
Memory-Efficient Search Trees for
Database Management Systems

@huanchenzhang

DRAM

SSD

[Source: https://www.jcmit.net/memoryprice.htm]

Memory is precious

2005 2009 2013 2017
0.1

1

10

100

$/GB

10x
40x

2

Databases face tight memory budgets

3

An Example mid-tier Amazon EC2 Instance optimized
for database workloads

RocksDB

vCPU Mem(GB) SSD(GB)

4 30.5 950301

1001

Modern applications demand more

Example: Alibaba’s e-commerce platform on Singles’ Day

4

Average response time: < 0.5 ms

Peak throughput: 70 million txn/s

Working set must fit in memory

5

Insufficient
Memory

With Less

Higher Database
Performance

Do More

Memory-
Efficiency

Search trees consume a lot of memory

6

Benchmark Tree Index Memory

Statistics from -Store

TPC-C

Voter

Articles

58%
55%
34%

7

Disk

Memory

zlib, snappy, LZ4

Reduced
I/O cost

CPU cost

Hidden

Block compression works well on disk

8

zlib, snappy, LZ4

Expensive
CPU cost

Memory

Block compression is slow in memory

Thesis goal: a Pareto improvement

9

Memory-Efficiency

P
e

rf
o

rm
a

n
c

e

Performance-
Optimized Trees

Existing
Compressed Trees

Data Structures
in This Thesis

10

Thesis Statement:
Compressing in-memory search trees via efficient
algorithms and careful engineering improves the
performance and resource-efficiency of database
management systems.

11

Memory-Efficiency

Build fast static search trees with
maximum structural compression

Support dynamic operations
with bounded & amortized cost

Compress input keys efficiently
while preserving their order

Compressing Static Search Trees

Dynamic-to-Static Rules

Fast Succinct Tries

Succinct Range Filters

Part I

12

2 4

4

1 2

a b

6 8 10

3

c

4

d

5 5

e f

5

g

6

h

7

i

8

j

9

k

10

l

11

m

12

nd

Memory overhead in dynamic trees

#1
#2

13

#1 Compaction:
Remove duplicate entries and make every
allocated memory block 100% full.

#2 Reduction:
Remove pointers and structures that are
unnecessary for efficient read operations.

14

#1 Compaction on B+trees

2 4

4

1 2

a b

6 8 10

3

c

4

d

5 5

e f

5

g

6

h

7

i

8

j

9

k

10

l

11

m

12

n

14

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

#1 Compaction on B+trees

15

#2 Reduction on B+trees

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

15

#2 Reduction on B+trees

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

2 4

4

1 2

a b

6 8 10

3

c

4

d

5 5

e f

5

g

6

h

7

i

8

j

9

k

10

l

11

m

12

nd

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

Compact B+tree vs. Regular B+tree

16

30 – 50% smaller
3 – 10% faster

Compressing Static Search Trees

Dynamic-to-Static Rules

Fast Succinct Tries

Succinct Range Filters

Part I

Challenges in compressing tries

17

a i

h t f t

s1 s2 s3 s4 s5

d

a i

d h t f t

a i

f td h t

The information-theoretic lower bound

The minimum number of bits needed to
distinguish any object in a class

|S| = 𝒏 𝒍𝒐𝒈𝟐𝒏 bits

18

=
𝒌𝒏#𝟏
𝒏

𝒌𝒏#𝟏
𝒏-node tries
of degree 𝒌 𝒏(𝒍𝒐𝒈𝟐𝒌 + 𝒍𝒐𝒈𝟐𝒆) bits

256 9.4𝒏

Warm-up: succinctly encode a binary tree

1 1 0 1 0 0 0 0

2n bits

Level-Order Encoding

19

Label:

Structure:

Has-Child:

Value:

a i

h t f t

v1 v2 v3 v4 v5

d

a i d h t f t

1 1 0 0 0 0 0

1 0 1 0 0 1 0

v1 v2 v3 v4 v5

20

Limit = 9.4 bits/node 10 bits/node

Our succinct trie representation

Rank & Select on bit vectors

rank(bv, i) = # 1’s up to position i in bv

1 1 0 1 1 1 0 1 1 0 0 0 0 0 0bv:
0 5 10

rank(bv, 6) = 5

select(bv, 6) = 7

select(bv, i) = position of the i-th 1 in bv

Time:

Space:

