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The better way:
Use memory more efficiently




Indexes are LARGE

Benchmark % space for index Hybrid Index

TPC-C 58% | > 34%

Voter 55% —> 41%
Articles 34% —> 18%



Our Contributions
(1) The hybrid index architecture

@ The Dual-Stage Transformation
@ Applied to 4 index structures

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
Performance Space
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TPC-C on |H -Store
Throughput (txn/s)
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Did we solve this problem?
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How do hybrid indexes achieve
memory savings ?
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Hybrid Index: a dual-stage architecture

dynamic stage static stage
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Inserts are batched in the dynamic stage

dynamic stage static stage
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Reads search the stages in order
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A Bloom filter improves read performance

dynamic stage static stage
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g Memory-efficient
@ g Skew-aware
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The Dual-Stage Transformation

dynamic stage static stage
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The Dynamic-to-Static Rules

;f Compaction

& Reduction

E Compression
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2% Compaction: minimize # of memory blocks
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2% Compaction: minimize # of memory blocks
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% Reduction: minimize structural overhead
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% Reduction: minimize structural overhead
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The Dual-Stage Transformation

dynamic stage static stage
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Did we solve this problem?

B+tree
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Yes, we improved the DBMS’s capacity!
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TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K
20K
S M e e a Ve vy Vyavya 1A Hyb”d\L
0 2M iy 6M 8M
8 B+tree

B+tree

10M

Transactions Executed

21



TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K B+tree
2{0] 14
2{0] 14
0 2M 4M 6M 8M 10M
8 B+tree

Transactions Executed

21



TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K |

20K

GOK‘Q"‘*VVWWV'VWVWWW‘\Ws\ .
0 2M 4M 6M 8M
% Brtree

B+tree

10M

Transactions Executed

21



TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K B+tree
2{0] 14
2{0] 14
0 2M 4M 6M 8M 10M
8 B+tree e
DISKtuple

Transactions Executed

21



TPC-C on
Memory (GB)
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by indexes
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This is just the BEGINNING



Conclusions

@ The hybrid index architecture ~ GENERAL

@ The Dual-Stage Transformation PRACTICAL

@ Applied to 4 index structures USEFUL

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
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Toll-Free Hotline:

\;\ 1-844-88-CMUDB



