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Memory is precious
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Databases face tight memory budgets

An Example mid-tier Amazon EC2 Instance optimized
for database workloads

vCPU Mem(GB) SSD(GB)
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Modern applications demand more

Example: Alibaba’s e-commerce platform on Singles’ Day
=> Average response time: < 0.5 ms
=> Peak throughput: 70 million txn/s

s

Working set must fit in memory



Insufficient =§> Memory- =§> Higher Database
Memory Efficiency Performance

With Less Do More



Search trees consume a lot of memory

Statistics from H -Store

Benchmark Tree Index Memory
TPC-C 58%
Voter 55%
Articles 34%



Block compression works well on disk

—T1=11 CPU cost
ﬁ:? ————— =
Memory Hidden
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= Reduced
/O cost

zlib, snappy, LZ4




Block compression is slow in memory

Memory Expensive
CPU cost

zlib, snappy, LZ4



Thesis goal: a Pareto improvement

Performance- Data Structures
Optimized Trees in This Thesis
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Thesis Statement:

Compressing in-memory search trees via efficient
algorithms and careful engineering improves the

performance and resource-efficiency of database
management systems.
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Build fast static search trees with
maximum structural compression

Memory-Efficiency

2

Support dynamic operations
with bounded & amortized cost

O

Compress input keys efficiently
while preserving their order
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Part |
Compressing Static Search Trees

Dynamic-to-Static Rules
Fast Succinct Tries
Succinct Range Filters



Memory overhead in dynamic trees
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#1 Compaction:

Remove duplicate entries and make every
allocated memory block 100% full.

#2 Reduction:

Remove pointers and structures that are
unnecessary for efficient read operations.
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#1 Compaction on B+trees
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#1 Compaction on B+trees
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#2 Reduction on B+trees
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#2 Reduction on B+trees
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Compact B+tree vs. Regular B+tree

30 — 50% smaller
5/619 3 — 10% faster
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Part |
Compressing Static Search Trees

Dynamic-to-Static Rules
Fast Succinct Tries
Succinct Range Filters



Challenges in compressing tries
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The information-theoretic lower bound

%/, The minimum number of bits needed to
] distinguish any object in a class

ISl=n =P log,n bits

kn+1
n-node tries | _ ( n ) _
| of degree k | = kn+1 4 ?(logzk T 109262 bits
[ —_——— = ———
v
256 9.4n
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Warm-up: succinctly encode a binary tree

Level-Order Encoding
11010000

2n bits
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Our succinct trie representation

label: aidht ft
Has-Child: 1100000
Structure: 1010010

Limit = 9.4 bits/node 10 bits/node
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Rank & Select on bit vectors

% _rank(bv, i) = # 1's up to position i in bv
/7,
1 select(bv, i) = position of the i-th 1 in bv

0 5 *1' 10
bv: 110111011000000
rank(bv, 6) =5 Time: Constant

select(bv, 6) =7 Space: 3-10% sizeof(bv)
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Search the encoded trie efficiently

Label: a i d h t[f]t
Has-Child: 1100000
Structure: 1010010

Value: vl v2v3v4v5

moveToChild(p) = select(Structure, rank(Has-child, p) + 1)
moveToValue(p) = p - rank(Has-child, p)
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Trade small space for performance

Fast Bitmaps 1

Cold Succinct Encoding 64 €& ¢ oo

< 1% space overhead
3X speed-up
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More performance optimizations

@ Vectorized Label Search
abcdefghijklmnop | SIMD Search

@ Memory Prefetching

Label: a ildlht f t
Has-Child: 1 1/0|/0 000
structure: 1 01110010 S09% speed-up
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The Fast Succinct Trie (FST)

=> Small

~10 bits per key for 64-bit integers
~14 bits per key for emails

=> Fast

~200 ns per query for 10M 64-bit integers

= state-of-the-art performance-optimized trees
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Part |
Compressing Static Search Trees

Dynamic-to-Static Rules
Fast Succinct Tries
Succinct Range Filters



Filters answer approximate membership queries

i f Is Billionare?
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Filters answer approximate membership queries
e ﬁ |_> NO, 99%
i f Is Billionare?

4

False Positive Rate YES, 1%
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Filters help reduce unnecessary I/Os

Queries E Y

NO Probably Local Memory

YES

AA
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Existing filters only support point queries

Point Filtering

Range Filtering

Is key 65 in my set?

e

.

Bloom Filter (1970)
Quotient Filter (2012)
Cuckoo Filter (2014)

Are there keys between
60 and 66 in my set?

9
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10 bits/node

SURF uses a truncated trie

‘, SIGMOD
S e SIGMETRICS
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Add suffix bits to reduce false positive rate

Hashed Suffix Bits Real Suffix Bits
SIGMETRICS SIGMETRICS

OxC8 O0x20 Ox06 D O P

Ox18 x E ’(
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Add suffix bits to reduce false positive rate
Hashed Suffix Bits Real Suffix Bits

OxC8 O0x20 0x06 D O P
== Each bit reduces FPR by half == Benefit point & range queries
== Cannot help range queries == \Neaker distinguishability
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Bloom filters speed up point queries in RocksDB

| Cached Filters 1 / NO
<

Memory | B.B.B,.. GET(16)
DISk Ll DU nny 6, 21 B o0 o
L, cos 12,25 .[B] .-




Range queries still incur multiple 1/Os

| Cached Filters 1

Memory L B, B, B, ...
Disk
Ll ® o0 STy 6, 21
L2 ® 0 o




SuRFs save |/Os for both point and range queries

Memory L S,S, S, ..

| Cached Filters 1 / NO GET(16)
<

RANGE(14, 20)
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Evaluation setup: a time-series benchmark

Queries: Get(t)
|||E||| T | ,

tl tz Time

G t

Rangelt,, t,)

Key: 64-bit timestamp + 64-bit sensor ID

Value: 1KB payload

.

