Cost-Intelligent Data Analytics in the Cloud

Huanchen Zhang

Tsinghua University

Database As a Type of Goods

User Profit Utility \$ Cost
$$\Pi = U(p) - C$$

Database As a Type of Goods

User Profit Utility \$ Cost
$$\Pi = U(p) - C$$
Performance

Traditional

Traditional

Traditional

Traditional

Traditional

Traditional

Traditional

\$\$\$

$$\Pi = U(p) - C$$

Traditional

\$\$\$

User Profit Utility \$ Cost

$$\Pi = U(p) - C$$

$$C_{sunk} + \Delta C$$

Traditional

\$\$\$

Utility

\$ Cost

$$\Pi = U(p) - C$$

Traditional

\$\$\$

$$p\uparrow$$

Cloud-Native

Cloud-Native

```
1010
$ pay-as-you-go
          Elasticity
```

Cloud-Native \$ pay-as-you-go **Elasticity**

Cloud-Native \$ pay-as-you-go **Elasticity**

Cloud-Native \$ pay-as-you-go **Elasticity**

Cloud-Native

\$ pay-as-you-go

Bi-Objective Optimization

Make cost a first class citizen

→ Users tend to over-provision

- → Users tend to over-provision
- → Fixed cluster size over the entire workload

- → Users tend to over-provision
- → Fixed cluster size over the entire workload

Resource Waste!

- Build Indexes
- Build Materialized Views
- Re-partition Data
- Re-train a Learned Module

DBA

- Build Indexes
- Build Materialized Views
- Re-partition Data
- Re-train a Learned Module

Cost Intelligence

The system's ability to **self-adapt** to stay **Pareto Optimal** in the performance-cost trade-off under different workloads and user constraints.

An Ideal UI

- Build Indexes
- Build Materialized Views
- Re-partition Data
- Re-train a Learned Module

An Ideal UI

Time: 10s - 5 - 10min

Cost: \$2 -5 - \$0.7

- Build Indexes
- Build Materialized Views
- Re-partition Data
- Re-train a Learned Module

DBA

An Ideal UI

Cost: \$2 - 5 - \$0.1

Base System Architecture

Workload

Workload

Config 1

Config 2

The square of the square of

Workload **X** 100 min Config 1 Config 2 100 servers

Same \$ Cost

100x performance boost!

Workload

Static Planning

Dynamic Adjustment

System Architecture

- Accurate

- Lightweight

- Explainable

with constraints

- Downgrade to single-objective

- Downgrade to single-objective with constraints
- Separate DOP planning stage

Cost-Oriented Database Auto-Tuning

- Re-partition Data
- Re-train a Learned Module

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf:

- Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf:

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf:

- → Speeds up a subset of queries
- → MV update slows down writes

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf:

Read Cost:

Write Cost:

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf:

Read Cost: \mathcal{X}

Write Cost:

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf: Same

Read Cost: X

Write Cost:

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf: Same

Read Cost: \mathcal{X}

- → Speeds up a subset of queries
- → MV update slows down writes

Read Perf:

Write Perf: Same

Read Cost:

$$x - y > 0$$

- → Speeds up a subset of queries
- → MV update slows down writes

Key Challenges:

Accurate Workload Estimation

Same

"Economic thinking can help build better systems."

"In the cloud, it's the only rational way of thinking."

Towards Cost Intelligence

Cost is as important as performance in cloud-native databases

Vision Paper (CIDR'24): https://arxiv.org/pdf/2308.09569.pdf

