

Memory-Efficient Search Trees for Database Management Systems

@huanchenzhang

Carnegie Mellon University

Memory is precious

Databases face tight memory budgets An Example mid-tier Amazon EC2 Instance optimized for database workloads Mem(GB) vCPU SSD(GB) 1:30 950 30.5 4 $f \text{RocksDB} \longrightarrow 1:100$

Modern applications demand more

Example: Alibaba's e-commerce platform on Singles' Day

- Average response time: < 0.5 ms
- Seak throughput: 70 million txn/s

Working set must fit in memory

Insufficient Aemory-Memory Efficiency Performance With Less Do More

Search trees consume a lot of memory			
Statistics from H-Store			
	Benchmark	Tree Index Memory	
	TPC-C	58%	
	Voter	55%	
	Articles	34%	

Block compression works well on disk

Block compression is slow in memory

Thesis goal: a Pareto improvement

Memory-Efficiency

Thesis Statement:

Compressing in-memory search trees via efficient algorithms and careful engineering improves the performance and resource-efficiency of database management systems.

2 Support dynamic operations with bounded & amortized cost **3** Compress input keys efficiently while preserving their order

Part I

Compressing Static Search Trees

Dynamic-to-Static Rules Fast Succinct Tries Succinct Range Filters

Memory overhead in dynamic trees

#1 Compaction:

Remove duplicate entries and make every allocated memory block 100% full.

#2 Reduction:

Remove pointers and structures that are unnecessary for efficient read operations.

#1 Compaction on B+trees

#2 Reduction on B+trees

#2 Reduction on B+trees

Compact B+tree vs. Regular B+tree

Part I

Compressing Static Search Trees

Dynamic-to-Static Rules Fast Succinct Tries Succinct Range Filters

The information-theoretic lower bound

The minimum number of bits needed to distinguish any object in a class

Warm-up: succinctly encode a binary tree

Level-Order Encoding 11010000

2n bits

Our succinct trie representation

Label: a i d h t f t Has-Child: 1 1 0 0 0 0 0 Structure: 1 0 1 0 0 1 0

Value.	VI VC VO VTVO

Limit = 9.4 bits/node

10 bits/node

Rank & Select on bit vectors

rank(bv, i) = # 1's up to position i in bv
select(bv, i) = position of the i-th 1 in bv 0 5 4 10 bv: 110111011000000 rank(bv, 6) = 5 Time: Constant select(bv, 6) = 7 Space: 3-10% sizeof(bv)

Search the encoded trie efficiently

moveToChild(p) = select(Structure, rank(Has-child, p) + 1)
moveToValue(p) = p - rank(Has-child, p)

The Fast Succinct Trie (FST)

≈10 bits per key for 64-bit integers ≈14 bits per key for emails

Solution → Fast ≈200 ns per query for 10M 64-bit integers = state-of-the-art performance-optimized trees

Part I

Compressing Static Search Trees

Dynamic-to-Static Rules Fast Succinct Tries Succinct Range Filters

Filters answer approximate membership queries

Filters answer approximate membership queries

False Positive Rate

Filters help reduce unnecessary I/Os

Existing filters only support point queries

Point Filtering

Range Filtering

Is key 65 in my set?

Bloom Filter (1970) Quotient Filter (2012) Cuckoo Filter (2014) Are there keys between 60 and 66 in my set?

SuRF uses a truncated trie

Add suffix bits to reduce false positive rate

Hashed Suffix Bits

Real Suffix Bits

Add suffix bits to reduce false positive rate

Hashed Suffix Bits

Real Suffix Bits

Benefit point & range queries
 Weaker distinguishability

Bloom filters speed up point queries in RocksDB

Range queries still incur multiple I/Os

SuRFs save I/Os for both point and range queries

Evaluation setup: a time-series benchmark

Key: 64-bit timestamp + 64-bit sensor ID Value: 1KB payload

System Config Dataset: ≈100 GB on SSD DRAM: 32 GB Filter Config

Bloom filter: 14 bits per key

SuRF: 4-bit real suffix

SuRFs act like Bloom filters for point queries

All-false point queries

SuRFs speed up range queries

SuRF's impact in academia and industry

Best Paper Award at SIGMOD'18

Being implemented by several major internet companies

2 Support dynamic operations with bounded & amortized cost 3 Compress input keys efficiently while preserving their order

Part II Supporting Dynamic Operations Hybrid Index

Hybrid Index is a dual stage architecture

Dynamic Stage Write-optimized

Static Stage Compact, read-only

Inserts are batched in the dynamic stage

Reads search both stages in order

Hybrid Index is memory-efficient and skew-aware

Dynamic Stage

Write-optimized

Static Stage Compact, read-only

Hybrid Inde	exes help reduce	index memory			
Statistics from H-Store					
Benchmark	% Memory by Original indexes	% Memory by Hybrid indexes			
TPC-C	58%	34%			
Voter	55%	39%			
Articles	34%	18%			

Hybrid Indexes improve the database's capacity

Transactions Executed

Part III Compressing Input Keys High-speed Order-Preserving Encoder

2) Huffman Compression – Does not preserve key ordering

Compression Model: The String Axis \Rightarrow Dictionary Completeness \Rightarrow Order-Preserving 100 01 11 a azu azu am am an azv 2)[)[)[(1)(3))[Example: amazon \rightarrow (1) \rightarrow amazon \rightarrow 01azon \rightarrow (2) \rightarrow 01azon \rightarrow 01100zon

The HOPE Framework

HOPE Evaluation Summary

- ⇒ B+tree, ART, HOT, SuRF
- Emails, Wikipedia Titles, URLs
- Scan, Insert, Update ...

30% Smaller - 40% Faster

HOPE is orthogonal to structural compression

2 Support dynamic operations with bounded & amortized cost 3 Compress input keys efficiently while preserving their order

Backup Slides

Concatenation Property Counter-Example

HOPE improves performance & memory-efficiency

HOPE improves performance & memory-efficiency

Bloom filters speed up point queries in RocksDB

Range queries still incur multiple I/Os

