Check for
Updates

PUSHtap: PIM-based In-Memory HTAP with Unified
Data Storage Format

Yilong Zhao
Shanghai Jiao Tong University
Shanghai, China
Shanghai Qi Zhi Institute
Shanghai, China
sjtuzyl@sjtu.edu.cn

Fangxin Liu*
Shanghai Jiao Tong University
Shanghai, China
Shanghai Qi Zhi Institute
Shanghai, China
liufangxin@sjtu.edu.cn

Haibing Guan
Shanghai Jiao Tong University
Shanghai, China
hbguan@sjtu.edu.cn

Abstract

Hybrid transaction/analytical processing (HTAP) is an emerg-
ing database paradigm that supports both online transaction
processing (OLTP) and online analytical processing (OLAP)
workloads. Computing-intensive OLTP operations, involv-
ing row-wise data manipulation, are suitable for row-store
format. In contrast, memory-intensive OLAP operations,
which are column-centric, benefit from column-store for-
mat. This data-format dilemma prevents HTAP systems from
concurrently achieving three design goals: performance iso-
lation, data freshness, and workload-specific optimization.
Another background technology is Processing-in-Memory

“This work was partially supported by the National Key Research and
Development Program of China (2024YFE0204300), National Natural Science
Foundation of China (Grant No.62402311), and Natural Science Foundation
of Shanghai (Grant No.24ZR1433700). Fangxin Liu and Li Jiang are the
corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS 25, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1080-3/2025/03
https://doi.org/10.1145/3676642.3736120

Mingyu Gao
Tsinghua University
Beijing, China
Shanghai Qi Zhi Institute
Shanghai, China
gaomy@tsinghua.edu.cn

Gongye Chen
Shanghai Jiao Tong University
Shanghai, China
gongye_chen@sjtu.edu.cn

179

Huanchen Zhang
Tsinghua University
Beijing, China
Shanghai Qi Zhi Institute
Shanghai, China
huanchen@tsinghua.edu.cn

He Xian
Shanghai Qi Zhi Institute
Shanghai, China
5126590002 1@stu.ecnu.edu.cn

Li Jiang®
Shanghai Jiao Tong University
Shanghai, China
Shanghai Qi Zhi Institute
Shanghai, China

jiangli@cs.sjtu.edu.cn

(PIM), which integrates computing units (PIM units) inside
DRAM memory devices to accelerate memory-intensive work-
loads, including OLAP.

Our key insight is to combine the interleaved CPU access
and localized PIM unit access to provide two-dimensional
access to address the data format contradictions inherent
in HTAP. First, we propose a unified data storage format
with novel data alignment and placement techniques to
optimize the effective bandwidth of CPUs and PIM units
and exploit the PIM’s parallelism. Second, we implement
the multi-version concurrency control (MVCC) essential for
single-instance HTAP. Third, we extend the commercial PIM
architecture to support the OLAP operations and concurrent
access from PIM and CPU. Experiments show that PUSHtap
can achieve 3.4x/4.4x OLAP/OLTP throughput improvement
compared to multi-instance PIM-based design.

CCS Concepts: -« Computer systems organization —
Heterogeneous (hybrid) systems; « Information sys-
tems — Database design and models.

Keywords: Processing-in-Memory (PIM), Hybrid Transac-
tional/Analytical Processing (HTAP), DRAM, Unified Data
Format

ACM Reference Format:

Yilong Zhao, Mingyu Gao, Huanchen Zhang, Fangxin Liu, Gongye
Chen, He Xian, Haibing Guan, and Li Jiang. 2025. PUSHtap: PIM-
based In-Memory HTAP with Unified Data Storage Format. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,

https://orcid.org/0000-0001-8291-6896
https://orcid.org/0000-0001-8433-7281
https://orcid.org/0009-0001-4821-1558
https://orcid.org/0000-0002-8769-293X
https://orcid.org/0009-0005-9944-414X
https://orcid.org/0009-0008-2099-4109
https://orcid.org/0000-0002-4714-7400
https://orcid.org/0000-0002-7353-8798
https://doi.org/10.1145/3676642.3736120
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676642.3736120&domain=pdf&date_stamp=2025-08-06

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

R: Row C:Column D: Memory Device

[OLTP Engine | [CPU |
RO 0,1,2,3
Database DRAM Bank ADE Dimension
CoO C1)C2 C3 .| Do D1 D2 D3
RO 00 01 02 03 S| 0x00 0x01 0x02 0x03
R1 10 11 12 13 S| 0x04 0x05 0x06 0x07
R2 20 21 22 23 g 0x08 0x09 OxOA O0x0B
R3 30 31 32 33 w 0x0C 0x0D OxOE OxOF
N
co 0480 i3 i3 {
OLAP Engine PIMO|[PIM1 | PIM2][PIM3
N
Bank Dimension
(@) (b)

Figure 1. (a) HTAP system: OLTP and OLAP engines pro-
cess rows and columns, respectively. (b) DRAM-based PIM
architecture: CPU interleaves data across memory devices
(ADE), and PIM units access data inside the device (IDE).

Volume 3 (ASPLOS °25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3676642.3736120

1 Introduction

Hybrid transaction/analytical processing (HTAP) is an emerg-
ing processing architecture that allows one database system
to support two processing sets: online transaction process-
ing (OLTP) and online analytical processing (OLAP) [48].
There has been extensive research and design for HTAP
[6, 20, 27, 53, 54, 57]. As shown in Figure 1 (a), the OLTP
engine processes transactions, which are single-record oper-
ations on rows, including read, insert, update, and delete. On
the contrary, the OLAP engine processes analytical queries to
solve multidimensional analysis problems on columns. OLTP
includes read and write operations, whereas all OLAP opera-
tions are read operations. An ideal HTAP system should meet
the following three design goals [6, 37, 41]. (1) Workload-
specific optimizations: optimized performance for both OLTP
and OLAP workloads. (2) Performance isolation: limited per-
formance degradation for concurrent execution of transac-
tions and analytical queries. (3) Data refreshes: analytical
queries need up-to-date data. However, current HTAP sys-
tems cannot fulfill three goals simultaneously due to the
diverse data storage formats required by OLTP and OLAP,
as analyzed below.

Figure 2 (a,b,c) summarizes three predominantly adopted
data formats in current HTAP systems. (1) Single-instance
with single data format, either column or row store (Fig-
ure 2 (a)) [20, 57]. This design can achieve high data fresh-
ness because the OLAP engine is always visible to the latest
data that is updated by the OLTP engine. However, a single
data format results in sub-optimal workload-specific perfor-
mance. For example, performing analytical queries on row-
store has 50% performance degradation when over 95% of
the accessed data are unused; while transactions on column-
store have more than 20% degradation [52]. (2) Multi-instance

180

Yilong Zhao et al.

RS/CS: Row/Column-store H/M/L: High/Medium/Low Performance
F: Data Freshness I: Performance Isolation W: Workload-specific Optimization

(CPU) (PIM)
OLTP OLAP| OLTP OLAP | OLTR OLAP lOLTP OLAP
Qued: Ju wj 3 ="l ! [nH]
RS |I[RS |_[CSRep|I[RSA €S][Unified

= || =l T =3 s

o |2 =2 !
w ! w ! w LW

| Fio Fooo Fol F
(a) (b) (©) (d)

Figure 2. Different HTAP data format design. (a) Single-
instance design with single data format. (b) Multiple-instance
design with different data formats. (c) Single-instance design
with mixed data format. (d) PUSHtap with single-instance
and unified data format.

design [6, 54]. As shown in Figure 2 (b), both transactions and
analytical queries process on their preferred data formats,
and thereby can obtain optimal workload-specific perfor-
mance and high-performance isolation. However, the HTAP
system must rebuild the column-store replication from the
latest row-store data to ensure data freshness, which requires
a significant latency. The rebuilding cannot be executed fre-
quently, leading to low data freshness [37]. (3) Single-instance
design with mixed data format [27, 53]. This design is com-
posed of a primary column-store data and a row-store delta,
as shown in Figure 2 (c). The row-store delta maintains the
newest version of rows updated by transactions. OLTP and
OLAP engines must scan the two format regions to acquire
the complete data. For example, the OLAP engine first scans
the column-store data with high bandwidth, then acquires
the newest data version by scanning the row-store delta
with low bandwidth, and finally merges the data. This ap-
proach ensures the freshness of the data but compromises
the performance isolation of OLAP and OLTP.

Processing-in-memory (PIM) integrates computing units,
i.e., PIM units, inside memory devices to accelerate memory-
intensive workloads [11, 25, 26, 33, 34]. PIM units directly
access data on their own devices, bypassing the prolonged
and limited memory bus to utilize the internal memory band-
width better. For example, a commercial PIM architecture can
achieve over 3.3x bandwidth improvement and 10x access en-
ergy reduction [11]. One key limitation of PIM is its localized
access, preventing efficient access to remote data residing on
other devices. For example, in Figure 1 (b), PIM 0 can directly
access data 9x00,04,08,0C in the device D@ within several
nanoseconds. While for those in device D1,D2,D3, they need
CPU to move the data to their local device, costing around
0.2us due to the mode-switch overhead [11].