Constant

3-10% sizeof(bv)

21

Search the encoded trie efficiently

Label:

Structure:

Has-Child:

Value:

a i

h t f t

v1 v2 v3 v4 v5

d

a i d h t f t

1 1 0 0 0 0 0

1 0 1 0 0 1 0

v1 v2 v3 v4 v5

moveToChild(p) = select(Structure, rank(Has-child, p) + 1)

moveToValue(p) = p - rank(Has-child, p)

22

Trade small space for performance

Hot

Cold

Fast Bitmaps

Succinct Encoding

space overhead

speed-up

< 1%
3x

1

64
Size Ratio

23

24

More performance optimizations

Vectorized Label Search

Label:

Structure:

Has-Child:

a i d h t f t

1 1 0 0 0 0 0

1 0 1 0 0 1 0

Memory Prefetching

a b c d e f g h i j k l m n o p SIMD Search

speed-up30%

The Fast Succinct Trie (FST)

Small
≈10 bits per key for 64-bit integers

≈14 bits per key for emails

Fast

= state-of-the-art performance-optimized trees

≈200 ns per query for 10M 64-bit integers

25

Compressing Static Search Trees

Dynamic-to-Static Rules

Fast Succinct Tries

Succinct Range Filters

Part I

Filters answer approximate membership queries

YES, 100%

Is Billionare?

26

Filters answer approximate membership queries

Is Billionare?

False Positive Rate

26

YES, 1%

NO, 99%

Filters help reduce unnecessary I/Os

27

Local Memory

Slow Devices

Queries

NO Probably
YES

Existing filters only support point queries

Point Filtering

Bloom Filter (1970)

Is key 65 in my set?

Range Filtering

Are there keys between
60 and 66 in my set?

28

Quotient Filter (2012)

Cuckoo Filter (2014)

SuRF uses a truncated trie

S

I

G

M

O

D

K

D

D

O

P

S

S

I

G

M
K O

SIGMOD
SIGMETRICS

29

10 bits/node

Add suffix bits to reduce false positive rate

S

I

G

M
K O

0x200xC8 0x06

Hashed Suffix Bits Real Suffix Bits

S

I

G

M
K O

OD P

SIGMETRICS

0x18

SIGMETRICS

E

30

S

I

G

M
K O

0x200xC8 0x06

Hashed Suffix Bits Real Suffix Bits

S

I

G

M
K O

OD P

Each bit reduces FPR by half

Cannot help range queries

Benefit point & range queries

Weaker distinguishability

Add suffix bits to reduce false positive rate

30

Bloom filters speed up point queries in RocksDB

Memory

Disk
L1

L2

L3

31

GET(16)

…, 6, 21, …

…, 12, 25, …

…, 11, 22, …

B

B

B

Cached Filters

B, B, B, …

NO

Memory

Disk
L1

L2

L3

32

…, 6, 21, …

…, 12, 25, …

…, 11, 22, …

B

B

B

Cached Filters

B, B, B, …

Range queries still incur multiple I/Os

RANGE(14, 20)

Memory

Disk
L1

L2

L3

33

…, 6, 21, …

…, 12, 25, …

…, 11, 22, …

S

S

S

Cached Filters

S, S, S, …

SuRFs save I/Os for both point and range queries

RANGE(14, 20)
GET(16)

NO

Evaluation setup: a time-series benchmark

Time

Key: 64-bit timestamp + 64-bit sensor ID
Value: 1KB payload

Range(t1, t2)Get(t)

t t1 t2

Queries:

Filter Config

Bloom filter: 14 bits per key

SuRF: 4-bit real suffix

System Config

Dataset: ≈100 GB on SSD

DRAM: 32 GB

34

SuRFs act like Bloom filters for point queries

0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
s)

No Filter Bloom Filter SuRF

All-false point queries

Worst-case Gap

35

SuRFs speed up range queries

0

2

4

6

8

10
T

h
ro

u
g

h
p

u
t

(K
o

p
s/

s)

