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Memory is precious
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Databases face tight memory budgets
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An Example mid-tier Amazon EC2 Instance optimized 
for database workloads

RocksDB

vCPU Mem(GB) SSD(GB)

4 30.5 950301

1001



Modern applications demand more

Example: Alibaba’s e-commerce platform on Singles’ Day
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Average response time: < 0.5 ms

Peak throughput: 70 million txn/s

Working set must fit in memory
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Search trees consume a lot of memory
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Benchmark Tree Index Memory

Statistics from      -Store
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Disk

Memory

zlib, snappy, LZ4

Reduced 
I/O cost

CPU cost

Hidden

Block compression works well on disk
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zlib, snappy, LZ4

Expensive 
CPU cost

Memory

Block compression is slow in memory



Thesis goal: a Pareto improvement

9

Memory-Efficiency

P
e

rf
o

rm
a

n
c

e

Performance-
Optimized Trees

Existing 
Compressed Trees

Data Structures 
in This Thesis



10

Thesis Statement:
Compressing in-memory search trees via efficient 
algorithms and careful engineering improves the 
performance and resource-efficiency of database 
management systems.
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Memory-Efficiency

Build fast static search trees with 
maximum structural compression

Support dynamic operations 
with bounded & amortized cost

Compress input keys efficiently 
while preserving their order



Compressing Static Search Trees

Dynamic-to-Static Rules

Fast Succinct Tries

Succinct Range Filters

Part I
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#1 Compaction:
Remove duplicate entries and make every 
allocated memory block 100% full.

#2 Reduction:
Remove pointers and structures that are 
unnecessary for efficient read operations.
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#1 Compaction on B+trees
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#1 Compaction on B+trees
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#2 Reduction on B+trees
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#2 Reduction on B+trees
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Compact B+tree vs. Regular B+tree
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30 – 50% smaller
3 – 10% faster



Compressing Static Search Trees

Dynamic-to-Static Rules

Fast Succinct Tries

Succinct Range Filters

Part I



Challenges in compressing tries
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The information-theoretic lower bound

The minimum number of bits needed to 
distinguish any object in a class

|S| = 𝒏 𝒍𝒐𝒈𝟐𝒏 bits
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= 
𝒌𝒏#𝟏
𝒏

𝒌𝒏#𝟏
𝒏-node tries
of degree 𝒌 𝒏(𝒍𝒐𝒈𝟐𝒌 + 𝒍𝒐𝒈𝟐𝒆) bits

256 9.4𝒏



Warm-up: succinctly encode a binary tree

1 1 0 1 0 0 0 0

2n bits

Level-Order Encoding
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Label:

Structure:

Has-Child:

Value:

a i

h t f t

v1 v2 v3 v4 v5

d

a i d h t f t

1 1 0 0 0 0 0

1 0 1 0 0 1 0

v1 v2 v3 v4 v5
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Limit = 9.4 bits/node 10 bits/node

Our succinct trie representation



Rank & Select on bit vectors 

rank(bv, i) = # 1’s up to position i in bv

1 1 0 1 1 1 0 1 1 0 0 0 0 0 0bv:
0 5 10

rank(bv, 6) = 5

select(bv, 6) = 7

select(bv, i) = position of the i-th 1 in bv

Time:

Space:

Constant

3-10% sizeof(bv)
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Search the encoded trie efficiently

Label:

Structure:

Has-Child:

Value:

a i

h t f t

v1 v2 v3 v4 v5

d

a i d h t f t

1 1 0 0 0 0 0

1 0 1 0 0 1 0

v1 v2 v3 v4 v5

moveToChild(p) = select(Structure, rank(Has-child, p) + 1)

moveToValue(p) = p - rank(Has-child, p)
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Trade small space for performance 

Hot

Cold

Fast Bitmaps

Succinct Encoding

space overhead

speed-up

< 1%
3x

1

64
Size Ratio
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More performance optimizations

Vectorized Label Search

Label:

Structure:

Has-Child:

a i d h t f t

1 1 0 0 0 0 0

1 0 1 0 0 1 0

Memory Prefetching

a b c d e f g h i j k l m n o p SIMD Search

speed-up30%



The Fast Succinct Trie (FST)

Small
≈10 bits per key for 64-bit integers

≈14 bits per key for emails

Fast

= state-of-the-art performance-optimized trees

≈200 ns per query for 10M 64-bit integers
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Compressing Static Search Trees

Dynamic-to-Static Rules

Fast Succinct Tries

Succinct Range Filters

Part I



Filters answer approximate membership queries

YES, 100%

Is Billionare?
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Filters answer approximate membership queries

Is Billionare?