Memory interleaving is ubiquitously employed to improve
CPU’s memory bandwidth. Figure 1 (b) presents a memory
space interleaved to four devices. Contiguous data blocks,

https://doi.org/10.1145/3676642.3736120
https://doi.org/10.1145/3676642.3736120

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

0x00-04, are split and mapped to the same location of de-
vices, respectively. CPU can access four blocks in parallel
within a single memory access, thereby maximizing the mem-
ory bandwidth.

This work advocates combining PIM’s localized access
and CPU’s interleaved access to provide a new perspective
for two-dimensional access to every memory bank: the CPU
accesses data across devices (ADE) in parallel; massive PIM
units simultaneously access local data inside devices (IDE)
with low latency. We can map the HTAP row to the ADE di-
mension and the column to the IDE dimension. Accordingly,
the CPU works as an OLTP engine, and PIM units work as
an OLAP engine. Other memory hierarchies, e.g., bank (can
scale to rank and channel), form the third access dimension
for database scalability.

In this work, we propose PUSHtap, a PIM-based single-
instance in-memory HTAP with the unified data storage
format as outlined earlier, as shown in Figure 2 (d). OLTP
and OLAP engines can achieve optimal performance and data
freshness through two-dimensional access on the instance.
The contribution of this paper is as follows:

e Unified HTAP Architecture: We propose PUSHtap,
a PIM-based single-instance HTAP architecture with
a unified data storage format. The key insight behind
PUSHtap is the combination of interleaved CPU access
and localized PIM unit access to address the data for-
mat contradictions inherent in HTAP. We introduce a
data layout algorithm specifically designed for PUSH-
tap to enhance effective bandwidth across databases
with varying column widths.
Concurrency Control Operations: We design the
multi-version concurrency control (MVCC) and the
corresponding snapshot operations for PUSHtap. These
features are crucial for a single-instance database envi-
ronment to minimize data transfer between CPU and
PIM units, thus optimizing overall system efficiency.
e Architecture Support: We extend the memory con-
troller of DRAM-based general-purpose PIM (UPMEM-
like) [11], with a hardware interface to support the
OLAP operations and the concurrent access by CPU
and PIM units, which is crucial to PUSHtap.

2 Background
2.1 DRAM-based PIM

DRAM-based PIM architectures are proposed to accelerate
memory-intensive applications [11, 26, 34]. [11] is a repre-
sentative commercial general-purpose PIM architecture. A
PIM unit, along with two scratchpad SRAMs, WRAM (buffer
operands), and IRAM (buffer instructions), is integrated into
each memory bank. A PIM interface is added to each rank
to facilitate CPU control over PIM units. Memory-intensive
operations are offloaded to PIM units to better utilize the
internal bandwidth of DRAM.

181

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

A general-purpose PIM is designed with two modes: CPU
mode and PIM mode [11]. In CPU mode, CPU accesses DRAM
banks as conventional memory. In PIM mode, PIM units
fully control data flow and computation, and DRAM banks
are locked to prevent CPU access. When switching from
CPU mode to PIM mode, CPU needs to send messages to
all the PIM units to hand over the bank access control and
invoke the PIM units. After that, CPU polls the PIM units
until all the PIM units are finished. As there are thousands
of PIM units in a server (4 channels, 8 DDR4 DIMMs [11]),
it takes tens of microseconds to invoke and poll them.
With these offloading overheads, PIM is beneficial only for
coarse-grained PIM tasks [18]. The two-mode design is a
general design for PIM, and it is also adopted by other PIM
architectures, such as HBM-PIM [26].

2.2 PIM-based HTAP Systems

OLAP operations are performed on massive columns and are
memory-intensive [4, 6, 13, 21]. OLAP operations are pro-
posed to be accelerated by PIM. This approach prevents the
lengthy data movement between memory and CPU. Mode-
rian [13] proposes an execution model for analytical queries
on HMC-based PIM. The data are divided and moved to
the destination vault for the following computation during
each query, introducing additional memory movement and
violating the PIM’s design principle. Polynesia [6] adopts
a multi-instance design on HBM, with instances stored in
both CPU and PIM memory space. Their approach is still
the same as the multi-instance design with mixed data for-
mats (Figure 2 (b)) and requires rebuilding the column-store
instance through logs. The rebuilding involves transferring
both transaction logs and new-versioned data to the PIM
memory space. Despite the integration of supplementary
hardware for merging the log, this procedure still negatively
impacts analytical query performance. Specifically, with 8M
transactions, the query time is increased by 18% according to
their experimental results (Figure 9 (b) of [6]). In summary,
these approaches remain limited to existing data format de-
signs and do not fully exploit PIM’s advantage of minimizing
data movement.

2.3 Database Concurrency Control

MVCC is a widely used concurrency control method for
single-instance database systems. A metadata is maintained
for every row to facilitate transactions and analytical queries
[14, 22, 23]. The metadata contains three fields: a read times-
tamp, a write timestamp, and a pointer. The write timestamp
records the transaction that creates the version, and the read
timestamp records the transaction of the most recent read.
The pointer of this version points to the previous version of
this row. Upcoming transactions to the same row may form
a version chain. Before analytical queries, the timestamps
and the pointers are scanned to create a snapshot to summa-
rize the visible version of data for OLAP engine processing

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

[6, 27, 53]. The snapshot is a collection of data pointers that
have a consistent version. The analytical query is processed
on the snapshot to maintain the version’s consistency and
make sure they do not scan the new versions created by
concurrently issued transactions. For large-scale databases,
the snapshot is continuously updated based on newly arriv-
ing transactions rather than being rebuilt from scratch each
time [68]. Moreover, the memory space becomes fragmented
because MVCC frequently allocates new memory for new-
versioned rows and releases memory for stale rows. This
usually reduces the memory access efficiency [43] because
memory defragmentation is processed periodically in the
database with MVCC.

3 Challenges

In this work, we propose PUSHtap, motivated by the poten-
tial to optimize HTAP through integrated interleaved CPU
and localized PIM unit access. This approach brings new op-
portunities to achieve all three design goals using a unified
data format and single-instance design. However, we still
face some challenges as presented below.

(1) Data Format Challenge—Data Alignment for Band-
width Effectiveness. We refer to the data size of each ele-
ment on ADE dimension and IDE dimension’s intersection
as interleave granularity, shown as the data blocks in Figure 1
(b), indicating the minimum data size the CPU and PIM can
read from a memory sub-module during each access. The
interleave granularity is fixed to 8B in DIMM-based PIM due
to the specification of the protocol.

According to our insight, the rows and columns are aligned
to the ADE and IDE dimensions, respectively. However,
with variable-sized column width, the traditional row-store
or column-store cannot satisfy the requirement. For exam-
ple, in table CUSTOMER of CH-Benchmark [8-10], the col-
umn width varies from 2 to 9 bytes. The conventional row-
/column-stored format is shown in Figure 3 (a). If the table is
row-stored, the columns are not aligned to IDE because the
row size is not a multiple of the device number. For example,
Column id of the first row is mapped to devices 0 and 1,
while that of the second row is mapped to devices 1 and 2.
On the other hand, if the table is column-stored as in [57],
rows are not aligned to the ADE dimension. Elements of
a row, e.g., id and zip of the second row, are distributed
across different cache lines. This data format costs the CPU
multiple bursts to access a row during transactions, resulting
in low effective bandwidth.

In section 4.1, we propose a novel compact aligned format
to maintain hardware alignment while optimizing bandwidth
usage and preserving data integrity.

(2) Data Format Challenge—PIM Parallelism. Ana-
lytical queries are executed on only several columns. As
presented in Figure 5 (a) of section 4.2, mapping a whole col-
umn to the IDE dimension actually worsens the parallelism

182

Yilong Zhao et al.

of PIM units. We thus propose a block-circulant format to
fully utilize the parallelism of PIM units to optimize analyti-
cal queries’ performance in section 4.2.

(3) Data Movement Challenge in MVCC. In single-
instance database design with MVCC, snapshot and defrag-
mentation are two necessary operations. Unlike CPU-based
HTAP systems, the snapshot should be transferred to PIM
units in PUSHtap. This requires encoding the snapshot to
minimize the data transfer. Moreover, PUSHtap focuses on
compact data placement to ensure effective bandwidth. The
fragmentation caused by MVCC brings severe performance
degradation. We need to reduce the defragmentation over-
head by transferring less data and utilizing the large PIM
bandwidth to allow more frequent defragmentation execu-
tion. The snapshot and defragmentation operation designed
for PUSHtap is presented in section 5.

(4) Hardware Challenge. Current PIM designs presented
in section 2.1 cannot satisfy PUSHtap’s requirements in the
following two aspects. Firstly, in a single-instance HTAP
database, the OLTP and OLAP engines process the same
data instance concurrently, requiring CPU and PIM units
to concurrently access the same banks. However, current
PIM architectures only benefit from coarse-grained PIM tasks
due to the significant offloading overhead. During the coarse-
grained PIM task, PIM occupies the bank for over seconds,
whether or not it is accessing the banks. This results in long
transaction latency and cannot fulfill many scenarios: Many
databases are timely databases and require a microsecond-
level delay[15]. In section 6, we design the hardware and
software interface for OLAP operations by automatically
controlling the PIM units.