Percent of queries with empty results

10 20 30 40 50 60 70 80 90 99

SuRF

5x

No Filter/
Bloom Filter

36

SuRF’s impact in academia and industry

Best Paper Award at SIGMOD’18

Being implemented by several
major internet companies

6x

37

38

Memory-Efficiency

Build fast static search trees with
maximum structural compression

Support dynamic operations
with bounded & amortized cost

Compress input keys efficiently
while preserving their order

Supporting Dynamic Operations

Hybrid Index

Part II

Hybrid Index is a dual stage architecture

Dynamic Stage Static Stage

Write-optimized Compact, read-only

39

Inserts are batched in the dynamic stage

Dynamic Stage Static Stage

Writes Merge

Periodically

Write-optimized Compact, read-only

40

Reads search both stages in order

Dynamic Stage Static Stage

Write-optimized Compact, read-only

41

Read
Read

Hybrid Index is memory-efficient and skew-aware

Dynamic Stage Static Stage

Write-optimized Compact, read-only

42

Read
Read

Writes Merge

Periodically

Hybrid Indexes help reduce index memory

Benchmark
% Memory by

Original indexes

TPC-C

Voter

Articles

58%
55%
34%

34%
39%
18%

% Memory by Hybrid
indexes

Statistics from -Store

43

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

T
h

ro
u

g
h

p
u

t
(t

xn
/s

)

60K

20KT
P

C
-C

 o
n

-S
to

re

B+tree

Hybrid

Hybrid Indexes improve the database’s capacity

44

Compressing Input Keys

High-speed Order-Preserving Encoder

Part III

Existing string compression algorithms

45

Whole-key Dictionary Compression

Dave

Michael

Andy

1

2

3 1 2 3

Kim

Dave

Michael

Andy

Andy

Dave

1

2

3

2

3

Dictionary Table Column Index No Compression

New keys ?

Huffman Compression Does not preserve key ordering

Compression Model: The String Axis

46

Dictionary Completeness

Order-Preserving

am an azu azvam azua

01 11100

)[)[)[)[

amazonExample: amazon 01azon

01azon 01100zon

The HOPE Framework

47

Dictionary Encoder
Symbol
Selector

Code
Assigner

Sampled
Key List

Probabilities

Intervals

Build Phase Encode Phase

Codes

Key

Encoded Key

Lookups

48

HOPE Evaluation Summary

B+tree, ART, HOT, SuRF

Emails, Wikipedia Titles, URLs

Lookup, Scan, Insert, Update …

Smaller30% Faster40%

HOPE is orthogonal to structural compression

49

0 20.4 0.8 1.2 1.6

8

16

24

32

Point Query Latency (µs)

M
e

m
o

ry
 (

M
B

)
SuRF 12.5M Email Keys

Original

+ HOPE12%
41%

50

Memory-Efficiency

Build fast static search trees with
maximum structural compression

Support dynamic operations
with bounded & amortized cost

Compress input keys efficiently
while preserving their order

D-to-S Rules, FST, SuRF

Hybrid Index HOPE

Backup Slides

Concatenation Property Counter-Example

B1

HOPE improves performance & memory-efficiency

B2

0 20.4 0.8 1.2 1.6

600

1200

1800

2400

Point Query Latency (µs)

M
e

m
o

ry
 (

M
B

)

B+tree 25M Email Keys

Original

+ HOPE

HOPE improves performance & memory-efficiency

B3

0 20.4 0.8 1.2 1.6

300

600

900

1200

Point Query Latency (µs)

M
e

m
o

ry
 (

M
B

)

ART 25M Email Keys

Original

+ HOPE

Bloom filters speed up point queries in RocksDB

Memory

Disk

L1

L2

L3

0

100

0

50

0

25

50

100

25

50

50

75

75

100

28

8 78

18 38 58 88

GET(65)

L1

L2

L3

0

100

0

50

0

25

50

100

25

50

50

75

75

100

28

8 78

18 38 88

B1

58

B2 B3

B4 B5 B6 B7

B1 B7
… (cached)

Bloom filters speed up point queries in RocksDB

GET(65)Memory

Disk

NO

L1

L2

L3

0

100

0

50

0

25

50

100

25

50

50

75

75

100

28

8 78

18 38 88

B1

58

B2 B3

B4 B5 B6 B7

Range queries still incur multiple I/Os

RANGE(60, 66)Memory

Disk

B1 B7
… (cached)

L1

L2

L3

0

100

0

50

0

25

50

100

25

50

50

75

75

100

28

8 78

18 38 88

S1

58

S2 S3

S4 S5 S6 S7

SuRFs save I/Os for both point and range queries

Memory

Disk

S1 S7
… (cached) RANGE(60, 66)

GET(65)NO

