Carnegie
Me]loengl.
University

Reducing the Storage Overhead Qf
Main-Memory OLTP Databases with

; to-authors:
David G. Andersen
Hybrld Indexes ﬁAndfe\:/\Pavlo
%chaelKanﬁnsky
HuanChen Zhang Lin Ma

Rui Shen

Hi=

OO0

AYou are running out of memory

2

Hi=

D00

2

Buy more y ?

V= .

0
0
']

V-

é(

AYou are running out of memory

Throughput

Memory (GB)

510]

2{0] 3¢

TPC-C on H -Store

Memory Limit = 5GB

0 2M 4M 6M

8M

Transactions Executed

10M

[\

Disk tuples

In-memory

tuptes

Indexes

The better way:
Use memory more efficiently

Indexes are LARGE

Benchmark % space for index Hybrid Index

TPC-C 58% | > 34%

Voter 55% —> 41%
Articles 34% —> 18%

Our Contributions
(1) The hybrid index architecture

@ The Dual-Stage Transformation
@ Applied to 4 index structures

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
Performance Space
S— - o
- 30-70% §

TPC-C on |H -Store
Throughput (txn/s)

510]

2{0] 3¢

Did we solve this problem?

f

[

2M 4M 6M

”~N

£ Stay tuned

Transactions Executed

8M

10M

How do hybrid indexes achieve
memory savings ?

0— Static

Hybrid Index: a dual-stage architecture

dynamic stage static stage

10

Inserts are batched in the dynamic stage

dynamic stage static stage

11

Reads search the stages in order

0,

A
Q
%

dynamic stage static stage

12

A Bloom filter improves read performance

dynamic stage static stage

13

g Memory-efficient
@ g Skew-aware

/,
Q
N

dynamic stage static stage

14

The Dual-Stage Transformation

dynamic stage static stage

15

The Dynamic-to-Static Rules

;f Compaction

& Reduction

E Compression

16

2% Compaction: minimize # of memory blocks

4

214 10
\\ / \\\\

314 5|5 9 |10 11112
c |y i k | | m]| n

17

2% Compaction: minimize # of memory blocks

\
N~
-
/

10

11

12

17

% Reduction: minimize structural overhead

AN

10

11

12

18

% Reduction: minimize structural overhead

11

12

18

The Dual-Stage Transformation

dynamic stage static stage

19

TPC-C on H -Store
Throughput (txn/s)

510]

2{0] 3¢

Did we solve this problem?

B+tree

f

[

2M 4M 6M

Transactions Executed

8M

10M

20

Yes, we improved the DBMS’s capacity!

B+tree
© 5 60K e
S = A
o = 20K HM
a 0 2M iy 6M 8M 10M
O 'CC)) . R Hybrid
O S 60K SN VYW AW W
&6 O AV,
C

Transactions Executed

20

TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K
20K
S M e e a Ve vy Vyavya 1A Hyb”d\L
0 2M iy 6M 8M
8 B+tree

B+tree

10M

Transactions Executed

21

TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K B+tree
2{0] 14
2{0] 14
0 2M 4M 6M 8M 10M
8 B+tree

Transactions Executed

21

TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K |

20K

GOK‘Q"‘*VVWWV'VWVWWW‘\Ws\ .
0 2M 4M 6M 8M
% Brtree

B+tree

10M

Transactions Executed

21

TPC-C on 'H -Store

Memory (GB)

Throughput (txn/s)

60K B+tree
2{0] 14
2{0] 14
0 2M 4M 6M 8M 10M
8 B+tree e
DISKtuple

Transactions Executed

21

TPC-C on
Memory (GB)

Memory saved

by indexes

0

Larger working

- set in memory —

Higher
throughput

B+tree

Transactions Executed

21

This is just the BEGINNING

Conclusions

@ The hybrid index architecture ~ GENERAL

@ The Dual-Stage Transformation PRACTICAL

@ Applied to 4 index structures USEFUL

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)

23

Toll-Free Hotline:

\;\ 1-844-88-CMUDB

