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The better way:
Use memory more efficiently
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Indexes are LARGE
Benchmark % space for index
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Our Contributions 
The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures
- B+tree
- Masstree
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- Skip List
- Adaptive Radix Tree (ART)

Performance Space
30 – 70%
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How do hybrid indexes achieve
memory savings ?
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dynamic stage static stage

Hybrid Index: a dual-stage architecture 
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dynamic stage static stage

write merge

Inserts are batched in the dynamic stage 
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Reads search the stages in order 
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A Bloom filter improves read performance 
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write merge

Memory-efficient

Skew-aware
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dynamic stage static stage

merge

The Dual-Stage Transformation 
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Compaction

Reduction

Compression

The Dynamic-to-Static Rules 
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Compaction: minimize # of memory blocks   
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Compaction: minimize # of memory blocks   
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Reduction: minimize structural overhead
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Reduction: minimize structural overhead



dynamic stage static stage

merge

The Dual-Stage Transformation 
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Merge Questions:
1. Partial?
2. When?
3. Blocking?

?
?

?
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Take Away:
Larger working 
set in memory

Higher 
throughput

Memory saved 
by indexes



This is just the BEGINNING
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Conclusions 

The hybrid index architecture

The Dual-Stage Transformation

Applied to 4 index structures

GENERAL 

PRACTICAL 

USEFUL 
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- B+tree
- Masstree

- Skip List
- Adaptive Radix Tree (ART)
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