
Selective Late Materialization in Modern Analytical Databases
Yihao Liu

Tsinghua University
liuyihao24@mails.tsinghua.edu.cn

Shaoxuan Tang
Tsinghua University

tsx23@mails.tsinghua.edu.cn

Yulong Hui
Tsinghua University

huiyl22@mails.tsinghua.edu.cn

Hangrui Zhou
Tsinghua University

zhouhr23@mails.tsinghua.edu.cn

Huanchen Zhang
Tsinghua University

huanchen@tsinghua.edu.cn

ABSTRACT
Late Materialization (LM) is a critical technique applied in tradi-
tional column stores to speed up analytical queries. However, with
modern analytical databases evolved to incorporate a vectorized
columnar execution engine, LM’s benefits in I/O reduction and
fast columnar query processing have diminished. In this paper,
we redefine the concept of Late Materialization in the context of
modern analytical databases and propose Selective Late Material-
ization (SLM) to allow each attribute in a query to choose its own
materialization point that yields the minimum cost. SLM expands
the solution space of the traditional materialization problem from
one unified hard-coded binary decision (i.e., early or late) for all
attributes to per attribute per query decisions. By integrating SLM
into DuckDB, we show that SLM consistently outperforms the base-
lines of Early Materialization and Late Materialization by 14.7%
and 8.9%, respectively, on average using the Join Order Benchmark
(JOB), with up to 76.7% latency reduction for individual queries.
We observe similar results for the TPC-DS benchmark.

PVLDB Reference Format:
Yihao Liu, Shaoxuan Tang, Yulong Hui, Hangrui Zhou, and Huanchen
Zhang . Selective Late Materialization in Modern Analytical Databases.
PVLDB, 18(11): 4616 - 4628, 2025.
doi:10.14778/3749646.3749717

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yhliu918/duckdb/tree/latest.

1 INTRODUCTION
Column Stores are predominant in analytical query processing.
They organize data in columnar format so that queries only read
columns needed from storage to reduce unnecessary I/Os. Late
Materialization (LM) is a common technique applied in traditional
column stores to improve query performance [10, 12]. It is widely
adopted in mainstream database management systems, including
C-store [47], MonetDB [18, 39], VectorWise [50], Vertica [31], Um-
bra [16, 40], Redshift [15], and DataFusion [32]. According to [12],
LM avoids combining the columns into rows (i.e., tuple reconstruc-
tion) early in the query pipeline. Instead, it reads and processes

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749717

columns independently and passes virtual tuple IDs as intermedi-
ate results. By delaying tuple reconstruction to the latest operator
possible, LM reduces data movement from disk to memory and
improves CPU and cache efficiency via columnar execution.

However, the execution paradigm inmodern analytical databases
(e.g., DuckDB [42], Prestissimo [41], ClickHouse [44], Redshift [15])
has evolved since Late Materialization was first proposed in tradi-
tional column stores [24, 25]. Today’s analytical systems adopt a
vectorized columnar execution engine, where every operator in the
query plan process data in batches. Each batch is a horizontal slice
of the table and is internally organized as column vectors, similar
to PAX format [14]. Consequently, the systems no longer need Late
Materialization to enable columnar execution, and they no longer
perform explicit tuple reconstruction (unless for the final output)
required by traditional column stores.

The evolution of the execution model compels us to revisit the
concept of Late Materialization and reevaluate its performance
trade-offs in modern analytical databases. In this paper, we first
analyze why Late Materialization (LM) loses its performance edge
over Early Materialization (EM) in a vectorized execution engine.
First, the advantages of columnar execution, such as fast value iter-
ation via vectorized processing, are inherent in modern execution
engines, no matter what materialization strategy they adopt. Sec-
ond, while LM can reduce I/O by skipping values that are already
filtered out, the performance gain becomes smaller with modern
NVMe SSDs as they offer much higher bandwidth than a decade
ago. In many cases, such I/O reduction does not justify the cost of
inefficient I/O patterns caused by the out-of-order probing problem
in LM. Our microbenchmark in Section 5 verifies that applying
LM to DuckDB does not improve query performance on average,
compared to the default EM strategy.

Nevertheless, Late Materialization still speeds up operators that
(1) are highly selective, and/or (2) carry row-oriented payloads
(e.g., in a hash table). LM can skip a large portion of the storage
blocks when processing highly selective operators, and it can re-
duce memory copies of the payload columns between row-oriented
data structures and data vectors. Therefore, instead of hard-coding
the materialization strategy to the execution engine, we propose
Selective Late Materialization (SLM) that can determine the op-
timal materialization point for each attribute involved in a query
independently based on a trained cost model.

Selective Late Materialization opens two degrees of freedom
rarely explored in prior work. First, unlike traditional EM/LM,
which requires every attribute in the query to adhere to the samema-
terialization strategy, SLM allows each attribute to pick a different
strategy to minimize its own induced cost of I/O and memory copy

4616

https://doi.org/10.14778/3749646.3749717
https://github.com/yhliu918/duckdb/tree/latest
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749717
https://www.acm.org/publications/policies/artifact-review-and-badging-current

in the execution. Second, SLM considers every operator between
the traditional EM point (i.e., table scan) and LM point (i.e., where
the values are needed for computation) as a feasible materializa-
tion point to accommodate cases where the optimal materialization
point is in the middle (e.g., when the attribute cardinality decreases
and then increases between the EM and LM points.)

Given an attribute in a query, SLM first identifies all its feasible
materialization points on the query’s physical plan. Then, SLM
computes the materialization cost for each candidate point using
our cost model, consisting of fetching and memory copy costs.
The parameters in the model are trained/calibrated using sample
queries. Finally, SLM modifies the physical plan and assigns the
materialization point with the minimum cost to the attribute.

We integrated SLM into DuckDB and evaluated its performance
against the traditional EM and LM strategies. Our results on the
Join Order Benchmark (JOB) show that SLM achieves an average
speedup of 14.7% (max 37.6%) over EM. Compared to LM, the aver-
age speedup of SLM is 8.9% (max 76.6%). For TPC-DS, SLM is 10.9%
faster than EM on average (max 20.7%) and is 10.3% faster than
LM on average (max 73.0%) Moreover, SLM exhibits robustness in
the experiments by delivering a performance close to the optimal
materialization strategy (i.e., obtained via an exhaustive search) in
every evaluated query.

Our paper makes the following contributions. First, we identify
the key reasons why Late Materialization in modern analytical
databases is no longer as beneficial as in traditional column stores.
Second, we redefine the concept of Materialization and propose
Selective Late Materialization (SLM) that allows each attribute in a
query to choose the optimal materialization point independently.
Finally, we integrate SLM into DuckDB with a minimal change
of its architecture and demonstrate SLM’s performance gains and
robustness in microbenchmarks and end-to-end evaluation.

2 REVISITING LATE MATERIALIZATION
Late Materialization (LM) has significantly improved the perfor-
mance of traditional column stores by minimizing I/O and memory
operations. It achieves this by allowing direct operations on (com-
pressed) columnar data and reconstructing as few tuples as possible.
However, modern analytical databases have evolved to incorporate
a vectorized columnar execution engine with a PAX-like storage
and memory format [1, 14, 33]. This requires reevaluating the per-
formance trade-offs of applying LM to modern analytical systems.
Section 2.1 reviews LM’s definition and trade-off analysis in tradi-
tional column stores. Section 2.2 describes how the LM techniques
adapt to modern execution models. Section 2.3 redefines LM under
the context of modern analytical databases and provides motiva-
tions for Selective Late Materialization (SLM).

2.1 Late Materialization in Column Stores
Column stores organize data in a column-wise manner on disk.
They not only avoid unnecessary I/Os for irrelevant columns but
also allow lightweight compression [10, 11, 37] and vectorized exe-
cution [18] to speed up query processing. Early column stores [10,
24, 25] store data column-wise to enable selective column read-
ing, but convert to row tuples for execution. Seminal definitions of
Early Materialization (EM) and Late Materialization (LM) describe

⋈ 3
2
4

6

Right
Row ID

3
4
1
6
3

Left
Row ID

0

1

2

3

4

0

1

2

3

=
1
3
4

0
3
0
1

1

sorted random

Figure 1: The out-of-order probing problem.

materialization as reconstructing tuples from columns [12]. To com-
pare fairly between EM and LM, the above work extended C-Store
with row-oriented execution with a merge operator for tuple con-
struction and enabling row-based operators. Materialization, by
then, includes two major steps: (1) fetching column values from
disk or memory buffer, and (2) assembling row tuples (intermediate
result or final output). Under this definition, Early Materialization
reads all the columns needed by the query during the table scan
and performs tuple reconstruction immediately. In contrast, Late
Materialization only reads columns needed by the current operator
and delays tuple reconstruction to the latest possible point in the
execution. Many later works [20, 26, 28] follow the above definition.

Late Materialization performs selective operations such as filter
and join before reconstructing tuples. These operations only scan
relevant columns and output virtual tuple identifiers (e.g., row IDs).
At tuple reconstruction, LM rescans the table and fetches the val-
ues according to the identifiers. According to the analysis in [12],
LM offers two primary benefits compared to EM: (1) speeding up
operators (e.g., filter and join) by taking advantage of columnar
processing techniques such as vectorized execution and operating
directly on compressed data, and (2) reducing I/O and memory foot-
print by scanning only the qualified tuples during reconstruction.
However, LM could incur high overhead during tuple reconstruc-
tion (i.e., fetching values based on row IDs) because of unfriendly
I/O patterns. As shown in Figure 1, for example, the right-hand-side
(i.e., build-side) row IDs after a join are likely to have a random
distribution, leading to the out-of-order probing problem later at
tuple reconstruction.

While later column stores evolve to process columns directly for
many operators, they often hardcode late materialization strategies.
For example, C-Store [47] defaults to materializing after filtering,
MonetDB [39] defers materialization until output (a pure LM strat-
egy), and Vertica [46] applies LM only to probe-side attributes.