False Positive Rate
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YES, 1%

NO, 99%



Filters help reduce unnecessary I/Os
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Local Memory

Slow Devices

Queries

NO Probably 
YES



Existing filters only support point queries

Point Filtering

Bloom Filter (1970)

Is key 65 in my set?

Range Filtering

Are there keys between 
60 and 66 in my set?
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Quotient Filter (2012)

Cuckoo Filter (2014)



SuRF uses a truncated trie
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10 bits/node



Add suffix bits to reduce false positive rate
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Each bit reduces FPR by half

Cannot help range queries

Benefit point & range queries

Weaker distinguishability

Add suffix bits to reduce false positive rate
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Bloom filters speed up point queries in RocksDB

Memory

Disk
L1

L2

L3
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GET(16)

…, 6, 21, …

…, 12, 25, …

…, 11, 22, …

B

B

B

Cached Filters

B, B, B, …

NO



Memory

Disk
L1

L2

L3
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…, 6, 21, …

…, 12, 25, …

…, 11, 22, …

B

B

B

Cached Filters

B, B, B, …

Range queries still incur multiple I/Os

RANGE(14, 20)



Memory

Disk
L1

L2

L3
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…, 6, 21, …

…, 12, 25, …

…, 11, 22, …

S

S

S

Cached Filters

S, S, S, …

SuRFs save I/Os for both point and range queries

RANGE(14, 20)
GET(16)

NO



Evaluation setup: a time-series benchmark

Time

Key: 64-bit timestamp + 64-bit sensor ID
Value: 1KB payload

Range(t1, t2)Get(t)

t t1 t2

Queries:

Filter Config

Bloom filter: 14 bits per key

SuRF: 4-bit real suffix

System Config

Dataset: ≈100 GB on SSD

DRAM: 32 GB
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SuRFs act like Bloom filters for point queries
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SuRFs speed up range queries
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SuRF’s impact in academia and industry

Best Paper Award at SIGMOD’18

Being implemented by several 
major internet companies

6x

37
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Memory-Efficiency

Build fast static search trees with 
maximum structural compression

Support dynamic operations 
with bounded & amortized cost

Compress input keys efficiently 
while preserving their order



Supporting Dynamic Operations

Hybrid Index

Part II



Hybrid Index is a dual stage architecture

Dynamic Stage Static Stage

Write-optimized Compact, read-only
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Inserts are batched in the dynamic stage

Dynamic Stage Static Stage

Writes Merge

Periodically

Write-optimized Compact, read-only

40



Reads search both stages in order

Dynamic Stage Static Stage

Write-optimized Compact, read-only

41

Read
Read



Hybrid Index is memory-efficient and skew-aware

Dynamic Stage Static Stage

Write-optimized Compact, read-only
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Read
Read

Writes Merge

Periodically



Hybrid Indexes help reduce index memory

Benchmark
% Memory by 

Original indexes

TPC-C

Voter

Articles

58%
55%
34%

34%
39%
18%

% Memory by Hybrid 
indexes

Statistics from      -Store
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Compressing Input Keys

High-speed Order-Preserving Encoder

Part III



Existing string compression algorithms
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Whole-key Dictionary Compression
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Huffman Compression Does not preserve key ordering



Compression Model: The String Axis
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Dictionary Completeness

Order-Preserving

am an azu azvam azua

01 11100

)[ )[)[ )[

amazonExample: amazon 01azon

01azon 01100zon



The HOPE Framework
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Dictionary Encoder
Symbol 
Selector

Code 
Assigner

Sampled
Key List

Probabilities

Intervals

Build Phase Encode Phase

Codes

Key

Encoded Key

Lookups
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HOPE Evaluation Summary

B+tree, ART, HOT, SuRF

Emails, Wikipedia Titles, URLs

Lookup, Scan, Insert, Update …

Smaller30% Faster40%



HOPE is orthogonal to structural compression

49

0 20.4 0.8 1.2 1.6

8

16

24

32

Point Query Latency (µs)

M
e

m
o

ry
 (

M
B

)
SuRF 12.5M Email Keys

Original

+ HOPE12%
41%



50

Memory-Efficiency

Build fast static search trees with 
maximum structural compression

Support dynamic operations 
with bounded & amortized cost

Compress input keys efficiently 
while preserving their order

D-to-S Rules, FST, SuRF

Hybrid Index HOPE



Backup Slides



Concatenation Property Counter-Example

B1



HOPE improves performance & memory-efficiency
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HOPE improves performance & memory-efficiency
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Bloom filters speed up point queries in RocksDB
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Disk
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Bloom filters speed up point queries in RocksDB
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