4 The Unified Data Format

In this section, we present the unified data format of PUSH-
tap that optimizes the performance of both row and column-
wise operations in HTAP. We first present a compact aligned
format method for a database with variable column widths
to fit the fixed interleave granularity.

4.1 Aligned Data Format

4.1.1 Naive Aligned Format. One naive aligned format
that all the rows and columns are aligned with ADE and IDE,
respectively, is presented in Figure 3 (b). Since our example
has only four devices, the table is divided into two parts. The
columns id, d_id, w_id, and zip are stored in the first part,
while state and credit are stored in the second part. The
two parts are mapped to different memory channels so the
CPU can access them in parallel. The widest column is zip
(9 bytes), and all other columns are aligned to this width
by padding zeros for a naive alignment. In the following
discussion, we refer to the width of the widest column as
row width. Part 1’s row width is 9, and Part 2’s is 2.

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

IDE_ADE , Device IDE_ADE , Device IDE_ADE | Device
1 2 3 0 1 2 3 Device 0 2 3
Row-Store Part 1 w=9 0 1 2 3 art1w=4__
d_id[1 i - i i i
TABLE customer (1ol d A | d_id@)"w_id@)| i o | d_d[Olw_Id[0} 2ip[0] | | q(ay| ZPL181 | Zip(5:]
id smallint (2), Zip[8] [state|0] | state[1][credi0]| | | o0 | o 0| ZPO | d_id[]w_id[T] zip[1] | | | W_id@)1 |)
d_id smallint (2), * credit[1]] BT ()] Wil i 0 0 id[2] zip[2] | | ! — b L
w_id integer (4), * 2 Not Aligyod o IDE X | | CE w11 Jine) | [0 0 w_id[3] zip[3 W id(ay| 7151 Zipl5]
zip char (9), I 0 0 0 0 [zip[4 SRR @) (4)
state char (2),* ol Zoor 1| To oo 0 0 0 [zip5 L
creditchar (2) el ip[0] PIMBDW 2/9X »CPU BDW 17/36 X - PIM BDW 4/4 4 < =+ »CPU BDW 15/16 +
) w_id[1] | zip[1 Part 2 w=2 0 0 0 1Zpi6 Part 2 w=2 Aligned
w_id[2]| Zip[2 art = w= 8 8 8 zgpg} art2 w= gned <
- i i tate(2)*|credit(2) ZIp d_id(2)*|state(2)"]
Key Col w_id[3] | zip[3] || IS
ey Lolumns w_id[0] [zip[] | | [state(2)|credit(2) d_id(2)* state(2)’
Not Aligned to ADE X
(a) Origin Row/Column Store (b) Naive Aligned Format (c) Compact Aligned Format

Figure 3. (a) Row-store format in current CPU-based HTAP and column-store format in current PIM-based HTAP. Different
colors represent different rows. (b) A naive aligned format for a database with various column widths. (c) The proposed
compact aligned format achieves both alignment and high effective bandwidth. (w: Column width)

Key column: Iteration 0: Generate Part 1
id (2 . (A
dio Gy |Seps [wise | | |
w_id (4)* TG
state (2 | Step 2: ’w_id(4)" GLIET(@3] ‘
Normal CO'(UQTW PIM Bandwidth % X
zip Step 3: e | Zip[1:5] | zip[5:] [credit(2
credit (2) w_id(4) p(a) ! ﬂ)]
Key column: Iteration 1: Generate Part 2
id (2" | gepq: [
did @ | Wy | @ ‘ ‘ ‘
state (2)*
Normal column: | Step 2: ’ id(2)* | d_id(2)* | state(2)* ‘
)

Figure 4. Generating the compact aligned format.

This naive format wastes not only memory capacity but
also CPU’s and PIM’s bandwidth. When the CPU reads one
row in part 1, it reads 9 bytes from each device. However,
only 17 of the 4 X 9 bytes contain actual data. The same
situation also occurs when PIM units access DRAM devices.
When the PIM unit processes column id, 8-byte contiguous
data is loaded to the SRAM buffer in each access because the
data wire is 64-bit wide [11]. Only 2 out of 8 bytes contain
actual data, wasting 75% of the PIM bandwidth.

4.1.2 Compact Aligned Format. To further improve the
effective bandwidth, we propose a compact aligned format
for PUSHtap to improve the bandwidth efficiency of PIM
and CPU. We can take advantage of the following two obser-
vations. First, bytes in a row can be reordered, and columns
of similar widths can be mapped to the same part, reducing
zero padding. Second, some columns are not scanned in any
frequent analytical queries. These OLAP-free columns can
be split and mapped to multiple devices, leading to a smaller
row width and reducing the number of dummy ‘0’s padded.

In the following discussion, we denote the columns scanned
by analytical queries as key columns and other columns as
normal columns. For example, column id is scanned by Query
3. While column zip is not operated by any query in CH-
benchmark [8, 10]. Therefore, id is a key column, while zip
is a normal column.

183

Based on the above observations, we present a strategy
based on the bin-packing algorithm to generate a compact
aligned format, as shown in Figure 4. The format can keep
the alignment to ADE and IDE dimensions and simultane-
ously achieve a high effective bandwidth. We introduce a
hyperparameter, the threshold th. In our example, we set
th = 3/4. In each iteration, we generate the format of one
part of the table. Firstly, we start with an empty part and
select the widest key column w_id and place it in the first
device of this part. Therefore, this part’s row width is deter-
mined as 4 bytes. Then in the second step, we select from the
rest key columns whose width > th- 4B (3B). In our example,
there is no rest key column satisfying the condition. If we
place a key column with a too-small width, for example, d_id
of 2B width, 50% of PIM bandwidth is wasted when scanning
the column. We would rather place them in the following
part. In the third step, we fill the rest of the bytes with the
normal columns. These columns can be divided into bytes
and placed in arbitrary order. In the following iterations, we
generate the format of other parts using the same strategy.

Design Trade-off by th. The underlying trade-off of set-
ting th is as follows: A larger th ensures a highly effective
PIM bandwidth as all the key columns are more compact.
However, this may split the table into too many parts. CPU
needs to access more cache lines to reform the row, lead-
ing to low effective CPU bandwidth. This trade-off is vali-
dated through the experiments conducted in section 7.2. The
threshold is system- and workload-dependent, primarily in-
fluenced by transaction/analytical query rates and system
bandwidth. Specifically, if the workload is predominantly
OLTP, a lower th value can be selected to optimize CPU band-
width. Conversely, if the workload is predominantly OLAP,
a higher th value should be chosen to maximize PIM band-
width. This threshold often remains constant during runtime.
Adjustment is typically unnecessary when query rates are
stable. However, specific conditions may warrant threshold

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Operation: filter (w_id, condition)

Device 0 1 2 3 Device 0 1 2 3
. Zip Zip Zip . Zip
- — I [1:5] I*[5:] (5] i | [1:5]
Device 0 1 2 3 Device|0 T 3
(0, !]
<3
<@
Q>
x 1k
Row
[| [PM1] | | | || oo [PIMO] [PIM1] [PIM2] [PIM3]

(a) (b)
Figure 5. (a) Compact aligned format with low parallelism.
(b) Block-circulant placement to fully exploit parallelism.

modifications. For instance, when CPU-side DRAM band-
width significantly exceeds OLTP requirements, increasing
the threshold can optimize OLAP performance.

Discussion on Key Column. Although for an actual
HTAP database, all columns can be scanned with analytical
queries, it does not mean that we need to conservatively
regard all columns as key columns. We can still perform ana-
lytical queries on normal columns that are distributed across
devices through the CPU, albeit with a performance loss.
The indivisibility of key columns restricts the opportunity
to generate a data layout with high effective bandwidth. We
justify this conclusion in section 7.2. Therefore, in the actual
deployment, we can prioritize the performance of frequent
queries and choose fewer key columns.

Our architecture maintains compatibility with traditional
methods for handling variable-width columns, though it
does not specifically optimize for them. In practical imple-
mentations, variable-width columns are typically handled
using traditional storage methods, such as length-prefixed
encoding or separate metadata structures [57].

4.2 Block-circulant Data Placement for PIM
Parallelism

With the compact alignment in the ADE dimension, one
placement strategy for the IDE dimension is to align all the
rows to the devices, as shown in Figure 5 (a). However, the
probability of being analyzed in OLAP workloads differs
across the columns. For example, eight queries analyze col-
umn id, while only three queries analyze column state
[8, 10]. Moreover, these two columns are analyzed by differ-
ent queries, and it is hard to schedule the two analysis tasks
in parallel. Load imbalance emerges across PIM units as a
“hotspot” column may be mapped to one PIM device.

We present a block-circulant data-placement strategy to
fully exploit the parallelism of PIM, as shown in Figure 5 (b).
The table is divided into blocks across the rows along the
IDE dimension, and each block contains B (suppose B=1024)
rows of data. In the first block (rows 0-1023), column i(i =
0, ..., 3) is mapped to device i. Then, in the second block (rows
1024-2047), the columns are rotated, i.e., column i is mapped
to device (i + 1)%4. Subsequent blocks perform the same

184

Yilong Zhao et al.