2.2 Modern Vectorized Analytical Databases
Compared to early column stores where the concept of Late Materi-
alization originated, modern analytical databases such as Velox [41],
DuckDB [42], StarRocks [8], and Apache Doris [6] adopt a vector-
ized execution engine where data flows between operators in small
columnar batches (typically with several thousand rows). We follow
DuckDB’s terminology and call this format DataChunks. Each col-
umn in the DataChunk is associated with a Selection Vector (SV), a
set of DataChunk-local row IDs to indicate the valid rows. Multiple
columns in the DataChunk can share the same SV if they have the
same valid row IDs. A database operation, such as filter and join,

4617

0x1000

0x101E

0x103C

fp key value1 value2

0 1 5 13 30

…

Data TablePointer Table

keyvalue1 value2

DataChunk

hash

Figure 2: Row-based Hash Table Layout.

would operate directly on the relevant columns in the DataChunk
and update the corresponding SV(s) to record the results.

The above execution paradigm shift has changed the definition
and trade-off analysis of Early/Late Materialization. First, modern
analytical systems no longer perform the “assembling row tuples”
step (i.e., the column-to-row conversion) during tuple reconstruc-
tion (unless for the final output) because all the intermediate results
are represented uniformly using DataChunks. As a result, the only
remaining step of materialization in modern analytical databases is
to replace the virtual tuple IDs with real values on disk or in the
memory buffer. Therefore, the trade-off analysis between LM and
EM now concentrates on whether the I/O reduction achieved by
minimizing value substitutions can outweigh the cost of inefficient
I/O patterns caused by the out-of-order probing problem.

Second, almost all the operators in modern analytical databases
adopt and benefit from vectorized columnar processing regardless
of the choice of materialization strategies. Consequently, unlike in
traditional column stores, LM has limited advantages over EM in
speeding up operator computations. However, there are still oper-
ators that use row-oriented data structures to store the payloads
to reduce random memory accesses. The most important operator
in this case is Hash Join. Figure 2 illustrates the hash table lay-
out in a hash join used by DuckDB [42] (and other systems such
as Velox [41]). The hash table is essentially a pointer array, each
pointing to a list of items in the Data Table. Each item contains
the join key, a 1-byte fingerprint, and other attribute values as the
payload and is stored contiguously in a row so that it only requires
a single memory access to retrieve the payload during the join.
By replacing the attribute values with virtual tuple IDs (i.e., Late
Materialization) in the hash table, the system can reduce the size of
payload memory copies during both hash table construction and
probing. A smaller hash table also reduces memory footprint and
improves cache performance.

2.3 The Need for Selective Late Materialization
Based on the analysis in Section 2.2, we redefine the process of
Materialization in modern analytical databases as replacing the vir-
tual tuple IDs with real attribute values in column vectors at some
designated point during query processing. The above analysis also
implies that the performance advantage of applying Late Material-
ization decreases in modern analytical databases, compared to that
in traditional column stores. The benefit of reducing the I/O size
diminishes as modern NVMe SSDs offer much higher bandwidth
than a decade ago.

Additionally, the explicit column-to-row conversion only hap-
pens in a few critical operations, such as hash join. Figure 3 shows
a summary of our evaluation (detailed in Section 5) of Early (EM)

1e-041e-030.010.020.040.100.200.400.80
Selectivity

4 8102040608010
0

10
(v)
20

(v)
40

(v)
60

(v)
80

(v)

10
0(v

)
Payload Size

0.0%
0.1%
1.0%
5.0%

10.0%
20.0%
50.0%
75.0%
90.0%Build/Probe Size

UNCOMPRESSED, Key Distribution: UNIFORM, Build Pattern: SORTED, Probe Pattern: SORTED

−80
−60
−40
−20
0
20
40
60
80

Ac
ce

le
ra

tio
n

Pe
rc

en
ta

ge
of

 L
M

 o
ve

r E
M

 (%
)

Figure 3: Performance overview of LM versus EM. – To high-
light performance boundaries, regions with <5% difference are omit-
ted. Payload size with suffix “(v)” denotes variable-length strings.

versus Late Materialization (LM) for single build-side attributes in
hash joins under various configurations. We found that LM excels
only with highly selective operators and those carrying a long row-
formatted payload. Through a comprehensive microbenchmark
analysis in Section 5, we conclude that unlike in traditional column
stores where LM often dominates, neither pure EM nor pure LM is
universally optimal for modern analytical databases.

Instead of eagerly applying LM to all the attributes at the latest
materialization points, we propose Selective Late Materialization
(SLM) where the materialization strategy for each attribute in the
query is determined independently based on a trained cost model.
The traditional EM describes the earliest materialization point dur-
ing the initial table scan, while the traditional LM represents the
latest materialization point when values are first used for computa-
tion. Any operator in between is a valid materialization point. The
goal of SLM is to choose the materialization point for each attribute
to minimize the performance cost of query processing.

We next introduce the Selective Late Materialization algorithm
in Section 3. Section 4 describes how to integrate SLM to modern
vectorized execution engines in general as well as implementation
details in DuckDB.

3 SELECTIVE LATE MATERIALIZATION
The core idea of Selective Late Materialization (SLM) is to select
the materialization point for each attribute in the query indepen-
dently to minimize the execution cost relevant to this attribute.
Algorithm 1 illustrates the procedure. The first step is to determine
the feasible materialization points for each attribute in the query’s
physical plan. The earliest point to materialize an attribute is at
its corresponding base table scan, while the latest point is when
the attribute is first used for computation (e.g., as a filter column
or a join key). Then, for each feasible materialization point for the
attribute, we compute itsMaterialization Cost𝑀𝑎𝑡 (·), consisting
of two components: Fetching Cost 𝐹𝑒𝑡𝑐ℎ(·) andMemory Copy
Cost 𝑀𝑒𝑚(·). Fetching Cost represents the estimated time of re-
trieving the attribute values using row IDs and populating them
into DataChunks at the materialization point, while Memory Copy
Cost refers to the estimated time of copying the payload in each

4618

Algorithm 1 Selective Late Materialization (SLM)
Input: Physical Plan
Output: {attr→ mat_point}

1: for each attr ∈ {attributes in the query} do
2: earliest← the scan operator for attr’s base table
3: latest← the point attr is first used in computation
4: root← root operator of the plan
5: {mat_points} ← [earliest, latest) ⊲ All feasible mat points
6: {ops} ← [earliest, root] ⊲ All operators involving attr
7: {mcOps} ← operators in {ops} requiring memory copy
8: for each 𝑝𝑖 ∈ {mat_points} do
9: 𝐶fetch ← 𝐹𝑒𝑡𝑐ℎ(𝑝𝑖) ⊲ Fetching Cost
10: 𝐶mem ←

∑︁
𝑜𝑝∈{𝑚𝑐𝑂𝑝𝑠 } 𝑀𝑒𝑚(𝑜𝑝) ⊲ Mem Copy Cost

11: 𝐶Mat_i ← 𝐶fetch +𝐶mem
12: mat_point← 𝑝𝑖 with minimum 𝐶Mat_i
13: return {attr→ mat_point}

Scan R

Hash Join 1
S.k1 = R.k1

Hash Join 2
T.k2 = S.k2

Filter

Output

Scan S

Scan T

EM

LM #1

LM #2

LM #3
 (ultra-late)select R.a, S.b

from R, S, T

where S.k1 = R.k1

and T.k2 = S.k2

and R.k1 < m

Feasible materialization
point of R.a

Candidate attributes

R.a R.k1 S.k1 S.k2 S.b T.k2

LM#2 EM EM EM EM EM
Build side

Figure 4: An example of Selective Late Materialization (SLM).

operator that computes on a row-oriented data structure (e.g., hash
join), as discussed in Section 2.2. Finally, the SLM algorithm outputs
the materialization point with the minimum Materialization Cost
and assigns the point to the attribute.

Figure 4 shows an example query plan involving two hash joins
and six attributes. 𝑘1, 𝑘2 are the join keys, and 𝑎, 𝑏 are the payloads.
Because 𝑆.𝑘1 and 𝑇 .𝑘2 are needed to compute the joins right after
their corresponding base table scans, they only have one feasible
materialization point. We continue to call the materialization point
at table scan (i.e., earliest in Algorithm 1) Early Materialization
(EM), following the conventional definition. Any materialization
point later than EM is considered Late Materialization (LM). Each of
the remaining four attributes (𝑅.𝑘1, 𝑅.𝑎, 𝑆.𝑘2, and 𝑆.𝑏) has multiple
feasible materialization points. For example, the join payload 𝑅.𝑎
has four candidate points (EM, LM#1, #2, and #3), as shown in Fig-
ure 4. The SLM algorithm, therefore, computes the Materialization
Cost for each candidate point and picks the one with the lowest
cost (i.e., LM#2) as the materialization point for attribute 𝑅.𝑎.

In the rest of this section, we present the Materialization Cost
model. Section 3.1 discusses the Fetching Cost (𝐹𝑒𝑡𝑐ℎ(·)) of exist-
ing and our optimized fetching algorithms. Section 3.2 models the

Memory Copy Cost (𝑀𝑒𝑚(·)) introduced by tuple reconstruction
in operators that adopt row-oriented data structures.

3.1 Fetching Algorithms and Costs
As defined in Section 2.3, materialization in modern analytical
databases refers to the process of fetching the attribute values
using the row IDs. Therefore, its cost depends on the fetching
algorithm. Given a list of row IDs, a fetching algorithm includes
two steps: (1) performing disk I/Os to load the needed storage blocks
to memory, and (2) populating the values in the storage blocks to
the corresponding DataChunks for query processing. Based on the
row ID patterns (i.e., sorted or in random order), we apply different
fetching algorithms and model their Fetching Costs accordingly.

3.1.1 Sorted row IDs. When an attribute is first loaded into a Data-
Chunk through a table scan, it is either Early Materializationed or
represented as a sorted list of virtual tuple identifiers (i.e., row IDs).
The row IDs will remain sorted before the materialization point
unless the attribute encounters a shuffling operation, such as the
build side of a hash join that randomly distributes the row IDs to
the result DataChunks. At the materialization point, if it is the EM
point or the input DataChunks contains a sorted list of row IDs of
the target attribute, the system performs sequential I/Os to fetch
the storage blocks (use zone maps for I/O skipping), extracts the
values indicated by the row IDs, and then writes them to the result
DataChunks. Because both disk and memory access patterns are
sequential, we model the Fetching Cost 𝐹𝑒𝑡𝑐ℎ(·) as 𝑇𝑆 (𝑁, #𝑆), a
linear combination of the number of row IDs (𝑁), and the number
of storage blocks loaded (#𝑆).

3.1.2 Random row IDs. Operators such as a hash table build can
shuffle the row IDs, causing the out-of-order probing problem at the
materialization point (refer to Section 2.1). In this case, an efficient
fetching algorithm is critical to achieving a low Fetching Cost. We
first present two baseline algorithms: naive and sort. We then
describe our optimized batch algorithm for better cache efficiency.

naive: This algorithm issues a fetch operation (i.e., loads the
storage block and extracts the target value) for each row ID in
tuple access order. When the row IDs are randomly distributed, the
algorithm generates excessive random disk I/Os, destroying the
query performance.

sort: This algorithm [36, 48] sorts all the row IDs for the target
attribute at the materialization point before issuing any fetch op-
erations. Therefore, it changes the costly random disk I/Os above
to fast sequential accesses. After fetching the values from storage,
the algorithm needs to restore the original order to the values be-
fore populating them to DataChunks. Although the sort algorithm
achieves an efficient I/O pattern, the computational overhead of
global sorting and order restoration is too high to be practical in
most situations.

batch: As illustrated in Figure 5, given the row IDs from a set
of DataChunks, the Batch algorithm retrieves the attribute values
in three phases. First, the Batch phase groups the row IDs whose
values are in the same storage block. Then, the Fetch phase loads the
storage blocks within a group via sequential scan and extracts the
values associated with the row IDs to an intermediate buffer. Finally,
the Output phase maps the values in the intermediate buffer back

4619

Random
Row IDs

8

3

15

21

28

0

Batch
Phase

Group 0

Group 1

Group 2

Storage

0 - 9

10 - 19

20 - 29

Output
Phase

V8

V3

V0

Fetch
Phase

V8

V3

V0

{Vi}

…

Figure 5: An overview of the Batch fetching algorithm.

to the DataChunks. However, existing Batch algorithms operate
on a complete list of row IDs whose size typically exceeds CPU
cache [38, 45]. Both Batch and Output phases need to reorder the
row IDs (or store explicit mappings between row IDs and output
locations) and, therefore, generate excessive cache misses that slow
down the fetching process.

We, therefore, introduce an optimized Batch algorithm to keep
the working set properly sized to minimize cache misses. The goal
is to restrict the peak memory usage of the algorithm to the (last-
level) cache size C. The algorithm first performs the Batch phase
as row IDs to be materialized continue to arrive. We store the row
ID→ output index mapping for each group using a simple vector
of pairs 𝑉 1. The Batch phase monitors two sizes:V(𝑡) and F (𝑡),
where 𝑡 denotes the total number of row IDs accumulated so far.
V(𝑡) represents the size of the map 𝑉 , while F (𝑡) calculates the
peak memory footprint in the Fetch phase obtained from the most
“memory-consuming” group. WheneverV(𝑡) ≥ 𝜂C or F (𝑡) ≥ 𝜂C
(e.g., 𝜂 = 0.9), the algorithm enters the Fetch phase to retrieve the
attribute values. The Batch phase freezes until the current Fetch
phase is completed. In this way, we guarantee that the working set
always fits in the LL cache.

Suppose group 𝑖 contains 𝑡𝑖 row IDs. Assume the base table of
the target attribute contains𝑚 storage blocks, each with B tuples.
Then the memory footprint of group 𝑖 in the Fetch phase is:

F (𝑡𝑖) = V(𝑡𝑖) + B · 𝑝 + 𝑡𝑖 · 𝑝 (1)

where 𝑝 denotes the attribute length. In the above equation, B · 𝑝
represents the size fetched from storage, and 𝑡𝑖 · 𝑝 represents the
size of the intermediate/output buffer. In our optimized algorithm,
the Output phase is unnecessary because random memory writes
occur when writing results back becomes cheaper as the results
remain in the cache.

Based on the optimized Batch algorithm, the Fetching Cost is
modeled below. We first model the latency of a single Batch phase
𝑇𝐵 (·) and Fetch phase𝑇𝐹 (·) for processing 𝑛 rows as input.𝑇𝐵 (·) is
determined by 𝑛 and the number of storage blocks in the attribute’s
base table𝑚. For𝑇𝐹 (·), two additional features influence its latency:
the physical size of the attribute 𝑝 , and the materialization point’s
cardinality 𝑁 . We employ a Gradient Boosting Regressor to model

1An alternative is to use a hash table. Our evaluation in Section 5.2 shows that the de-
duplication benefit of using a hash map [7] does not justify its construction/operation
overhead compared to a simple array.

the relationship between these features and the phase latencies,
expressed as 𝑇𝐵 (𝑚,𝑛), and 𝑇𝐹 (𝑚, 𝑁,𝑛, 𝑝).

Next, we estimate the number of times these phases are triggered
during execution. The maximum number of row IDs 𝑡𝑖̂ within a
single group that would trigger the Fetch phase is derived from
the memory constraint F (𝑡𝑖̂) < 𝜂C in Equation (1). Assuming row
IDs are randomly distributed across the𝑚 storage blocks, the total
accumulated number of row IDs that are processed in one run of the
Batch and Fetch phase is 𝑡 =𝑚 · 𝑡𝑖̂ . Thus, the Batch and Fetch phase
are repeated ⌈𝑁

𝑡
⌉ times. When multiple late-materialized attributes

{𝑝𝑖 } originate from the same base table, they share a single Batch
Phase but undergo individual Fetch Phases. In total, the Fetching
Cost is modeled as:

𝐹𝑒𝑡𝑐ℎ(·) = ⌈𝑁
𝑡
⌉ ∗ (𝑇𝐵 (𝑚, 𝑡) +

∑︂
𝑝∈{𝑝𝑖 }

𝑇𝐹 (𝑚, 𝑁, 𝑡, 𝑝)) (2)

In real-world datasets, row IDsmay exhibit non-uniform distribu-
tion across storage blocks. This skewness leads to 𝑡 < 𝑚 ·𝑡𝑖̂ , causing
our model to overestimate 𝑡 while underestimating 𝑁

𝑡
. However,

our experiments in Section 5.9 demonstrate that the observed row
ID skewness in public benchmarks introduces only minor devi-
ations (<5%) in fetching cost at most materialization points. We,
therefore, conclude that the uniform row ID assumption remains
effective for cost estimation in most practical scenarios.

3.2 Modeling Memory Copy Cost
The Memory Copy Cost includes the tuple construction overhead
in all operators that employ row-oriented data structures along
path from the attribute’s base table scan to the query output. Take
the Hash Build operator as an example. According to the hash table
layout in Figure 2, we model the Hash Build timeHT (·) based on:
(1) the build-side table size∥𝑅𝐵 ∥, (2) the total payload size P =

∑︁
𝑝𝑖 ,

and (3) the total memory copy size, including copying payloads to
the data table and allocating the pointer table. We, therefore, model
the Hash Build operator 𝑜𝑝𝑖

ℎ𝑡
using the following linear model:

HT (𝑜𝑝𝑖
ℎ𝑡
) = 𝑎0 ∗ ∥𝑅𝐵 ∥ +𝑎1 ∗ P + 𝑎2 ∗ (∥𝑅𝐵 ∥ · (1 + P) + 2∥𝑅𝐵 ∥ · 8)

The last term is the total memcpy size, with 2∥𝑅𝐵 ∥ · 8 representing
the size of the pointer table, which is an 8-byte pointer array with
a length twice that of the build-side table.

For attributes whose lengths exceed that of row IDs (typically
4-byte integers), replacing their values with row IDs in operators
such as Hash Build preceding the materialization point can reduce
the total memory copy size. Suppose the total payload size in hash
build operator 𝑜𝑝𝑖

ℎ𝑡
shrinks from P to P̂ by storing row IDs, the

hash table construction can be accelerated by ΔHT (𝑜𝑝𝑖
ℎ𝑡
) = (𝑎1 +

𝑎2 ∗ ∥RB ∥) ∗ (P − P̂).

4 INTEGRATION WITH MODERN DATABASES
This section describes how to integrate Selective Late Material-
ization into modern analytical databases. First, Section 4.1 pro-
vides preliminaries of the pipeline execution mechanism. Then,
Sections 4.2 to 4.4 describes in detail the SLM optimization work-
flow, as overviewed in Figure 6. Given a physical plan, we first
enumerate all attributes systematically to identify their feasible
materialization points (Section 4.2). For each attribute, we compute

4620

Physical
Plan

Pipeline
Plan 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 {𝑎𝑡𝑡𝑟 → {𝑝𝑜𝑠}}

𝑎𝑑𝑑 𝑟𝑜𝑤𝑖𝑑
for LM 𝑎𝑡𝑡𝑟

cost model

Execute each

pipeline
𝑠𝑒𝑡 𝒅𝒊𝒔𝒂𝒃𝒍𝒆

𝒄𝒐𝒍𝒖𝒎𝒏

SQL

select materialization
point with min cost

For each 𝑎𝑡𝑡𝑟

Rewrite
Physical Plan

Pipeline-wise
LM config

execution engineoptimizercost model

Figure 6: Workflow outline.

Hash Probe
B.k2 = C.k2

Hash Probe

A.k1 = B.k1

Projection

Result
Collector

select B.v1, C.v2
 from A, B, C
where A.k1 = B.k1
 and B.k2 = C.k2

12

3

4

5

Hash Build
C.k2 C.rowid

Hash Build
B.k1

B.rowid
 C.v2

Materialize
B.v1

Projection

Pipeline #1 Pipeline #2 Pipeline #3

Materialize
C.v2

Scan A Scan B Scan C

A.k1

EM

B.k1 B.k2 B.v1

EM EM LM

C.k2 C.v2

EM LM 35
Table Schema

…

waiting queue

rowid output id

Inverted index

Fetching
algorithm

C.v2 B.rowidB.v1

0 1 0

column

disable

Input
Chunk

C.v2 B.rowidB.v1

0 0 1

column

disable

Output
Chunk

For B.v1 Feasible Materialization Points: 2 3 5

Value Fetching
Process

STEP 1

STEP 2
5

Use cost model to compute Materialization Cost, and
choose one with mininal cost:

STEP 3 Insert Value Fetching Process at chosen materialization point

Example SLM Process for B.v1

(Mid-pipeline excluded)

Figure 7: Supporting Selective Late Materialization.

the Materialization Cost at each feasible materialization point and
pick the one with the lowest cost. Then, the optimizer modifies the
physical plan by replacing attribute values with their corresponding
row IDs before each attribute’s materialization point (Section 4.3).
Finally, Section 4.4 describes the changes made to the execution
engine to support SLM in each execution pipeline. We describe the
implementation details of applying SLM to DuckDB in Section 4.5.

4.1 Preliminaries of pipeline execution
Modern analytical databases (e.g., Velox [41], StarRocks [8], Doris [6],
DuckDB [42]) often adopt pipelined query execution paired with
morsel-driven parallelism [34]. Tables are partitioned into small
DataChunks, which are combined with the corresponding query
fragment (i.e., pipeline) to form tasks. Tasks are then dynamically

scheduled across worker threads to enable fine-grained load bal-
ancing and better CPU utilization. Each pipeline consists of (1)
a source operator that retrieves DataChunks from storage or up-
stream pipelines, (2) an optional sequence of ordinary operators
that process DataChunks synchronously (without I/O or network
operations), and (3) a sink operator acting as a pipeline breaker
(e.g., hash build) that requires consuming all input Data-Chunks
before producing output. If an inter-pipeline dependency exists
(e.g., when a sink’s output feeds another pipeline’s source), the de-
pendent pipeline must be scheduled after its predecessor completes.

4.2 Identifying Feasible Materialization Points
We restrict materialization to occur only at the source operator or
right before the sink operator of each pipeline. For each attribute,
we identify all potential materialization points by traversing the
operators from its source table scan to its first active use (as a join
key, aggregation key, grouping key, filter predicate, output column,
etc.). We tailor the potential points using the above restrictions to
obtain the final feasible set. For example, in Figure 7, attribute 𝐵.𝑣1
has feasible materialization points at its Table Scan (2○), the sink of
pipeline #2 (3○), and the sink of pipeline #1 (5○)

We exclude mid-pipeline operators because materialization in-
vokes the blocking/asynchronous I/O operations, which violates
the principle of pipelined execution. However, our implementation
still supports materialization at arbitrary mid-pipeline operators by
inserting a pipeline breaker to create two dependent sub-pipelines
and performing materialization at the breaker. Our empirical study
in Section 5.8 shows that mid-pipeline materialization is effective
only when cardinality at the mid-point is significantly smaller than
that at the source or sink, which rarely occurs in public benchmarks.

After finding all the feasible materialization points, the cost
model extracts features from each point and selects the one with
minimal Materialization Cost.

4.3 Generating Materialization Plan
We next describe how to generate physical plans with chosen ma-
terialization points. Attributes exist as row IDs before their materi-
alization points and are converted to actual values thereafter. To
achieve this, the row IDs of late-materialized attributes are added
to the SQL projection list, and the physical planner generates an up-
dated plan that maintains both the actual value columns and their
associated row ID columns for these attributes. Materialization
at specific points is controlled using a disable_column identifier
within DataChunks to indicate whether a column will participate in
subsequent operator computations. For example, in Figure 7, before
the value fetching process of 𝐵.𝑣1, we enable its row ID column;
after materialization, we enable its value column while disabling
the row IDs. Note that a row ID column could be shared by multiple
value columns in a DataChunk. Therefore, it is only disabled when
all the value columns have been materialized.

Additionally, we modified Table Scan and Hash Build opera-
tors to handle disabled columns. Table Scan omits I/O for disabled
columns while generating row IDs when present. Similarly, Hash
Build excludes disabled columns during hash table construction
(e.g., in Figure 7, it processes only B.rowid and 𝐶.𝑣2, skipping dis-
abled 𝐵.𝑣1). All other operators process DataChunks normally.

4621

Row Group #0

Column
1

Column
2

Column
3

Column
Segment

Column
Segment

256KB
122880

rows

Row Group #1

…
DuckDB file

(PAX format)

…

Figure 8: The hierarchical memory management of DuckDB.

4.4 Materialization in a Single Pipeline
As shown in the value fetching process in Figure 7, to support
materialization within a single pipeline with minimal changes to
its execution logic, DataChunks reaching the sink operator are first
placed into a waiting queue. We perform the Batch Phase of the
fetching algorithm on this queue with the corresponding row ID
column. We then trigger the Fetch Phase and write the results into
a pre-allocated Vector. Finally, the materialized value column in the
output DataChunks extracts a slice from this result Vector before
feeding it into the sink.

4.5 Implementation Details in DuckDB
We integrated SLM into DuckDB for an end-to-end evaluation in
Section 6. In this section, we describe additional implementation
details in DuckDB. We introduce four pipeline control signals to
enable the above SLM procedure:

• push_source: if true, pass attribute base tables to parent pipelines.
• mat_strat: trigger value fetching if late materialization exists.
• source_id (optional): map attributes to base tables.
• mat_map (optional): map row IDs to value columns in the Dat-

aChunk preceding the sink operator.

As shown in Figure 8, DuckDB’s two-tier memory structure (Row
Groups: 120K rows; Column Segments: 256KB) allows deploying
the batch fetching algorithm at either level. I/O skipping occurs at
the Column Segment level, and DuckDB’s FetchRow API facilitates
row-level value fetching. Column Segment-level batching improves
locality during the Fetch Phase but requires binary search in the
Batch Phase due to variable record counts in different segments
(e.g., with varchar attributes or compression). Row Group-level
batching avoids binary search butmay incur random accesses across
different Column Segments during the Fetch Phase. For simplicity,
we default to batch at the Row Group level because it typically fits
within the L2 cache. However, Column Segment-level batching may
be considered for large payloads exceeding L2 cache capacity.

Although DuckDB currently uses synchronous I/O in Table Scan
operators, the batch fetching algorithm inherently supports async
I/O, because it organizes the unpredictable disk accesses caused by
random row IDs into predictable sequential accesses.

5 MICROBENCHMARK
In this section, we present a comprehensive microbenchmark for a
single hash join under various parameters to analyze the trade-offs
between EM and LM. This motivates the proposed Selective Late
Materialization technique, which is evaluated in Section 6.

Name Meanings Value options
∥𝑅𝑃 ∥ Probe side table size. 20M rows.
∥𝑅𝐵 ∥ Build side table size. [0.1, 1, 10, 20, 50, 90]% ∗ ∥𝑅𝑃 ∥
𝑠𝑒𝑙 Join selectivity [0.01, 0.1, 1, 2, 4, 10, 20, 40, 80]%
𝑡𝑦𝑝𝑒𝑝 Payload data type. int32, int64, fixed/variable length

string of/up to [10, 20, 40, 60, 80, 100] B.
𝑝 Payload size (∥𝑡𝑦𝑝𝑒𝑝 ∥). [4, 8, 10, 20, 40, 60, 80, 100] B.
hit_dist Hit frequency distribution

of probe side keys in 𝐵ℎ𝑖𝑡 .
Uniform or Zipfian (𝛼 = 1.5)

B_pat &
P_pat

Positions of hit keys in
build/probe side table. This
parameter influences the
pattern of result row IDs.

[Random, Sorted, Clustered]. Hit keys
are in random/sorted order in the col-
umn. Clustered: only %𝑏_ℎ𝑖𝑡 or %𝑝_ℎ𝑖𝑡
of storage blocks contain hit keys.

%𝑏_ℎ𝑖𝑡 &
%𝑝_ℎ𝑖𝑡

Portion of storage blocks
that contain hit keys.

[0.01, 0.1, 1, 2, 4, 10, 20, 40, 80, 100]%.
%𝑏/𝑝_ℎ𝑖𝑡 = 100% if B/P_pat!=Clustered

Table 1: Different configuration in microbenchmark.

5.1 Experiment Setup
Our microbenchmark includes multiple single-join queries, each
in the form of SELECT attr_under_study FROM build, probe WHERE

build_key = probe_key;We vary the types and sizes of the payload
attributes to study the trade-offs between EM and LM in DuckDB.

5.1.1 Data sets. We generate a 20𝑀-row probe table 𝑅𝑃 and a
smaller build table 𝑅𝐵 , each including a 4-byte integer join key and
multiple payload columns (detailed in Table 1). Join key generation
begins by sampling ∥𝑅𝐵 ∥ × %𝑏_ℎ𝑖𝑡 keys from a unique set to form
build-side hit keys 𝐵ℎ𝑖𝑡 . Next, we sample 𝑠𝑒𝑙 × ∥𝑅𝑃 ∥ keys from 𝐵ℎ𝑖𝑡
using hit_dist to create probe-side hit keys 𝑃ℎ𝑖𝑡 . Non-hit keys
for both sides are then sampled from distinct key sets 𝐵𝑚𝑖𝑠𝑠 (of
size ∥𝑅𝐵 ∥ − ∥𝐵ℎ𝑖𝑡 ∥) and 𝑃𝑚𝑖𝑠𝑠 (of size ∥𝑅𝑃 ∥ − ∥𝑃ℎ𝑖𝑡 ∥). Finally, we
reorder the combined hit and non-hit keys using B_pat and P_pat
distributions to produce the final join key columns for both tables.
Payload columns are filled with synthetic random data of 𝑡𝑦𝑝𝑒𝑝 .

5.1.2 Setup. The microbenchmark runs on a machine with In-
tel®Xeon®Platinum 8474C CPU @ 2.05GHz, 500GB DRAM, 80KB
L1 and 2MB L2 cache per core, 97.5MB LLC per socket, and an Intel
SSDPF2KE032T1 NVMe SSD (3.2TB, 6.7 GB/s read, 1M 4KB random
read IOPS). We run DuckDB v1.1.0 [2] (compiled using gcc 12.2.0
-O3) in each experiment to compare the performance of LM (with
different fetching algorithms) against DuckDB’s native EM.

The tested fetching algorithms are: naive, sort, batch (refer to
Section 3.1), and unique – a variant of batch using a de-duplicate
hashmap [7] to batch row IDs. We set 𝜂 = 0.9 for batch and unique.
The LM strategy defaults to the batch algorithm from Section 5.4.
All experiments use a single thread on DuckDB ’s uncompressed
storage, unless otherwise specified. We enable direct I/O in DuckDB
and report the average latency of three trials for each experiment.

5.2 Uniform Distribution
The first row in Figure 9 shows the latency improvement of batch
LM a build-side attribute over EMwhere the join keys are randomly
distributed. LM becomes advantageous as the build size and/or the
payload size increases. The observation aligns with our cost model
in Section 3 that quantifies the LM/EM difference as 𝐹𝑒𝑡𝑐ℎ(𝐸𝑀) +
𝑀𝑒𝑚(𝐸𝑀)−(𝐹𝑒𝑡𝑐ℎ(𝐿𝑀)+𝑀𝑒𝑚(𝐿𝑀)). The hash table construction
cost𝑀𝑒𝑚(𝐸𝑀) −𝑀𝑒𝑚(𝐿𝑀) is proportional to ∥𝑅𝐵 ∥ ∗ (𝑝−4) where
𝑝 is the payload size, and row IDs are 4 bytes. For variable-length

4622

1e-04
1e-030.010.020.040.10.20.40.8

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)

(R
AN

DO
M

, U
NI

FO
RM

)
 P

ay
lo

ad
 S

ize

Build/Probe=0.1%

1e-04
1e-030.010.020.040.10.20.40.8

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
Build/Probe=1.0%

1e-04
1e-030.010.020.040.10.20.40.8

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
Build/Probe=10.0%

1e-04
1e-030.010.020.040.10.20.40.8

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
Build/Probe=20.0%

1e-04
1e-030.010.020.040.10.20.40.8

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
Build/Probe=50.0%

1e-04
1e-030.010.020.040.10.20.40.8

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
Build/Probe=90.0%

1e-04
1e-030.010.020.040.10.20.40.8

Selectivity

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)

(S
OE

RT
ED

/S
KE

W
)

 P
ay

lo
ad

 S
ize

SORTED, Build/Probe=20.0%

1e-04
1e-030.010.020.040.10.20.40.8

Selectivity

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
SORTED, Build/Probe=50.0%

1e-04
1e-030.010.020.040.10.20.40.8

Selectivity

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
SORTED, Build/Probe=90.0%

1e-04
1e-030.010.020.040.10.20.40.8

Selectivity

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
ZIPFIAN (α=1.5), 50%

1e-04
1e-030.010.020.040.10.20.40.8

Selectivity

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
UNIFORM, %b_hit=0.8, 50%

1e-04
1e-030.010.020.040.10.20.40.8

Selectivity

4
8

10
20
40
60
80

100
10(v)
20(v)
40(v)
60(v)
80(v)

100(v)
UNIFORM, %b_hit=0.1, 50%

−75

−50

−25

0

25

50

75

Ac
ce

le
ra

tio
n

Pe
rc

en
ta

ge
 o

f L
M

 o
ve

r E
M

 (%
)

Figure 9: Performance Heatmap – Each subfigure represents a different build size with varying join selectivity and payload size. The first
row displays results with HIT_DIST = Uniform and B_PAT = Random, yielding fully random result row IDs. The first three subfigures in the
second row depict scenarios where both sides contain sorted row IDs, while the remaining subfigures illustrate cases with skewed hit keys.
Note that y-axis labels with suffix “(v)” denotes variable-length string payloads.

0.0001 0.001 0.01 0.02 0.04 0.1 0.2 0.4
Selectivity

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

Build/Probe: 50.0% Payload_size: 40
EM
LM (naive)
LM (sort)
LM (unique)
LM (batch)

Others
I/O
Hash Build
Materialize
Map Build

(a) Different selectivity

uniform zipfian
(1.5)

cluster
(0.8)

cluster
(0.1)

Skew distribution

0

500

1000

1500

2000

La
te

nc
y

(m
s)

435MB 435MB 406MB 302MB
Build/Probe: 50.0% Selectivity: 0.04, Payload: 10B

(b) Data skew

4 8 10204010 20
(var)

40

payload sizes

1
2
4
6
8

10

Co
lu

m
n

nu
m

be
rs

−50

0

50

Sp
ee

du
p

of
 L

M
 o

ve
r E

M
 (%

)

Build size/Probe size: 50.0 %,
 UNIFORM, Selectivity: 10%

(c) Multi-col heatmap.

1 2 4 6 8 10
Number of columns

0

1000

2000

3000

4000

5000

6000

7000

8000

La
te

nc
y

(m
s)

-4.2% -2.8%
-1.6%

-1.1%
0.5%

1.5%

Build/Probe: 50.0% Sel: 0.1, Payload size: 10
EM
LM (batch)
Others
I/O
Hash Build
Materialize
Map Build

(d) Multi-columns Breakdown.

Figure 10: Latency Breakdown – I/O and Hash Build represent Table Scan or Hash Build latency; Materialize and Map Build record
the time of the Fetch or Batch phase of each fetching algorithm; Others reports all other overheads.

strings, LM’s benefit is reduced because of an additional binary
search across Column Segments within a Row Group per fetch.

Moreover, LM’s advantages increase as selectivity decreases.
Figure 10a shows that LM reduces I/O and Hash Build time but
increases Map Build and Materialize time. I/O time during mate-
rialization is not reported because DuckDB’s FetchRow API tightly
couples I/O and computation. While Materialize time for all LM
strategies grows with selectivity, batch and unique exhibits the
most gradual increase and outperforms EM at selectivities below
10%. I/O remains nearly constant for both LM and EM due to ran-
domly distributed join keys, allowing few block skips except at
very low selectivity. The unique method’s de-duplication offers
limited benefit (as row IDs are mostly distinct) while increasing
Map Build overhead at higher selectivity. The sort strategy under-
performs naive when selectivity is high, as sorting costs outweigh
the marginal benefits(when Row Groups fit into the L2 cache).

The first three subplots in the second row of Figure 9 depict
scenarios with sorted result row IDs, which leads to a sequential
fetching pattern. Compared to the random case above, LM exhibits
small performance improvement because the batch algorithm al-
ready preserves locality effectively even with random row IDs.

5.3 Data Skew
Figure 9 (2nd row, last three subplots) illustrates the scenarios with
skewed result row IDs. The size ratio build / probe = 50%. LM
achieves a greater performance gain over EM than in the random
case (Figure 9, 1st row, subplot 5). Figure 10b shows a breakdown
with total I/Omarked per bar group.When the hit keys follow a Zipf
distribution (HIT_DIST=Zipfian) where the result row IDs contain
duplicates or heavy hitters, the total I/O is largely unchanged while
Materialize time slightly improves (≈ 6%) because most row IDs
in each group are identical. unique outperforms batch by elimi-
nating duplicate row ID accesses, thus reducing Materialize time.
For clustered build-side hit keys (B_PAT=Clustered), only %𝑏_ℎ𝑖𝑡
proportion of Column Segments contain hit keys, thus avoiding
I/Os to irrelevant Segments during value fetching. Decreasing the
cluster ratio reduces total I/O, thereby lowering Materialize time.

5.4 Multiple Columns
This section studies late materializing (batch) multiple attributes
from a build-side table configured with 2, 4, 6, 8, 10 payload columns
(of the same size for simplicity). Figure 10c reports the performance
when ∥𝑅𝐵 ∥ = 50%∥𝑅𝑃 ∥. Figure 10d highlights LM’s increasing

4623

0.4 0.6 0.8 1.0 1.2 1.6 2.0
Memory Limit (GB)

0

1000

2000

3000

La
te

nc
y

(m
s)

0.4 0.6 0.8 1.0 1.2 1.6 2.0
Memory Limit (GB)

0.0

0.5

1.0

1.5

IO
 A

m
ou

nt
 (B

yt
e)

1e9

EM
LM (batch)

Build/Probe: 50.0%, Selectivity: 0.1, Payload_size: 20

Figure 11: Latency and I/O amount under limited memory.

movieid
int32
(50%)

 bitpack

 houseprice
int32
(33%)
 RLE

 books
int64
(50%)

 bitpack

genome
int64
(38%)

 bitpack

japanese
string
(13%)
 FSST

 comment
string
(31%)
 FSST

email
string
(42%)
 FSST

uuid
string
(42%)
 FSST

yago
string
(56%)
 FSST

urls
string
(44%)
 FSST

Datasets

0
1000
2000
3000
4000
5000
6000
7000
8000

La
te

nc
y

(m
s)

25054

-6.9% -6.8% -3.7% -6.2% 20.4%

2.6%
7.8% 2.1% 6.6%

1.2%

Build/Probe: 50.0% Selectivity:0.02 Compressed Real-world Datasets
EM
LM(batch wo full
decompression)
LM (batch)

Others
I/O
Hash Build

Materialize
Map Build

Figure 12: Compressed Breakdown – x-axis shows payload
name, type, build-side table’s compression ratio, and compression
technique. Latency reduction of batch LM over EM is marked.

speedup over EM as the number of columns grows, because the
attributes can share the same row ID column. The approximate
Materialization Cost for EM and LM are (∥𝑅𝐵 ∥×#col×𝑝)+(#col×𝑇𝑆)
and (∥𝑅𝐵 ∥ × 4) + (𝑇𝐵 + #col×𝑇𝐹), respectively. LM’s Fetching Cost
includes only a single𝑇𝐵 term because all attributes share one Batch
Phase (as in Equation (2)). 𝑀𝑎𝑡 (𝐸𝑀)

𝑀𝑎𝑡 (𝐿𝑀) increases with the number of
columns, indicating LM becomes relatively faster.

5.5 Limited Memory
Weevaluate LM against EMundermemory constraints usingDuckDB’s
memory_limit parameter. DuckDB spills data to disk upon a buffer-
pool overflow. Figure 11 shows query latency and total I/O volume
under varying memory constraints. As the memory limit is reduced,
EM exhibits a significant increase in both latency and I/O volume.
In contrast, LM avoids loading the payload column into memory
during Table Scan and reduces the hash table size by replacing pay-
loads with Row IDs. LM achieves a more efficient memory footprint,
advantageous as memory becomes more critical [13, 21, 22].

5.6 Compressed storage
We evaluate the performance of LM and EM on compressed storage
by populating the payload column with real-world datasets [4, 5,
17, 27]. LM’s performance gain over EM is smaller on most string
datasets compared to uncompressed storage. First, compression al-
ters element counts in each Column Segment, forcing LM to perform
binary searches to locate elements. Second, EM’s initial scan cost is
offset by reduced I/O and low sequential decompression overhead.
Third, point accessing compressed elements during fetching in LM
is computationally costly for RLE or FSST. Our full_decompression
optimization, which decompresses entire Column Segments upon
first access, significantly boosts LM’s performance.

1e-0
4
1e-0

3
0.01

0.02
0.040.1 0.2 0.4 0.8

Selectivity

4
8

10
20
40
60
80

100

Pa
yl

oa
d

Si
ze

UNIFORM

1e-0
4
1e-0

3
0.01

0.02
0.040.1 0.2 0.4 0.8

Selectivity

4
8

10
20
40
60
80

100
CLUSTERED

1e-0
4
1e-0

3
0.01

0.02
0.040.1 0.2 0.4 0.8

Selectivity

4
8

10
20
40
60
80

100
ZIPFIAN (α=1.5)

−50

0

50

Ac
ce

le
ra

tio
n

of
 L

M
 o

ve
r E

M
 (%

)

UNCOMPRESSED, Build/Probe: 50.0 %

Figure 13: Performance heatmap of Probe side attributes

Select Value

from A, B, C

where A.k1 = B.k1

and A.k2 = C.k2

Hash Probe
A.k2 = C.k2

Hash Probe
A.k1 = B.k1

Value

(size=10)

Sel1

Sel2

Scan A
20M

Hash Build

Scan C
5M

Hash Build

Scan B
5M

mid

sink

1e-41e-30.010.020.040.10.20.40.8
1e-4
1e-3
0.01
0.02
0.04

0.1
0.2
0.4
0.8

se
l1

A.value (probe side)

1e-41e-30.010.020.040.10.20.40.8

sel2

1e-41e-30.010.020.040.10.20.40.8

se
l1

B.value (build side)

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

of
 m

id
/b

es
t o

f (
sin

k,
so

ur
ce

)

Figure 14: Mid-pipeline late materialization of 2 Join queries.

5.7 Probe Side
For late materializing probe-side payloads, where the obtained
row IDs are naturally ordered, as shown in Figure 13, LM im-
proves performance with uniform random keys only at selectivity
= 10−4 ∼ 10−3. With clustered (and contiguously located) hit keys,
LM achieves substantial performance gains, particularly as selec-
tivity decreases, because only %𝑝_ℎ𝑖𝑡 = 𝑠𝑒𝑙 ∗ ∥𝑅𝑃 ∥/256𝐾𝐵 Column
Segments contain the hit keys. LM also performs well when the hit
keys follow a Zipfian distribution (𝛼 = 1.5, skewing heavily toward
a few distinct keys, and identical keys are located together).

The experimental results stem from two cost components. First,
the Memory Copy Costs are identical for EM and LM because the
probe-side payloads are not involved in any row-oriented data
structure operations. Second, the Fetching Cost 𝑇𝑆 (𝑁, #𝑆) is dom-
inated by the number of loaded Column Segments. At selectivity
≈ 10−4 and payload >20B (uniform random), I/O skipping occurs
due to #result rows < #Column Segments = 𝑝∗∥𝑅𝑝 ∥

256𝐾𝐵 where 𝑝 is
the payload size. This effect is greater for skewed/clustered data,
reducing total Materialization Cost.

5.8 Mid-pipeline Materialization
In this section, we investigate the potential benefits of selecting
mid-pipeline materialization points. For a set of left-deep, two-join
queries with varying selectivity (as shown Figure 14), we compare
the latency improvement of materializing an attribute after the first
join (i.e., mid-pipeline) against at the pipeline source or sink.

In a vectorized execution engine, mid-pipeline operators must
remain stateless and avoid asynchronous operations such as disk

4624

1e
-4

1e
-3

0.
01

0.
02

0.
04 0.
1

0.
2

0.
4

0.
8

sel2

1e-4
1e-3
0.01
0.02
0.04
0.1
0.2
0.4
0.8

se
l1

0

50

100

150

Fr
eq

ue
nc
y

Figure 15: Real middle
pipeline selectivity.

0 1 2 3 4 5
Coefficient of Variation

0

100

200

300

400

Fr
eq

ue
nc

y
0

20

40

60

80

100

De
vi

at
io

n(
%

)

Skewness v.s. Deviation of Fetch Cost
Deviation

Figure 16: Fetching Cost deviation
of different group level skewness.

Method Pure EM Pure LM Optimal SLM

Total Latency 1757.1 1999.3 1632.9 1651.61

Table 2: Total Latency of the entire workload.

I/O. We introduce a custom pipeline-breaker inserted after the first
join to enable mid-pipeline materialization. It splits the original
pipeline to allow materialization at the first sub-pipeline’s sink
using the batch strategy. The pipeline-breaker buffers incoming
DataChunks from upstream operators and feeds the materialized
output to downstream processing. Our evaluation shows that this
modification introduces negligible performance overhead (∼ 0.5%).

Figure 14 presents the speedups achieved by materializing a 10B
attribute in mid-pipeline compared to at the source or sink. Mid-
pipeline LM is beneficial when 𝑠𝑒𝑙2/𝑠𝑒𝑙1 ≫ 1 (bottom right corner).
We collect the selectivities in all pipelines (> 3 operators) in JOB and
TPC-DS. Figure 15 plots the frequency distribution where 𝑠𝑒𝑙1 and
𝑠𝑒𝑙2 represent the selectivity of a mid-pipeline operator, and at the
sink of the corresponding pipeline. We observe that 𝑠𝑒𝑙2/𝑠𝑒𝑙1 ≈ 1
in most real-world pipelines, and it is rare that 𝑠𝑒𝑙2/𝑠𝑒𝑙1 ≫ 1 (the
white-box area). This indicates that mid-pipeline materialization is
unlikely to offer large benefits for real-world queries.

5.9 Cost Model Efficiency
We verify the effectiveness of our cost model in this section. For
scenarios with sorted row IDs, Section 5.7 indicates that LM benefits
only from I/O skipping of Column Segments. Assuming randomly
distributed join keys, the estimated number of Column Segments
accessed in LM is #𝑆 =𝑚𝑖𝑛(𝑁, ∥𝑅𝑃 ∥∗𝑝256𝐾𝐵) (where 𝑁 is the cardinality
of the materialization point). Our cost model, therefore, chooses
the LM strategy when #𝑆 < 𝑁 .

For scenarios with random row IDs (i.e., build-side attributes),
we train the Fetching Cost (B = 122880 and𝑚 = ∥𝑅𝐵 ∥/B according
to DuckDB storage) and Memory Copy Cost models using a dataset
containing 1134 join groups with varying build-side size ∥𝑅𝐵 ∥,
payload size 𝑝 , and join cardinality 𝑁 from the microbenchmark.
For each join, we evaluate EM and LM on the build-side attribute
and measure (1) the attribute fetching latency in EM, (2) the time
spent on the Batch / Fetch Phase of LM, and (3) the hash table build
time for EM and LM. We use 20% of the data points for training and
the rest for testing. We feed the features (∥𝑅𝐵 ∥, 𝑝 , and 𝑁) of the
join under test to the trained models during inference and select
the strategy (EM or LM) with the lower predicted cost.

Table 2 presents the latency of running the entire test work-
load using EM, LM, Optimal (via an exhaustive pre-search), or our
cost-based Selective strategy. Our cost model chooses the cor-
rect materialization strategy with 81.1% accuracy and is only 1.2%
slower than the Optimal.

We next evaluate the robustness of our uniform row ID assump-
tion when training the Fetching Cost model (refer to Section 3.1)
against real-world skewness. We generate joins of different selec-
tivities and payload sizes with hit_dist=Zipfian under a varying 𝛼
and use the coefficient of variation (CV, defined as standard devia-
tion/mean) of the row ID counts across all batch groups to quantify
the skewness. For each join, we measure the actual Fetching Cost
and compute its deviation from the corresponding uniform row ID
case. These deviations are plotted in Figure 16, with each CV-level
point averaged across selectivities and payload sizes.

Subsequently, we gather real CV statistics from all feasible mate-
rialization points (excluding table scans) in JOB and TPC-DS. The
histogram in Figure 16 indicates that most cases have CV < 2, where
the actual Fetching Cost deviates < 5% from our modeled uniform
case. Without prior knowledge of the join key distribution, our
model still provides sufficient accuracy for most practical scenarios.

6 END-TO-END EVALUATION
In this section, we demonstrate the performance benefit of Selective
Late Materialization by executing queries in JOB [3, 35] and TPC-
DS [9] using our modified DuckDB (described in Section 4) with
a single thread and uncompressed storage. Each query adopts the
join order selected by DuckDB’s native optimizer. Notably, varying
materialization points do not alter the physical plan structure. We
compare SLM2 against three baselines:
• Pure EM: select the earliest materialize point for each attribute.
• Pure LM: select the latest materialization point for each attribute.
• Optimal: select the optimal materialization point for each at-

tribute via an exhaustive search.

6.1 Benchmark Results
Figure 17a shows the latencies for JOB queries. Pure EM and LM
achieve comparable average performance (Pure LM is < 1% faster).
However, both strategies lack performance robustness (e.g., Pure
EM is 36.8% slower than Optimal in Q7, while Pure LM is 2.8×
slower than Optimal in Q11). In contrast, SLM outperforms Pure
EM and LM by 14.7% and 8.9% on average, respectively, with a
maximum speedup of 76.7%. More importantly, SLM exhibits a
robust performance, achieving only a 0.95% average slowdown
compared to Optimal. The results for TPC-DS are similar. For the
16 selected queries shown in Figure 17b, SLM outperforms Pure EM
by 10.9% and Pure LM by 10.3% on average, and is only 1.3% slower
than Optimal. We found that SLM’s performance gains primarily
stem from effective I/O skipping and delayed materialization of long
varchar attributes. We present a few case studies in Section 6.2.

Multi-threading. SLMmaintains a consistent ∼ 14% performance
gain over Pure EM in multi-threaded executions (we tested 4, 8, and
16 threads) of JOB. Figure 18 shows the multi-threaded latencies

2For a varchar attribute, we feed its average length to the cost model as its size.

4625

1 2 4 5 6 10 12 13 14 15 16 21 23 26 27 32 330

250

500

750

1000

1250

1500

1750

2000

La
te

nc
y

(m
s)

37.6%

3.9% 19.3% 31.1%

24.8% 13.0%

13.9% 15.4%

13.3%
15.7%

9.0%

0.1%

17.7%

21.1%

16.8%

4.7%

20.5%

-0.0%

-1.1% -8.0% -0.0%

-0.0% -0.0%

-0.0% -2.4%

-0.0%
-0.0%

-0.0%

-0.0%

-0.0%

-4.2%

-0.0%

-0.8%

-0.5%

Pure EM
Pure LM
Optimal
SLM
I/O Time

Others
Hash Build
Materialize
Map Building

3 7 8 9 11 17 18 19 20 22 24 25 28 29 30 310

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
s)

9.4%
36.8% 13.5%

6.2%

35.4%

1.8% 6.4%

4.1%

15.6%
16.9%

10.6%

20.2%
4.4%

5.7%

15.2%
3.9%

-0.0%
-0.0% -1.4%

-2.0%

-0.3%

-0.0% -0.5%

-0.0%

-0.0%
-0.0%

-1.3%

-2.1%
-0.0%

-3.8%

-0.0%
-2.8%

(a) JOB result – We divided the query latency of each query template into two sub-figures based on query latency (whether ≤ 2000 ms).

q3 q4 q6 q11 q13 q19 q24 q25 q27 q37 q68 q72 q81 q83 q85 q990

500

1000

1500

2000

2500

3000

La
te

nc
y

(m
s)

17.8%
-0.0%

15.9%
-0.0%

3.9%
-0.0% 6.9%

-1.6%

19.7%
-1.6%

5.3%
-1.4%

9.0%
-0.0% 20.7%

-2.2%

19.1%
-4.5%

8.3%
-1.9%

6.8%
-1.7%

8.9%
-0.0%

8.4%
-5.0% 6.9%

-0.0%

9.3%
-0.0% 7.0%

-0.0%

Pure EM
Pure LM
Optimal
Selective LM
I/O Time

Others
Hash Build Time
Materialize Time
Map Building Time

(b) TPCDS result – Scale factor = 10.

Figure 17: Public benchmark result – Black numbers show SLM speedup over Pure EM; blue numbers show SLM degradation vs Optimal.

1 4 8 16 1 4 8 16 1 4 8 16 1 4 8 16
Query7 Query12 Query13 Query24

0

1000

2000

3000

4000

La
te

nc
y

(m
s)

36.8%

37.7%44.5%42.0% 13.9%13.7%13.8%13.2% 17.4%17.2%16.7%16.8%

11.8%

11.2%
11.3%11.6%

Pure EM
Pure LM
Optimal
SLM

Figure 18: Multi-threading – We present the query latency with 1,4,8,16 threads.

12 18 24 7 13 22
JOB Query

0

200

400

600

800

1000

1200

1400

La
te

nc
y

(m
s)

3.3%

6.4%

5.2%

50.6%

22.0%

21.9%

Figure 19: In memory JOB query latency.

of four representative JOB queries. We found that SLM achieves a
higher latency reduction over Pure EM inQuery 7 as we increase the
number of threads. This is because the hash build time accounts for
a significant portion of Query 7’s runtime, and hash table construc-
tion scales worse than the I/O operations due to intensive memory
copies and random accesses. Since SLM builds more lightweight
hash tables, it scales better than Pure EM overall.

In-memory Scenarios. We configure DuckDB’s buffer pool to
40GB (sufficient for all JOB tables and intermediate results) and
preload all relevant tables into memory before execution. We rerun
the JOB benchmark and observe that SLM achieves an average
latency reduction of 13.2% and 14.8% against Pure EM and LM,

respectively. Figure 19 details the runtime breakdowns for 6 se-
lected queries, where “I/O time” refers to filling DataChunks with
table data from memory only. SLM’s improvement over Pure EM
diminishes for the left three queries because SLM loses one of its
primary advantages in reducing disk I/O. For queries such as the
right three in Figure 19, however, SLM’s improvement grows be-
cause its reduction in the hash build time becomes more impactful
with smaller overall query latency due to the elimination of I/O.

6.2 Case Study
We present three case studies in Figure 20 to illustrate why Pure EM
and LM are suboptimal in modern analytical databases. Pure EM

4626

link_type_id=lt.id

k.id=keyword_id

88k rows

81k rows

Agg
LM 51k rows

t

HJ

HJ

ltHJ

ml HJ

ci HJ

itHJ

…

pi
info

(2.9M)

info

1.2M rows

10k rows

HJ

keyword_id

link_type_id

HJ

HJk

Agg
LM 15k rows

name, note, title

lt

HJ

mk

(4.5M)

HJ

ctHJ

cn
name

HJ

mc
note

HJ

t
title

ml

LM 3.3M rows

(30K)

keyword_id,

 link_type_id

HJ

HJmi

Agg

t

HJ

it

it

HJ

HJ

HJ

kt

…

(1.4M)

info

mii

point#1
31k rows

point#2
16k rows

point#3
109k rows

Query 7 Query 11 Query 13

Figure 20: Case study – we annotate the attribute names under
discussion and their materialization points with cardinality.

is suboptimal in Query 7 because delaying materialization of the
“info” attribute (varcharwith avg. length = 98B) after the four hash
build operators is particularly beneficial. Replacing the “info” values
with 4-byte row IDs in these hash tables substantially reduces the
Memory Copy Cost (by ≈ (10𝑘 + 1.2𝑀 + 88𝑘 + 81𝑘) ∗ (98− 4) bytes).

Pure LM did not perform well in Query 11 because it mistak-
enly selects an ultra-late materialization point (cardinality = 3.3M)
for two int32 attributes “keyword_id” and “link_type_id”. Late
materializing integer attributes does not yield Memory Copy Cost
savings, and the cardinality at the chosen materialization point is
0.73× and 111× that of the corresponding base table “mk” and “ml”,
causes inefficient I/O skipping and high Fetching Cost. In constrast,
SLM achieves a 35.6% improvement by only late materializing three
string attributes (“name”, “note”, and “title”).

A later materialization point is not always optimal. For example,
consider the three LM points (i.e., point #1, #2, #3) for the “info”
attribute in Query 13. Although point #3 has lower Memory Copy
Cost than point#2 due to two more hash builds between them,
its larger cardinality incurs higher Fetching Cost. Our cost model
captures this and chooses the intermediate point#2, which is indeed
the optimal materialization point.

Additionally, restrictingmaterialization to points with sorted row
IDs (and thus forcing EM for all build-side attributes) [16, 31, 40]
is often suboptimal because it overlooks potential Memory Copy
Cost reductions. In Query 7, for example, such a restriction only
considers LM after the 10k hash join (marked in green), yielding
an 18.5% latency reduction, far from the 36.8% at the optimal point.
Similar suboptimal choices can occur in Query 11 for attributes
such as “name”, “note”, and “title”.

6.3 SLM Optimization Overhead
We measure the three components of SLM’s optimization overhead
(refer to Figure 6) in the above benchmarks:
- search (0.31-1.03 ms): Identifies feasible materialization points;
its duration depends on query complexity (# pipelines).

- inference (≈ 2.5 ms): Collects features for each attribute at
all feasible materialization points and loads our trained model
(using scikit-learn in Python) to batch process all features and
inference costs.

- optimize (0.12-0.72 ms): Re-optimizes the physical plan based
on the selected materialization points; its duration depends on
the attribute count.

The total optimization overhead is around 3-4 ms, which is minor
compared to the execution time of a typical analytical query.

7 RELATEDWORK
C-store first introduced Late Materialization [12]. With Hyrise [23],
they have explored maximizing I/O skipping by reordering filter
execution and dynamically choosing the most efficient filtering
strategies. Existing works select materialization strategies coarsely.
Some apply either EM or LM holistically to the entire query plan
according to resource cost predictions [30]. Vertica [46] and Um-
bra [16] use LM only for probe-side attributes to avoid the costly
out-of-order probing. These methods, however, lack fine-grained,
attribute-level EM/LM selection, missing optimization opportuni-
ties. PosDB pioneered hybrid EM/LM within single query plans
using “Hybrid blocks” (columnar structures for value lists or row
IDs) [20, 28]. However, it only evaluates manually crafted plans for
two queries, lacking systematic modeling and generalization.

Other works addressed the out-of-order probing problem of the
right-side table after joins. Jive-Join [36] and FlashJoin [48] fully
sort the row IDs to enable single-scan fetching but have to reorder
the output values with an additional sort. Radix Decluster [38] uses
cache-sized groups, a cache-conscious radix sort in its Batch Phase,
and a dual algorithm in its Output Phase. Rare-Join [45] groups row
IDs by disk page and loads the maximum number of groups fit in
memory in the Fetch Phase, ignoring the cache efficiency. These
fetching strategies, however, overlook modern database features
and incur noticeable overhead in their Batch and Output Phases.
They are also limited to single joins that eagerly materialize all
payloads strictly after each join.

Two future directions could extend Selective Late Materialization
(SLM). First, Sideways Information Passing (SIP) aims to prune data
early in scans by transferring filters (e.g., bloom filters) between
join relations [19, 29, 43, 49]. Current practice [46] often limits SIP
filter construction to the build-side for probe-side pruning. Com-
bining this with SLM could yield further performance improve-
ments because LM build-side payloads is beneficial, as shown in
Section 6.1. Second, as analyzed in Section 2.2, deferring payload
materialization operators with row-oriented data structures reduces
the Memory Copy Cost. While this paper focused on hash build
operators, extending this to other operators such as Top-K could
also yield performance benefits.

8 CONCLUSION
This work revisits the concept of late materialization in modern
vectorized execution engines, offering a detailed analysis of its trade-
offs. Considering modern hardware performance characteristics,
we introduce the problem Selective Late Materialization, which in-
volves attribute-wise intelligent selection of materialization points.
We propose a cost-based solution and validate its effectiveness
through microbenchmarks and real-world query evaluations.

4627

REFERENCES
[1] 2022. Apache Parquet. https://parquet.apache.org/.
[2] 2024. Duckdb v1.1.0. https://github.com/duckdb/duckdb/releases/tag/v1.1.0.
[3] 2024. JOB implement. https://github.com/gregrahn/join-order-benchmark?tab=

readme-ov-file.
[4] 2024. Kaggle Movie ID dataset. https://www.kaggle.com/datasets/grouplens/

movielens-20m-dataset?select=rating.csv.
[5] 2024. Kaggle USA Real Estate Dataset. https://www.kaggle.com/datasets/

ahmedshahriarsakib/usa-real-estate-dataset?select=realtor-dataset-100k.csv.
[6] 2025. Apache Doris. https://github.com/apache/doris.
[7] 2025. emhash. https://github.com/ktprime/emhash.
[8] 2025. StarRocks. https://github.com/StarRocks/starrocks.
[9] 2025. TPC-DS Benchmark Standard Specification. https://www.tpc.org/tpcds/.
[10] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Madden,

et al. 2013. The design and implementation of modern column-oriented database
systems. Foundations and Trends® in Databases 5, 3 (2013), 197–280.

[11] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-
sion and execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data. 671–682.

[12] Daniel J Abadi, Daniel S Myers, David J DeWitt, and Samuel R Madden. 2006.
Materialization strategies in a column-oriented DBMS. In 2007 IEEE 23rd Interna-
tional Conference on Data Engineering. IEEE, 466–475.

[13] Minseon Ahn, Thomas Willhalm, Norman May, Donghun Lee, Suprasad Mutalik
Desai, Daniel Booss, Jungmin Kim, Navneet Singh, Daniel Ritter, and Oliver
Rebholz. 2024. An Examination of CXL Memory Use Cases for In-Memory
Database Management Systems using SAP HANA. Proceedings of the VLDB
Endowment 17, 12 (2024), 3827–3840.

[14] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance.. In VLDB, Vol. 1. 169–180.

[15] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, et al. 2022. Amazon Redshift re-invented. In Proceedings of the
2022 International Conference on Management of Data. 2205–2217.

[16] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To partition, or
not to partition, that is the join question in a real system. In Proceedings of the
2021 International Conference on Management of Data. 168–180.

[17] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proceedings of the VLDB Endowment 13, 12 (2020), 2649–2661.

[18] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[19] Kjell Bratbergsengen. 1984. Hashing methods and relational algebra operations.
In Proceedings of the 10th International Conference on Very Large Data Bases.
323–333.

[20] George A Chernishev, Viacheslav Galaktionov, Valentin V Grigorev, Evgeniy
Klyuchikov, and Kirill Smirnov. 2022. A Comprehensive Study of Late Material-
ization Strategies for a Disk-Based Column-Store.. In DOLAP. 21–30.

[21] Yannis Chronis, Anastasia Ailamaki, Lawrence Benson, Helena Caminal, Jana
Gičeva, Dave Patterson, Eric Sedlar, and Lisa Wu Wills. 2025. Databases in the
Era of Memory-Centric Computing. In Cidr, Vol. 25.

[22] Manos Frouzakis, Juan Gómez-Luna, Geraldo F Oliveira, Mohammad Sadrosadati,
and Onur Mutlu. 2025. PIMDAL: Mitigating the Memory Bottleneck in Data Ana-
lytics using a Real Processing-in-Memory System. arXiv preprint arXiv:2504.01948
(2025).

[23] Martin Grund, Jens Krueger, Matthias Kleine, Alexander Zeier, andHasso Plattner.
2011. Optimal query operator materialization strategy for hybrid databases. In
Proceedings of the 2011 Third International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA’11). 169–174.

[24] Alan Halverson, Jennifer L Beckmann, Jeffrey F Naughton, and David J Dewitt.
2006. A comparison of c-store and row-store in a common framework. Technical
Report. University of Wisconsin-Madison Department of Computer Sciences.

[25] Stavros Harizopoulos, Velen Liang, Daniel J Abadi, and Samuel Madden. 2006.
Performance tradeoffs in read-optimized databases. In Proceedings of the 32nd
international conference on Very large data bases. Citeseer, 487–498.

[26] Stratos Idreos, Martin L Kersten, and Stefan Manegold. 2009. Self-organizing
tuple reconstruction in column-stores. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 297–308.

[27] A. Kipf, RMarcus, A Van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neumann.
2019. SOSD: A Benchmark for Learned Indexes. (2019).

[28] Evgeniy Klyuchikov, Michael Polyntsov, Anton Chizhov, Elena Mikhailova, and
George Chernishev. 2024. Hybrid Materialization in a Disk-Based Column-
Store. In Proceedings of the 7th Joint International Conference on Data Science &
Management of Data (11th ACM IKDD CODS and 29th COMAD). 164–172.

[29] Paraschos Koutris. 2011. Bloom filters in distributed query execution. University
of Washington, CSE 544 (2011).

[30] Chi Ku, Yanchen Liu, Masood Mortazavi, Fang Cao, Mengmeng Chen, and
Guangyu Shi. 2014. Optimization strategies for columnmaterialization in parallel
execution of queries. In Database and Expert Systems Applications: 25th Interna-
tional Conference, DEXA 2014, Munich, Germany, September 1-4, 2014. Proceedings,
Part II 25. Springer, 191–198.

[31] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier,
Lyric Doshi, and Chuck Bear. 2012. The vertica analytic database: C-store 7 years
later. arXiv preprint arXiv:1208.4173 (2012).

[32] Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Mehmet Ozan
Kabak, Liang-Chi Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A
Fast, Embeddable, Modular Analytic Query Engine. In Companion of the 2024
International Conference on Management of Data. 5–17.

[33] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In Proceedings of the 2016
International Conference on Management of Data. 311–326.

[34] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 743–754.

[35] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[36] Zhe Li and Kenneth A Ross. 1999. Fast joins using join indices. The VLDB Journal
8 (1999), 1–24.

[37] Yihao Liu, Xinyu Zeng, and Huanchen Zhang. 2024. LeCo: Lightweight Compres-
sion via Learning Serial Correlations. Proceedings of the ACM on Management of
Data 2, 1 (2024), 1–28.

[38] Stefan Manegold, Peter Boncz, Niels Nes, and Martin Kersten. 2004. Cache-
conscious radix-decluster projections. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30. 684–695.

[39] Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold Sjoerd Mullen-
der Martin Kersten. 2012. MonetDB: Two decades of research in column-oriented
database architectures. Data Engineering 40 (2012).

[40] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR, Vol. 20. 29.

[41] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: meta’s unified
execution engine. Proceedings of the VLDB Endowment 15, 12 (2022), 3372–3384.

[42] Mark Raasveldt and Hannes Mühleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[43] Sukriti Ramesh, Odysseas Papapetrou, and Wolf Siberski. 2009. Optimizing
distributed joins with bloom filters. In Distributed Computing and Internet Tech-
nology: 5th International Conference, ICDCIT 2008 New Delhi, India, December
10-12, 2008. Proceedings 5. Springer, 145–156.

[44] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey
Milovidov. 2024. ClickHouse-Lightning Fast Analytics for Everyone. Proceedings
of the VLDB Endowment 17, 12 (2024), 3731–3744.

[45] Mehul A Shah, Stavros Harizopoulos, Janet L Wiener, and Goetz Graefe. 2008.
Fast scans and joins using flash drives. In Proceedings of the 4th international
workshop on Data management on new hardware. 17–24.

[46] Lakshmikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan, Ariel
Cary, Vivek Bharathan, and Chuck Bear. 2013. Materialization strategies in
the vertica analytic database: Lessons learned. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 1196–1207.

[47] Mike Stonebraker, Daniel J Abadi, AdamBatkin, Xuedong Chen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al.
2018. C-store: a column-orientedDBMS. InMakingDatabasesWork: the Pragmatic
Wisdom of Michael Stonebraker. 491–518.

[48] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A Shah, Janet L Wiener,
and Goetz Graefe. 2009. Query processing techniques for solid state drives. In
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data. 59–72.

[49] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M Patel. 2017. Looking
ahead makes query plans robust: Making the initial case with in-memory star
schema data warehouse workloads. Proceedings of the VLDB Endowment 10, 8
(2017), 889–900.

[50] Marcin Zukowski, Mark Van de Wiel, and Peter Boncz. 2012. Vectorwise: A
vectorized analytical DBMS. In 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 1349–1350.

4628

https://parquet.apache.org/
https://github.com/duckdb/duckdb/releases/tag/v1.1.0
https://github.com/gregrahn/join-order-benchmark?tab=readme-ov-file
https://github.com/gregrahn/join-order-benchmark?tab=readme-ov-file
https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset?select=rating.csv
https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset?select=rating.csv
https://www.kaggle.com/datasets/ahmedshahriarsakib/usa-real-estate-dataset?select=realtor-dataset-100k.csv
https://www.kaggle.com/datasets/ahmedshahriarsakib/usa-real-estate-dataset?select=realtor-dataset-100k.csv
https://github.com/apache/doris
https://github.com/ktprime/emhash
https://github.com/StarRocks/starrocks
https://www.tpc.org/tpcds/

	Abstract
	1 Introduction
	2 Revisiting Late Materialization
	2.1 Late Materialization in Column Stores
	2.2 Modern Vectorized Analytical Databases
	2.3 The Need for Selective Late Materialization

	3 Selective Late Materialization
	3.1 Fetching Algorithms and Costs
	3.2 Modeling Memory Copy Cost

	4 Integration with Modern Databases
	4.1 Preliminaries of pipeline execution
	4.2 Identifying Feasible Materialization Points
	4.3 Generating Materialization Plan
	4.4 Materialization in a Single Pipeline
	4.5 Implementation Details in DuckDB

	5 Microbenchmark
	5.1 Experiment Setup
	5.2 Uniform Distribution
	5.3 Data Skew
	5.4 Multiple Columns
	5.5 Limited Memory
	5.6 Compressed storage
	5.7 Probe Side
	5.8 Mid-pipeline Materialization
	5.9 Cost Model Efficiency

	6 End-to-End Evaluation
	6.1 Benchmark Results
	6.2 Case Study
	6.3 SLM Optimization Overhead

	7 Related work
	8 Conclusion
	References