System Config

Dataset: <100 GB on SSD
DRAM: 32 GB

.

Filter Config

Bloom filter: 14 bits per key
SuRF: 4-bit real suffix
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SURFs act like Bloom filters for point queries

Throughput (Kops/s)
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T Worst-case Gap
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SURFs speed up range queries

- 10 SuRF

g_ )
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Percent of queries with empty results
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SURF’s impact in academia and industry

(!J Best Paper Award at SIGMOD’18
.

N

Being implemented by several
major internet companies

6x1
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Build fast static search trees with
maximum structural compression

Memory-Efficiency

2

Support dynamic operations
with bounded & amortized cost

O

Compress input keys efficiently
while preserving their order
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Part Il
Supporting Dynamic Operations

Hybrid Index



Hybrid Index is a dual stage architecture

Py

Dynamic Stage Static Stage

Write-optimized Compact, read-only
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Inserts are batched in the dynamic stage

Writes Merge
Periodically

Dynamic Stage Static Stage

Write-optimized Compact, read-only

40



Reads search both stages in order

oF
Qo'
p'eg

Dynamic Stage Static Stage

Write-optimized Compact, read-only
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Hybrid Index is memory-efficient and skew-aware

Merge

Periodically

Dynamic Stage Static Stage

Write-optimized Compact, read-only

42



Hybrid Indexes help reduce index memory

Statistics from H -Store

7% Memory by 7% Memory by Hybrid

Benchmark Original indexes indexes
TPC-C 58% 34%
Voter 55% 39%
Articles 34% 18%
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TPC-C on H -Store

Hybrid Indexes improve the database’s capacity

mmg&‘&v

B+tree
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Part Il
Compressing Input Keys

High-speed Order-Preserving Encoder



Existing string compression algorithms

@ Whole-key Dictionary Compression

Dictionary Table Column Index = No Compression
Dave | 1 Dave 1 = New keys?
Michael | 2 Michael 2
Andy | 3 Andy |=| 3 123
Kim 9 Andy 2
Dave 3

@ Huffman Compression = Does not preserve key ordering
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Compression Model: The String Axis
= Dictionary Completeness
=> Order-Preserving

01 100 11
I I I —

am am n a azZzu azZu azv

a
) O N @ I I

Example: amazon — (1) — amazon — 0Olazon

_ @ — 0lazon — 01100zon
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The HOPE Framework

Build Phase Encode Phase
o : Key
| Sampled !
! Key List e ety l~ -----
I I
. : ILookups
! Symbol Intervals | . ! >
| s > Dictionary | | Encoder
| elector ! <
. | |
i l Probabilities ~ ------------ 'i' ———————————— l~ -----
| 669 |
: Code c° : Encoded Key
. | Assigner |
' |
I I
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HOPE Evaluation Summary

=> B+tree, ART, HOT, SuRF
=> Emails, Wikipedia Titles, URLs
= Lookup, Scan, Insert, Update ...

30% Smaller + 40% Faster

48



HOPE is orthogonal to structural compression

32

N
D

Memory (MB)
® o

1 SuRF 12.5M Email Keys
® Original
P _? 12% ® + HOPE
41%
0] 0.8 1.2 1.6 2

Point Query Latency (us)
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Build fast static search trees with
maximum structural compression

D-to-S Rules, FST, SURF

Memory-Efficiency

@ Hybrid Index

Support dynamic operations
with bounded & amortized cost

l@ HOPE

Compress input keys efficiently
while preserving their order
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Backup Slides



Concatenation Property Counter-Example

Bl



HOPE improves performance & memory-efficiency

1 B+tree 25M Email Keys
Zael ® Original
@ 1800 o ® + HOPE
2 o
>
5 1200
5
s 600
0 0.4 0.8 1.2 1.6 2

Point Query Latency (us)
B2



HOPE improves performance & memory-efficiency

1 ART 25M Email Keys
1200 ® Original
o) ®
g 900 - ® + HOPE
>
3 10]0
£
< 300
0] 0.4 0.8 1.2 1.6 2

Point Query Latency (us)
B3



Bloom filters speed up point queries in RocksDB

Memory GET(65)
Disk
L,
L,
75
= %] 100




Bloom filters speed up point queries in RocksDB

.- NO
Memory B, B, (cached) «--------- GET(65)
Disk B,
0
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> 0 = 50
: 3 50 7/87 100
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Range queries still incur multiple 1/Os

RANGE(60, 66)

N O

5 50 75 100




SuRFs save |/Os for both point and range queries
v NO  GET(65)

Memory S, --- S; (cached) «=----- RANGE(60, 66)
Disk S
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