D:Data A: Delta S: Snapshot

D Snapshot T=T3

[Te—— Biti
EH E Step ScAan imap
C

A Meta Initial 0000
d0I [T1 [D.a%
B [T2 [DesH| ° 1000
f OO [T3 A'd.:l 1 1100
gAMm([T5 Lé.fv 2 0110

ointer
Trans. Timestamp| 8 0110

(b)

©

Banks

Figure 6. (a) Data region and delta region for MVCC. (b) The
metadata format. (c) Snapshotting.

rotation. With block-circulant data placement, each column
is evenly distributed to all the PIMs. PIM parallelism can be
fully utilized when scanning any column.

The block should be large enough to prevent the forma-
tion of too many discontinuous small blocks. The block size
should at least cover a row buffer of DRAM to ensure a
relatively high row hit rate. We set the block size to 1024.

5 MVCC Support

MVCC is essential for single-instance HTAP databases, and
PUSHtap supports MVCC. For OLTP workload, PUSHtap
retains the same operational processes as traditional HTAP
systems, with modifications only to the data storage format
of MVCC. However, for OLAP workloads, we optimize the
two MVCC operations, snapshotting and defragmentation,
to minimize data communication overhead.

5.1 MVCC Storage

The data store format for supporting MVCC in PUSHtap is
shown in Figure 6 (a). The storage of a table is divided into
two regions, data region and delta region. The data region
contains rows of original versions, while newer versions
created by transactions are stored in the delta region. As
metadata is not required by PIM units, it is stored in CPU
memory. The new versions of a row have the same rotation
as its origin row in the data region, so that we can directly
use PIM units to move the newest version back to the data
region during defragmentation. Therefore, the delta region
is also organized into blocks.

Figure 6 (b) depicts an example of version chain generated
by transactions in PUSHtap. When a transaction T1 updates
row a in block 1, this row is right-rotated by 1 column, and
therefore, its newer version should be put in block 1 of the
delta region, which has the same rotation. The CPU allocates
an empty row d in this block and records the transaction
timestamps and the pointer to the origin row as metadata.
Therefore, the newer version’s column is aligned to its origin
row. If a transaction updates a row that already has a new
version, for example, transaction T3, the CPU allocates an
empty row f in the same block. The pointer points to the
most recent version d and forms a version chain.

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

5.2 Snapshotting

Snapshotting is executed before analytical queries to make
PIM units operate on the rows of the correct version. In a
traditional database, the snapshot is a collection of valid row
pointers and is updated before every analytical query. We
adopt a similar strategy to maintain the snapshots for PUSH-
tap. However, in PUSHtap, each row is distributed across
multiple devices. Therefore, each device should maintain a
copy of the snapshot. To reduce the snapshot storage over-
head, we encode the snapshots into bitmaps as the address
of each row is relatively fixed in PUSHtap. The snapshot con-
tains two bitmaps containing the visible information of the
data and delta regions, respectively. Each bit in the bitmap
indicates the visible state of a row in the snapshot. For exam-
ple, bit ‘1" in the i™" position indicates the i'" row is visible
in the snapshot, while bit ‘0’ indicates that the row is in-
visible. To minimize the data communication between CPU
and PIM units, we maintain a dedicated region in memory
banks to store the bitmap of rows in this bank, as shown in
Figure 6 (a). In the proposed unified data format, each row
is distributed across the devices in a bank; therefore, each
device in this bank should store one copy of this bitmap.
During snapshotting, CPU updates the bitmap according to
the metadata. The bitmaps in these devices are also aligned
across the ADE dimension so that CPU can update them
simultaneously.

An example of snapshotting is shown in Figure 6 (c). Sup-
pose at time T4, we start to execute one analytical query, and
the last query is issued at T@. Transactions T1, T2, and T3
are generated after the last analytical query; therefore, these
three transactions have not been updated to the bitmap. Dur-
ing snapshotting, we need to update the bitmap according to
the metadata one after another. T1 updates row a with new
version stored in row d. Therefore, the bit related to row a is
set to ‘0’, and the bit related to row d is set to ‘1’. Scanning
T2 and T3 have the same operation as scanning T1. T5 is
generated after this analytical query is issued; therefore, it
is skipped during snapshotting.

5.3 Defragmentation.

After a certain period, the transactions have updated nu-
merous rows, and the original version of these rows in the
data region is no longer used. To clean up these outdated
rows, PUSHtap performs defragmentation periodically. The
newest version rows in the delta region are moved to the
data region and overwrite their origin rows. OLTP is paused
during defragmentation to avoid data contention.

There are two candidate strategies to process the data
movement. The first strategy is to move data with the CPU,
which has two steps: (1) CPU reads the metadata from DRAM
and merges it. (2) CPU processes the data movement ac-
cording to the metadata. Due to the low bandwidth of the
memory bus, copying rows is inefficient for tables with large

185

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

row widths. The second strategy is to move with PIM units.
Due to the data format in PUSHtap, each row is distributed
across the devices. Therefore, the pointer field of the meta-
data should be broadcast to these devices so that PIM units
in every device know where to copy the data. This strat-
egy has three steps: (1) CPU reads out the metadata from
DRAM. (2) CPU broadcasts the metadata to the devices. (3)
PIM units merge the metadata and copy the new versioned
data according to the metadata. Although this strategy can
utilize the high bandwidth of PIM units, broadcasting the
metadata involves additional communication. Therefore, this
strategy is suitable when the row width is much larger than
the metadata size.

We can quantify the communication overhead to apply
different defragmentation strategies according to the table’s
row width. Suppose the DRAM rank has d devices, the row
width is w, and the metadata has m bytes. The delta region
has n rows, and p of these rows are the newest version and
need to be copied back to the data region. CPU memory band-
width is bdwcpy, and the summation of PIM units bandwidth
is bdwpyyr. Therefore, the metadata has a total of mn bytes.
np rows of dw bytes, a total of npdw bytes, are moved from
the delta region to the data region. For the first strategy, the
overall communication overhead is:
mn + 2npdw

(1)

The first term indicates reading the metadata, and the second
term is the data movement overhead. The overall communi-
cation overhead of the second strategy is:

commcepy
deCPU

mn+dmn dmn+ 2npdw

)

The first term indicates CPU reading out the metadata, and
the second term is CPU broadcasting them. The third term
is PIM units reading metadata, and the fourth term is PIM
units moving the rows. From Equation. 1 and 2, the second
strategy is better when:

commpim

bdwepy bdwprm

dep[M + deCPU (3)
2p - (bdwpry — bdwcpy)
For example, suppose m = 16, p = 1,and bdwpyps : bdwepy =

3 : 1, the defragmentation is better to be executed with PIM
units when w > 16.

6 Architecture Support
6.1 Architecture Overview

To support OLAP operations, and its concurrency with nor-
mal CPU access in OLTP workload, we extend the memory
controller of commercial general-purpose PIM architecture
[11] with two additional components, polling module and
scheduler, as shown in Figure 7 (a). The scheduler is responsi-
ble for recognizing the PIM unit control requests and orches-
trating these requests and normal CPU access. The polling
module is responsible for automatically polling the PIM units

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

MemCtrl
Refresh Rank [PIM Interface]DRAM Interface]
Access Queue
2 PIM
‘adar, omd, data[63] LS
(&) jnomal DRAM
Schedpgler — Bank
4 e
(@)
Phase Data (64B) Bank
Type (1) Input Parameters (63) Ctrl
result_addr(3), result_len(2), result_offset(2),
LS result_stride(2), op0_addr(3), op0_len(2),
Load op0_offset(2),0p0_stride(2),... PIM
ta_addr(3), data_addr(3), data_stride(2),
Defragment me _adelz(ajadgr(aﬂ?de“azslr?dzfzs)n e(2)
i e
bitr ffset(2), data_offset(2), dict_offset(2),
Group sl Sel(), cara wiath(T)
Compute | Aggregation | ™™ol fecte! cate wiamt | CPU
bitr ffset(2), data_offset(2), It_offset(2),
Hash o fonchonta). datz (o)
Join hash1_offset(2), hg;g%&fﬁ&tﬁ), result_offset(2),

(b)
Figure 7. (a) Architecture. (b) Data fields of launch requests.

and returning the PIM unit’s finish signal to CPU. With the
help of the two modules, CPU only sends one message to the
DRAM controller instead of to every PIM unit when control-
ling PIM units. This reduces the communication overhead
of each PIM task offloading and improves DRAM bandwidth
utilization when CPU and PIM alternatively access DRAM.
There are two types of PIM unit control requests to be is-
sued from CPU to execute OLAP operations, launch and poll.
These requests are disguised as normal memory accesses
to a special physical address. This special address is chosen
from the unused DRAM address range and is preconfigured
during the system boot. The launch request is disguised as a
memory write. The data for writing contains the operation
type and input parameters, summarized in Figure 7 (b). The
poll request is disguised as a memory read. The scheduler can
recognize the two requests according to their addresses and
access type. When recognizing a launch request, the sched-
uler broadcasts the operation type and input parameters to
PIM units and launches PIM units by operating on the PIM
interface [62]. Note that for general-purpose DRAM-based
PIM [11], the launch procedure has two main steps: handing
over the control of the DRAM bank to PIM units and booting
the PIM units. In PUSHtap, the scheduler only hands over the
DRAM bank control to PIM units when the operation type
is LS and Defragment, as other operations are processed on
WRAM and do not require DRAM access. To process a poll
request, the scheduler notifies the polling module to poll
the PIM units. After all PIM units are finished, it returns a
message to CPU through the DRAM read protocol.
Discussion on Architecture Versatility. The architec-
ture demonstrates significant flexibility through the design
of the launch request protocol. This adaptability stems from

186

Yilong Zhao et al.

two key features: First, the CPU possesses complete configu-
ration control over data fields, allowing tailored setups for
different operations. Second, PIM units maintain programma-
bility to interpret these customized fields. This dual-level
configurability enables the architecture to support diverse
scenarios, including Al and other mixed PIM-CPU tasks.

