
Reducing the Storage Overhead of
Main-Memory OLTP Databases with

Hybrid Indexes
Huanchen Zhang

Co-authors:
David G. Andersen

Andrew Pavlo
Michael Kaminsky

Lin Ma
Rui Shen

You are running out of memory

2

You are running out of memory

2

Buy more ?

You are running out of memory

2

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
TPC-C on -Store

3

M
em

or
y

(G
B)

Disk tuples
In-memory tuples
Indexes

4

8

0

Memory Limit = 5GB

4

The better way:
Use memory more efficiently

5

Indexes are LARGE
Benchmark % space for index

TPC-C

Voter

Articles

58%
55%
34%

Hybrid Index

34%
41%
18%

6

Our Contributions
The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures
- B+tree
- Masstree

7

- Skip List
- Adaptive Radix Tree (ART)

Performance Space
30 – 70%

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)
Did we solve this problem?

TP
C-

C
 o

n
-S

to
re

Stay tuned

8

How do hybrid indexes achieve
memory savings ?

9

Static

dynamic stage static stage

Hybrid Index: a dual-stage architecture

10

dynamic stage static stage

write merge

Inserts are batched in the dynamic stage

11

dynamic stage static stage

read

read

Reads search the stages in order

12

dynamic stage static stage
read

read

A Bloom filter improves read performance

13

dynamic stage static stage

read read

write merge

Memory-efficient

Skew-aware

14

~ ~ ~ ~~ ~ ~ ~

dynamic stage static stage

merge

The Dual-Stage Transformation

15

Compaction

Reduction

Compression

The Dynamic-to-Static Rules

16

2 4

4

1 2

a b

6 8 10

3

c

4

d

5 5

e f

5

g

6

h

7

i

8

j

9

k

10

l

11

m

12

n

Compaction: minimize # of memory blocks

17

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

17

Compaction: minimize # of memory blocks

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

Reduction: minimize structural overhead

18

2 4

4

1 2

a b

6 8 10

3 4

c d

5 5

e f

5 6

g h

7 8

i j

9 10

k l

11 12

m n

1 2 3

a b c

4 5 6

d h

7 8 9

i j k

10 11 12

l m n

e f g

3 6 9

18

Reduction: minimize structural overhead

dynamic stage static stage

merge

The Dual-Stage Transformation

19

Merge Questions:
1. Partial?
2. When?
3. Blocking?

?
?

?

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)
Did we solve this problem?

TP
C-

C
 o

n
-S

to
re

B+tree

20

0 2M 4M 6M 8M 10M

20K

60K

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

60K

20K

Yes, we improved the DBMS’s capacity!
TP

C-
C

 o
n

-S
to

re

B+tree

Hybrid

20

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

21

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

21

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

21

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

21

Transactions Executed

Th
ro

ug
hp

ut
 (t

xn
/s

)

20K

60K

20K

60K

M
em

or
y

(G
B)

0 2M 4M 6M 8M 10M

TP
C

-C
 o

n
-S

to
re

4

4

8

8 B+tree

Hybrid

B+tree

Hybrid

Disk tuples
In-memory tuples
Indexes

21

Take Away:
Larger working
set in memory

Higher
throughput

Memory saved
by indexes

This is just the BEGINNING

22

Conclusions

The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures

GENERAL

PRACTICAL

USEFUL

23

- B+tree
- Masstree

- Skip List
- Adaptive Radix Tree (ART)

1-844-88-CMUDB

Toll-Free Hotline:

