Il
Compressing Input Keys

High-speed Order-Preserving Encoder

Existing string compression algorithms

@ Whole-key Dictionary Compression

Dictionary Table Column Index = No Compression
Dave | 1 Dave 1 = New keys?
Michael | 2 Michael 2
Andy | 3 Andy |=| 3 123
Kim 9 Andy 2
Dave 3

@ Huffman Compression = Does not preserve key ordering

45

Compression Model: The String Axis
= Dictionary Completeness
=> Order-Preserving

01 100 11
I I I —

am am n a azZzu azZu azv

a
) O N @ I I

Example: amazon — (1) — amazon — 0Olazon

_ @ — 0lazon — 01100zon

46

The HOPE Framework

Build Phase Encode Phase
o : Key
| Sampled !
! Key List e ety l~ -----
I I
. : ILookups
! Symbol Intervals | . ! >
| s > Dictionary | | Encoder
| elector ! <
. | |
i l Probabilities ~ ------------ 'i' ———————————— l~ -----
| 669 |
: Code c° : Encoded Key
. | Assigner |
' |
I I

47

HOPE Evaluation Summary

=> B+tree, ART, HOT, SuRF
=> Emails, Wikipedia Titles, URLs
= Lookup, Scan, Insert, Update ...

30% Smaller + 40% Faster

48

HOPE is orthogonal to structural compression

32

N
D

Memory (MB)
® o

1 SuRF 12.5M Email Keys
® Original
P _? 12% ® + HOPE
41%
0] 0.8 1.2 1.6 2

Point Query Latency (us)

49

Build fast static search trees with
maximum structural compression

D-to-S Rules, FST, SURF

Memory-Efficiency

@ Hybrid Index

Support dynamic operations
with bounded & amortized cost

l@ HOPE

Compress input keys efficiently
while preserving their order

50

Backup Slides

Concatenation Property Counter-Example

Bl

HOPE improves performance & memory-efficiency

1 B+tree 25M Email Keys
Zael ® Original
@ 1800 o ® + HOPE
2 o
>
5 1200
5
s 600
0 0.4 0.8 1.2 1.6 2

Point Query Latency (us)
B2

HOPE improves performance & memory-efficiency

1 ART 25M Email Keys
1200 ® Original
o) ®
g 900 - ® + HOPE
>
3 10]0
£
< 300
0] 0.4 0.8 1.2 1.6 2

Point Query Latency (us)
B3

Bloom filters speed up point queries in RocksDB

Memory GET(65)
Disk
L,
L,
75
= %] 100

Bloom filters speed up point queries in RocksDB

.- NO
Memory B, B, (cached) «--------- GET(65)
Disk B,
0
! aloo
> 0 = 50
: 3 50 7/87 100
B., B- B B,
L @ 0 ;/8':' 25 ;/;I 50 8—/8':' 75
25 50 75 100

Range queries still incur multiple 1/Os

RANGE(60, 66)

N O

5 50 75 100

SuRFs save |/Os for both point and range queries
v NO GET(65)

Memory S, --- S; (cached) «=----- RANGE(60, 66)
Disk S
L s
1 100
S, S,
0 50
78
L, aso leO
S4 S5 SG S7
)

N O

ZEANC R
5 50 75 100