6.2 OLAP Operations Execution

The operations described in Figure 7 (b) are single-column
operations processed by PIM units. In this section, we present
the execution of these operations. In the conventional PIM
program, the compute and load instructions are intertwined
[62]. However, during the entire offloading process, the CPU’s
normal access is blocked, even when PIM units are executing
computing instructions instead of loading data from DRAM,
which does not efficiently utilize the available DRAM band-
width. To improve the bandwidth utilization, we present a
two-phase execution for OLAP operations. Each OLAP opera-
tions are split into load phase and compute phase, and PIM
units alternatively execute the two phases until the entire col-
umn is processed. We take the filter operation as an example
to present the two phases. In the load phase, the CPU pro-
gram sends a launch request with operation type LS. DRAM
bank access control is handed over to PIM units, and normal
access from CPU is blocked. According to the input param-
eter, PIM units store the results of the last compute phase
that are buffered in WRAM (offset = result_offset) back
to DRAM and load new data to WRAM for the next compute
phase. Note that we use the block-circulant data placement
described in section 4.2, the real DRAM address of the data
op0 loaded by PIM unit i is calculated by op@_stridesxi+
op@_addr. The WRAM size is 64 kB in [11] configuration,
and the WRAM also serves as the operating memory for
PIM units. Therefore, we use only half of the WRAM (32
kB) to store the data. According to our evaluation, it only
takes 300 ps to load the 32kB data, meaning that the CPU
normal memory access is blocked for no more than this pe-
riod. This blocking time is short enough for most second-
and microsecond-level real-time OLTP databases [28, 67]. In
the compute phase, CPU sends a compute request of type
Filter. DRAM bank access control is not handed over to
PIM units, and CPU can normally access the DRAM and exe-
cute transactions. PIM units perform the filtering operation
on the loaded data and store the result in the WRAM. With
the two-phase execution model, the normal access from CPU
is not blocked when PIM units perform the computation and
can better utilize the DRAM bandwidth.

6.3 APIs for OLTP and OLAP Operations

Transaction Commit. In PUSHtap, the data in DRAM
should be updated in time to ensure freshness for the OLAP
workloads. Therefore, we insert additional c1flush instruc-
tions on the rows and memory barriers at the end of commits.

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

Analytical Queries. PUSHtap provides a set of APIs to
support the analytical queries, including filter, aggregation,
and hash join. The last two operations are multi-column op-
erations and require cooperation between the CPU and PIM
units. For aggregation with a form of SUM(col1) GROUPBY
col2, the PIM units first execute the Group operation to
scan column col? and compute indices of each data. Then,
CPU transfers the indices to the bank that stores the corre-
sponding segment of column coll and launches PIM units
to perform Aggregation operation. For the hash join of two
index columns, we adopt the same task division in [38]. PIM
units first compute the hash value of the two columns with
Hash operation. After that, CPU fetches the hash values,
divides them into buckets, and transfers them to the PIM
units. Finally, PIM units perform Join operation in their own
buckets and get the join results. In multi-column queries,
columns are scanned serially, with PIM parallelism fully uti-
lized during each scan due to block-circulant placement (sec-
tion 4.2). Databases typically have sufficient rows to balance
load across PIM units, ensuring efficient resource utilization.

Data Re-layout. Byte-level re-layout is a common op-
eration in current PIM systems, typically handled by the
PIM runtime [62]. In PUSHtap, we modify this function to
support our data format. This function takes three inputs:
the data format information of tables, the row index, and the
data buffer. The data re-layout function is only invoked when
1) loading data from DRAM and 2) pushing the modified row
back to memory during the transaction commit. After data
is loaded, it is stored in cache in its original format, allow-
ing CPU to perform transactions on it directly. This ensures
that data re-layout only occurs when necessary, minimizing
overhead and maintaining system efficiency.

7 Evaluation
7.1 Experimental Setup

Benchmarks. We evaluate PUSHtap with CH-benchmark
[8], which is a combination of two prominent database bench-
marks, TPC-C [9] and TPC-H [10]. TPC-C is designed to
measure OLTP performance by simulating a wholesale dis-
tribution business consisting of nine tables. We simulate two
transaction types, Payment and New order, which account
for approximately 90% of the TPC-C workload. We execute
transactions based on an open-sourced database, DBx1000
[68], which supports the TPC-C workload and implements
the MVCC scheme with row-store format. To evaluate the
performance of the column store and the unified data format
in PUSHtap, we extend DBx1000 with the corresponding
data format. TPC-H is an OLAP workload that evaluates
data warehousing performance through complex queries.
We select three analytical queries from TPC-H for evalua-
tion: aggregation-heavy query Q1, selection-heavy query
Q6, and join-heavy query Q9. The three analytical queries

187

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. System Configuration

Host CPU
Processor 16 x O3CPU @3.2GHz
L1I/L1D 32kB / 32kB, Assoc: 8
L2/L3 1MB Assoc: 16 / 22MB, Assoc: 22
Cache Line 64 B
DRAM DIMM
DRAM DDR5-3200, 8x8, 8GB/Rank

Ba/De/Ro/Co
Timing Param.

8/8/131072/ 1024

tBURST=2.5ns tRCD=tCL=tRP=7.5ns
tRAS=16.3ns tRRD=2.5ns

tRFC=121.9ns tWR=15.0ns tWTR=11.2ns
tRTP=3.75ns tRTW=tCS=4.4ns tREFI=3.9us

PIM Units
PIM Unit 500MHz, 16 tasklets, 1GB/s bandwidth [11]
64kB WRAM, 64-bit PIM-DRAM wire width
Num 64 per Rank, at Bank level inside Devices
System Configuration
CPU System 4 Channels x4 Ranks normal DRAM

4 Channels x4 Ranks with PIM units

HBM-based System Configuration

Host CPU and PIM Units
PIM DRAM

Same as DIMM-based system

32 Channels with PIM units
HBM3-2Gbps, 8Gb/Bank
2/4/4/32768 / 64

tBURST=2.0ns tRCD=tCL=tRP=3.5ns
tRAS=8.5ns tRRD=2.0ns

tRFC=175.0ns tWR=4.0ns tWTR=1.5ns
tRTP=1.0ns tRTW=tCS=1.5ns tREFI=2.0us

Pch/Bg/Ba/Ro/Co
Timing Param.

are chosen to represent different types of analytical work-
loads. We implement the three queries and include both the
PIM and CPU overheads described in section 6.3. The row
number of table ITEM, STOCK, CUSTOMER, ORDER, ORDERLINE,
NEWORDER, and HISTORY is set to 20M, 20M, 6M, 6M, 60M,
60M, and 6M, respectively. The tables occupy 20 GB of mem-
ory storage. The queries are scheduled using the method
described in [45]. We use the hash index in DBX1000 to
speed up the transaction and snapshotting during analytical
queries.

Simulation. The performance of PUSHtap and baselines
is evaluated with the ramulator-pim [16]. We use the “O00
core” CPU model of the simulator. We extend the ramulator-
pim simulator with Ramulator2 [40] for DDR5 DRAM mod-
eling. A PIM unit frontend is integrated into Ramulator2 to
support both single-bank and parallel access. We add two ad-
dress mappings to support the two-dimensional access from
CPU and PIM units. We extend the Ramulator2’s memory
controller model with the two additional modules described
in section 6.1. System configuration is summarized in Table 1.
The latency of handing over the bank access control is set to
0.2 ps per rank, which is measured on a real general-purpose
DRAM-based PIM server with an Intel Xeon CPU of 3.2GHz
[11, 62]. Half of the WRAM (32 KB) is used to store the tem-
porary data during the load phase. The hardware modules

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

—o— CPU —— PIM

-
o
o

? th=0.6
S 80}
% 60 Item Storage
o ¢ Data 96.9%
240 Padding0 0.8%
g 20 Snapshot 2.3%

000z 04 06 08 1

Threshold (th)
(@) (b)

$100 100

80 80
060 2 60
= =
T 40 g 40
& 20 i 20
= s
[T T O
o Q1 Q1-2Q1-3Q1-10Q1-22ALL Q1 Q1-2Q1-3Q1-10Q1-22ALL

OLAP Subset OLAP Subset
(© BDW: Bandwidth (d)

Figure 8. (a) CPU and PIM effective bandwidth under dif-
ferent ths. (b) Memory storage breakdown. (c) (d) Maximum
CPU (PIM) effective bandwidth that ensures PIM (CPU) effec-
tive bandwidth > 70%, under different OLAP subsets. Q1-10
means the subset contains from Q1 to Q10.

in the memory controller are derived through Synopsys De-
sign Compiler with TSMC 90nm technology library at the
frequency of 2.4GHz.

To ensure a fair comparison with prior work [6], we ex-
tended PUSHtap to support HBM in addition to the default
DIMM-based implementation. The detailed configuration of
the HBM-based system is provided in Table 1. Compared
to DIMM-based system, only the PIM DRAMs are replaced
with HBMs. The PIM units and CPU-side configuration are
kept the same. The bank number of the HBM-based sys-
tem is the same as the DIMM-based system. Note that only
the workload-wise performance comparison (section 7.3)
contains the comparison with HBM-based systems. Other
experiments are all on the default DIMM-based system.

7.2 Results on Unified Data Format

We evaluate our unified data format with the CH-benchmark.
Figure 8 (a) plots the effective bandwidth of both PIM and
CPU under different values of the hyperparameter th, consis-
tent with the trade-off analyzed in section 4.1.2. With th = 0,
the best CPU effective bandwidth of 74.8% is achieved while
PIM effective bandwidth is the lowest at 51.9%. When th is
set to 1, PIM effective bandwidth is maximized while CPU
effective bandwidth drops significantly. To balance PIM and
CPU bandwidth, we choose th = 0.6 in our experiment. At
this value, PIM effective bandwidth reaches 97.4%, while CPU
effective bandwidth is 59.8%, which is 15.0% lower than the
ideal bandwidth. This effective bandwidth is sufficient for
processing transactions, as they are compute-bound work-
loads. Simultaneously, PIM can achieve a high effective band-
width to ensure high OLAP performance.

188

Yilong Zhao et al.

The breakdown of the storage space is presented in Fig-
ure 8 (b). The compact aligned format introduces negligible
zero padding to the database storage, indicating its efficiency
in space utilization. The snapshot bitmap for supporting
MVCC in PUSHtap occupies only 2.3% additional memory
storage, demonstrating its minimal overhead.

To present the impact of key columns on the HTAP perfor-
mance, we plot the maximum CPU (PIM) effective bandwidth
at the minimum (maximum) th value that ensures PIM (CPU)
effective bandwidth > 70%, under different OLAP workload
subsets, as shown in Figure 8 (c) and (d). More queries in
the workload subset lead to more columns being regarded as
key columns. For example, the subset Q1-1 contains only 4
key columns, while the subset Q1-3 contains 32 key columns.
ALL represents all the columns are key columns, degraded
to the naive aligned format. With more key columns, it be-
comes more difficult for both CPU and PIM units to achieve
high effective bandwidth. The maximum CPU effective band-
width decreases from 74.8% to 26.7% when the workload
subset increases from Q1-1to ALL. The maximum PIM effec-
tive bandwidth decreases from 100% to 54.7%. For ALL, the
CPU effective bandwidth never exceeds 70%. Therefore, in
practice, it is better to select as few key columns as possible
according to the OLAP workload.

To demonstrate the generality of our format algorithm,
we also tested it on HTAPBench [23]. The results show that
we achieve 57%/98% CPU/PIM bandwidth utilization when
th=0.55 (not shown in the figure).

7.3 OLTP and OLAP Performance

7.3.1 OLTP Performance. We first evaluate the OLTP
performance of PUSHtap, as shown in Figure 9 (a). We com-
pare PUSHtap’s data format against row-store (RS) and
column-store (CS) format on DIMM-based system. The RS
Format is considered ideal for OLTP workloads as it aligns
perfectly with their row-wise processing requirements. In
contrast, transactions using the CS format require 28.1% more
execution time. This is because the CS format requires access-
ing data from every column to reconstruct the rows, leading
to inefficiencies. The analytical query latency is longer than
[6] because our database scale is larger. Therefore, more
transactions can be executed during each analytical query.
In comparison, PUSHtap only incurs a 3.5% increase in exe-
cution time compared to RS, which is attributed to the addi-
tional data re-layout operation. This is because PUSHtap can
utilize the CPU’s interleaving, as data is aligned along the
ADE dimension. Our compact aligned format optimizes this
by splitting the data by bytes, allowing for compact arrange-
ment. The minor overhead observed in PUSHtap is primarily
due to the data reforming,.

OLTP Performance on HBM-based system. Imple-
menting PUSHtap on HBM-based system (PUSHtap (HBM))

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

—m— RS(ldeal) —o—CS PUSHtap PUSHtap (HBM) |
D 2E 1
21,562 |
£
§ 1E2
©
30562
[
=
OEO0 2M aM 6M 8M
Transaction Number
(a)
PIM Compute [0 CPU Compute Consistency
’uE? | Ideal @ MI__© PUSHtap [@_MI (HBM) @ PUSHtap (HBM)
é 1E3] I I
£ 300} i ’ i
> / ¢ ;
g ’
3 200
8 100 nm o ilii
2 0 (L CEETERE TR RV TR 10 89 R
é 400 1k 10k 40k 100k 400k = 1M 4M 8M
Transaction Number
(b)

Figure 9. (a) Execution time of transactions with row-store
(RS), column-store (CS) and PUSHtap’s unified data format.
(b) Analytical Query time breakdown of ideal, multi-instance
(MI) design and PUSHtap, with different transaction num-
bers that update the data before the analytical query. The
consistency time includes the rebuilding (MI) and snapshot
& defragmentation (PUSHtap).

yields merely a 2.5% speedup compared to DIMM-based sys-
tem. This marginal improvement stems from two fundamen-
tal mismatches: First, the OLTP workload’s non-memory-
intensive nature fails to saturate HBM’s high-bandwidth
capabilities. Second, the large interleave granularity of HBM
necessitates the loading of more data per transaction (dis-
cussed in section 8). The bandwidth advantage of HBM is
offset by the increased data transfer requirements.

7.3.2 OLAP Performance. We compare PUSHtap with
two DIMM-based baselines, MI and ideal, to present the
OLAP performance. ideal assumes that all the columns are
already compact, and the execution time only includes the
scanning time. MI represents the multi-instance PIM-based
HTAP system with data instances on both PIM and CPU
memory space, utilizing suitable column-store and row-store
formats, respectively [6]. To perform a fair comparison, we
adapt the architecture from [6] to the same general-purpose
DIMM-based PIM architecture as PUSHtap (Figure 7 (a))
while maintaining the same methodological approach. Specif-
ically, we replaced the PIM memory with the same DIMM
DRAM modules used in PUSHtap. Instead of employing a
dedicated hardware module for the rebuilding operations, we
utilize the general-purpose PIM unit in the MI system. Dur-
ing the rebuilding stage, CPUs transfer all the new-versioned
rows and corresponding metadata to DRAM banks, after

189

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

¢

M PUSHtap

N
o

1%
N S

OLAP Throughput
(x10°QphH)
>

o

“100 150 200 250
OLTP Throughput (x10%pmC)

o

50 300

Figure 10. Throughput frontier for MI and PUSHtap.

which PIM units merge the metadata and copy the new-
versioned data. PUSHtap generates a snapshot before ev-
ery analytical query and ensures that PIM units skip old-
versioned data when scanning the columns. Defragmenta-
tion (presented in section 5.3) is executed after every 10k
transactions. This number is chosen based on the observation
in section 7.4. The result of analytical query execution time
is plotted in Figure 9 (b). Compared to ideal, with 1M trans-
actions, MI introduces 123.3% rebuilding overhead, while
PUSHtap incurs only 1.5% overhead due to snapshot and
defragmentation. As the number of transactions increases
(e.g., IM), the rebuilding overhead in MI causes a 13.3x slow-
down in the analytical queries, significantly degrading sys-
tem throughput. In contrast, PUSHtap’s snapshot and de-
fragmentation overhead remains acceptable at 12.6%.

OLAP Performance on HBM-based system. We also
compare the performance of PUSHtap with MI on HBM-
based system. MI (HBM) utilizes a dedicated rebuilding ac-
celerator to perform the rebuilding operations, which is the
same as [6]. As the details of the dedicated rebuilding accel-
erator are not presented in [6], we estimate the rebuilding
overhead by the relative value to the CPU-based consistency,
which is provided in [6]. In contrast, PUSHtap (HBM)’s snap-
shotting and defragmentation are performed by CPU and
general-purpose PIM units, which is the same as PUSHtap
on DIMM-based system.

The result is shown in Figure 9 (b). Compared to PUSH-
tap on DIMM-based system, PUSHtap (HBM) achieves 1.4x
speedup when the transaction number is 8M, primarily due
to a 2.1x reduction in defragmentation time thanks to HBM’s
high bandwidth. With a dedicated rebuilding accelerator, MI
(HBM) (orange bar) only introduces 24.1% rebuilding over-
head, which is 4.1x lower than that of PUSHtap on DIMM-
based system, leading to a 1.6x increase in OLAP throughput.
However, the performance gains are relatively modest, al-
lowing for the high cost of HBM and custom accelerators.
PUSHtap on a general-purpose DIMM-based PIM architec-
ture is a more cost-effective solution.

7.3.3 Performance Isolation. Figure 10 plots the frontier
[42] of OLTP and OLAP throughput for MI and PUSHtap
on DIMM-based system. Compared to M, the frontier of
PUSHtap is shifted to the upper right, indicating improved

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

@w.o. O with Defragmentation Overhead
126 2 J — 14 5
1E5 12 7
@ 1E4 1.0 5
o
< 1E3 08 9
E 1E2 06 o
[= 0.4 o
1E1 02 £
1E0 00 2
100400 1k 4k 10k40k100k400k1M 2M 4M 8M)

Transaction Number

(@

Transactions

Components Pct.

s [Fe— Fragmentation -+ Defragmentation| Computation 36.65%
a160|[1% Memory Allocation 44.10%
< Indexing 19.25%
o120 Version Chain Traverse <0.1%
S 0%,
S gol|” %0 20k 40k ©
® Defragmentation
240 Components Pct.
g — Version Chain Traverse 26.39%

0 2M 4M 6M 8M Data Copy. 73.61%

Transaction Number
(b)

(d)

Figure 11. (a) Execution time of OLTP w/w.o. defragmenta-
tion. We additionally display defragmentation overhead on
a secondary axis. (b) OLAP overhead caused by fragmenta-
tion. Fragmentation is the performance degradation without
defragmentation. Defragmentation is the cost of periodic de-
fragmentation. (c) (d) Breakdown of (c) transaction and (d)
defragmentation. Fixed overhead is not included.

performance isolation due to the elimination of rebuilding
overhead in single-instance design. When the OLTP through-
put of PUSHtap <51.2M tpmC (transaction per minute, TPC-
C), the OLAP throughput is constant at 38.0k QphH (query
per hour, TPC-H), which is the peak OLAP throughput for
PUSHtap. As the OLTP throughput increases, the OLAP
throughput decreases because the memory system reaches
the maximum overall bandwidth. Compared to MI, PUSHtap
can achieve 3.4x peak OLTP throughput. When the OLTP
throughput reaches 76.3 MtpmC, which is the peak value of
MI, PUSHtap can still have 4.4x OLAP throughput, indicating
better performance isolation.

7.4 Defragmentation Operation

To show the necessity of defragmentation, we plot the de-
fragmentation overhead and the performance degradation
caused by fragmentation on OLAP in Figure 11(b). Without
defragmentation, the analytical queries’ execution time in-
creases linearly with the transaction number, as more rows
accumulate in the delta region. The rows of old versions
are skipped during analytical queries. However, many row
widths are smaller than 8 bytes, which is the minimum ac-
cess granularity of PIM units [11]. Skipping such discrete
bytes does not save PIM bandwidth usage, and PIM units still
load this unnecessary data. As a result, fragmentation signif-
icantly degrades OLAP performance. Periodically executing
defragmentation is necessary to ensure OLAP performance.
When the transaction number exceeds 10k, the overhead
caused by fragmentation is larger than the defragmentation

190

Yilong Zhao et al.

[==Only CPU=e=0Only PIM~ Hybird] [@Original PIM__ @ PUSHtap |
200
125 2160
(2] ~
£100 2120
o 75 [
£ > 80
i= 50 g
o5 5 40
0 0
0 2M am 6M 8M 16 32 64 128 256
Transaction Number WRAM Size (kB)
(@) (b)

Figure 12. (a) Defragmentation time with (1) purely CPU,
(2) purely PIM units, and (3) strategy in section 5.3 (Hybrid).
(b) Q6 execution time across different WRAM sizes.

overhead (2.05x). This is because the fixed overhead, includ-
ing thread creation and PIM units activation, is amortized
when the number of transactions is large. Therefore, we ex-
ecute defragmentation every 10k transactions to minimize
the overhead while preserving OLAP performance.

The defragmentation overhead on OLTP across varying
transaction numbers is shown in Figure 11 (a). It represents
the ratio of defragmentation time to total transaction time.
In contrast with OLAP, the defragmentation only introduces
<1.5% overhead to OLTP. Figure 11 (c) and (d) present the
breakdown of transaction and defragmentation time. Less
than 0.1% time of each transaction is spent on traversing
the version chain, as only one version chain is traversed per
transaction. Most time is occupied by indexing, memory allo-
cation, and computation. Defragmentation on a row involves
traversing the version chain and copying the data, which is
negligible compared to a transaction.

Figure 12 (a) plots the defragmentation time with (1) only
CPU, (2) only PIM units, and (3) strategy presented in sec-
tion 5.3 (denoted as Hybrid). Neither CPU- nor PIM-only
strategy can achieve optimal defragmentation efficiency.
With our unified data format, the table parts’ row width
varies from 2 bytes to over 20 bytes. According to our con-
clusion in section 5.3, these parts are suitable for different
strategies. The hybrid selects different strategies depending
on the tables’ row widths and can achieve the best efficiency.

7.5 Architecture Comparison

We compare the PIM architecture of PUSHtap with the orig-
inal general-purpose DRAM-based PIM architecture [11].
Both architectures adopt the two-phase execution presented
in section 6.2, with the only difference on the communica-
tion overhead presented in section 6.1. Figure 12 (b) depicts
the execution time under different WRAM sizes. With a
larger WRAM, fewer load phases are required, reducing the
CPU-PIM mode switch overhead. The execution time of the
original PIM architecture decreases by 6.4x when increasing
WRAM size from 16 kB to 256 kB, as the mode switching
overhead drops from 88.8% to 35.3% of the computing time.
Accordingly, the period of the load phase increases to > 1 ms
when the WRAM size increases to 256 kB, limiting the usage

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

of real-time OLTP. The CPU-PIM mode switch overhead has
minimal effect on the performance of PUSHtap, as the mode
switch function is offloaded to memory channels and only
accounts for 7.0% of the computing time on average. For
the default 64kB configuration, PUSHtap can achieve 3.0x
speedup compared to the original PIM architecture.

7.6 Area Overhead.

The additional hardware modules introduce minimal area
overhead of 0.115 mm? in an 8-channel memory controller,
with the scheduler occupying 0.112 mm? and the polling mod-
ule requiring only 0.003 mm?. This overhead is negligible
compared to the total memory controller area of approxi-
mately 13 mm? [44].

8 Discussion

PIM Technique Selection. As memory interleaving is a
well-established technique used in various memory systems,
making it feasible to integrate PIM units into these existing
systems [11, 26, 30, 34]. For PIM-based HTAP architecture
with unified data format, the interleave granularity should
be fine enough so that both CPU and PIM can efficiently
access the small data elements in databases. For instance,
ORDERLINE table’s amount column is only 8 bytes in size. If
the interleave granularity is set to 64 bytes, we should access
an additional 48 bytes to acquire this 8-byte valid data, which
results in bandwidth waste.

We compare three techniques — HBM, DIMM, and SSD —
on their interleave granularity. We take the CH-benchmark
as an example [8, 10]. Its column width varies from 2 bytes
to 152 bytes. SSD’s interleave granularity is * 1 MB. HBM
provides a 64-byte (or 32-byte) granularity. DIMM offers the
finest granularity at 8 bytes. DIMM’s finest granularity al-
lows us to optimize access waste through mapping methods.
Therefore, we choose DIMM DRAM as the PIM storage.

Compact Aligned Format on Command-Driven PIM.
The data format method employed in PUSHtap is also well-
suited for command-driven PIM architectures [21, 34]. These
architectures typically require a high degree of customiza-
tion of the database instruction set. In such an architecture,
we can design specialized accelerators like in [6] to expe-
dite time-consuming operations, such as defragmentation
and data layout, which were identified as performance bot-
tlenecks in our evaluations. By leveraging these accelera-
tors, we can further reduce the performance gap between
OLTP/OLAP operations and their ideal performance bench-
marks. This enhancement ultimately boosts overall system
throughput. We plan to explore this potential in future re-
search to fully realize the benefits of these optimizations.

9 Related Work

PIM. In PIM, PIM units can be located in various memory
hierarchies, including cache [47, 64-66], DRAM memory

191

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

(DDR[11, 19, 24, 29, 38],GDDR[34], HBM[6, 26]), and SSD
[30, 63]. There is no direct connection between the PIM
units distributed in sub-modules of memory; the commu-
nication has to go through the CPU, resulting in high-cost
inter-PIM-unit communication. Current works treat the PIM
units as distributed systems. They are devoted to static task
division to ensure PIM load balance and low communica-
tion overhead [1, 5, 36, 38, 39, 71]. While others propose to
add additional connections and access modes to realize an
automatic communication and load balance [58, 60, 61, 70].

The distributed PIM units also face the conflict that mem-
ory interleaving prevents PIM units from being visible to
a contiguous block of data. Some workloads, e.g. element-
wise operations, can coexist with interleaving as PIM units
still have access to complete data elements [7, 24, 46]. For a
general-purpose scenario, some works[11, 12, 26] divide a
dedicated PIM memory space from the main memory and
manually re-layout the data when writing to the space. UM-
PIM [69] proposes to use dynamic address mapping to enable
two different memory pages with different data layouts to
co-exist in the PIM system. In this work, instead of resolving
the conflict, we utilize PIM and memory interleaving to pro-
vide two-dimensional memory access. We exploit its benefit
in an appropriate scenario — HTAP.

HTAP Architecture. HTAP research mainly focuses on
data storage format [27, 28, 49, 53, 54], query optimization
[3, 32, 35, 56], indexing technique [23, 51], scheduling [50, 53,
55], and accerleration with computational storage [31, 63].

In-Memory Database. In-memory database is proposed
to provide real-time transaction processing [59]. Compute
Express Link (CXL) technique is introduced to improve in-
memory database’s scalability [2] and to provide a new solu-
tion for durability [17]. The CXL latency can be hidden by
properly prefetching data to local memory or cache in OLTP
workloads [2].

10 Conclusion

This work proposes PUSHtap, a PIM-based HTAP system
with a unified data storage format tailored for both OLTP
and OLAP workloads. By combining the access of PIM units
and CPU, we create a two-dimensional access memory space.
We introduce a unified data format to enhance effective band-
width, ensure PIM load balance, and support MVCC. PUSH-
tap also allows concurrent CPU and PIM access, optimizing
HTAP performance. Extensive experiments show that PUSH-
tap can deliver satisfactory performance gain.

Acknowledgments

We sincerely thank our shepherd, Prof. Onur Mutlu, and the
anonymous reviewers for their comments and suggestions to
improve the paper. We also thank Huan Zhou for improving

the figures.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

References

(1]

—
S
=

(10]

(11]

(12]

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. 2015. A scalable processing-in-memory accelerator
for parallel graph processing. In 2015 ACM/IEEE 42nd Annual In-
ternational Symposium on Computer Architecture (ISCA). 105-117.
doi:10.1145/2749469.2750386

Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin
Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and
Yang Seok Ki. 2022. Enabling CXL Memory Expansion for In-Memory
Database Management Systems. In Proceedings of the 18th International
Workshop on Data Management on New Hardware (Philadelphia, PA,
USA) (DaMoN °22). Association for Computing Machinery, New York,
NY, USA, Article 8, 5 pages. doi:10.1145/3533737.3535090

Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anas-
tasia Ailamaki. 2017. The Case For Heterogeneous HTAP. https:
//infoscience.epfl.ch/handle/20.500.14299/132929

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of Computer Systems
(London, England, UK) (SIGMETRICS ’12). Association for Computing
Machinery, New York, NY, USA, 53-64. doi:10.1145/2254756.2254766
Daehyeon Baek, Soojin Hwang, and Jachyuk Huh. 2024. pSyncPIM:
Partially Synchronous Execution of Sparse Matrix Operations for All-
Bank PIM Architectures. In Proceedings of the 2024 ACM/IEEE 51st An-
nual International Symposium on Computer Architecture (ISCA) (Buenos
Aries, Argentina) (ISCA’24). 354-367.

Anmirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur
Mutlu. 2022. Polynesia: Enabling High-Performance and Energy-
Efficient Hybrid Transactional/Analytical Databases with Hard-
ware/Software Co-Design. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). 2997-3011. doi:10.1109/ICDE53745.2022.
00270

Benjamin Y. Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez.
2020. Near Data Acceleration with Concurrent Host Access. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA). 818-831. doi:10.1109/1SCA45697.2020.00072

Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kem-
per, Stefan Krompass, Harumi Kuno, Raghunath Nambiar, Thomas
Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon,
and Florian Waas. 2011. The mixed workload CH-benCHmark. In
Proceedings of the Fourth International Workshop on Testing Database
Systems (Athens, Greece) (DBTest ’11). Association for Computing Ma-
chinery, New York, NY, USA, Article 8, 6 pages. doi:10.1145/1988842.
1988850

Transaction Processing Performance Council. 2010. TPC BENCH-
MARK C Standard Specification Revision 5.11. https://www.tpc.org/
TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf Accessed
on July, 2024.

Transaction Processing Performance Council. 2022. TPC BENCH-
MARK H Standard Specification Revision 3.0.1. https://www.tpc.org/
TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf Accessed
on July, 2024.

Fabrice Devaux. 2019. The true Processing In Memory accelera-
tor. In 2019 IEEE Hot Chips 31 Symposium (HCS). 1-24. doi:10.1109/
HOTCHIPS.2019.8875680

Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubrama-
niam, Ameen Akel, Sean Eilert, and Justin Eno. 2022. To PIM or not for
emerging general purpose processing in DDR memory systems. In Pro-
ceedings of the 49th Annual International Symposium on Computer Ar-
chitecture (New York, New York) (ISCA °22). Association for Computing
Machinery, New York, NY, USA, 231-244. doi:10.1145/3470496.3527431

192

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Yilong Zhao et al.

Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiu-
gov, Javier Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnev-
matikatos. 2017. The mondrian data engine. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA). 639—
651. doi:10.1145/3079856.3080233

Michael Freitag, Alfons Kemper, and Thomas Neumann. 2022. Memory-
optimized multi-version concurrency control for disk-based database
systems. Proc. VLDB Endow. 15, 11 (jul 2022), 2797-2810. doi:10.14778/
3551793.3551832

Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott
MacLean, Franz Farber, Francis Gropengiesser, Christian Mathis,
Thomas Bodner, and Wolfgang Lehner. 2015. Towards scalable real-
time analytics: an architecture for scale-out of OLxP workloads. Proc.
VLDB Endow. 8, 12 (aug 2015), 1716-1727. doi:10.14778/2824032.
2824069

SAFARI Research Group. 2023. ZSim+Ramulator - A Processing-in-
Memory Simulation Framework. https://github.com/CMU-SAFARI/
ramulator-pim Accessed on July, 2024.

Yunyan Guo and Guoliang Li. 2024. A CXL- Powered Database System:
Opportunities and Challenges. In 2024 IEEE 40th International Confer-
ence on Data Engineering (ICDE). 5593-5604. doi:10.1109/ICDE60146.
2024.00447

Juan Goémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Gian-
noula, Geraldo F. Oliveira, and Onur Mutlu. 2022. Benchmarking a
New Paradigm: Experimental Analysis and Characterization of a Real
Processing-in-Memory System. IEEE Access 10 (2022), 52565-52608.
doi:10.1109/ACCESS.2022.3174101

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,
Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim
Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Bran-
don Reagen, Carole-Jean Wu, Mark Hempstead, and Xuan Zhang.
2020. RecNMP: Accelerating Personalized Recommendation with
Near-Memory Processing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 790-803. doi:10.1109/
ISCA45697.2020.00070

Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual mem-
ory snapshots. In 2011 IEEE 27th International Conference on Data
Engineering. 195-206. doi:10.1109/ICDE.2011.5767867

Donghyuk Kim, Jae-Young Kim, Wontak Han, Jongsoon Won, Haerang
Choi, Yongkee Kwon, and Joo-Young Kim. 2023. Darwin: A DRAM-
based Multi-level Processing-in-Memory Architecture for Data Ana-
lytics. arXiv preprint arXiv:2305.13970 (2023).

Jongbin Kim, Hyunsoo Cho, Kihwang Kim, Jaeseon Yu, Sooyong Kang,
and Hyungsoo Jung. 2020. Long-lived Transactions Made Less Harmful.
In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD °20). Association
for Computing Machinery, New York, NY, USA, 495-510. doi:10.1145/
3318464.3389714

Jongbin Kim, Jaeseon Yu, Jaechan Ahn, Sooyong Kang, and Hyungsoo
Jung. 2022. Diva: Making MVCC Systems HTAP-Friendly. In Pro-
ceedings of the 2022 International Conference on Management of Data
(Philadelphia, PA, USA) (SIGMOD °22). Association for Computing
Machinery, New York, NY, USA, 49-64. doi:10.1145/3514221.3526135
Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A
Practical Near-Memory Processing Architecture for Embeddings and
Tensor Operations in Deep Learning. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus,
OH, USA) (MICRO °52). Association for Computing Machinery, New
York, NY, USA, 740-753. doi:10.1145/3352460.3358284

Yongkee Kwon, Kornijcuk Vladimir, Nahsung Kim, Woojae Shin, Jong-
soon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Guhyun Kim,
Byeongju An, Jeongbin Kim, Jaewook Lee, Ilkon Kim, Jachan Park,

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/3533737.3535090
https://infoscience.epfl.ch/handle/20.500.14299/132929
https://infoscience.epfl.ch/handle/20.500.14299/132929
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1109/ICDE53745.2022.00270
https://doi.org/10.1109/ICDE53745.2022.00270
https://doi.org/10.1109/ISCA45697.2020.00072
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/1988842.1988850
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1145/3470496.3527431
https://doi.org/10.1145/3079856.3080233
https://doi.org/10.14778/3551793.3551832
https://doi.org/10.14778/3551793.3551832
https://doi.org/10.14778/2824032.2824069
https://doi.org/10.14778/2824032.2824069
https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator-pim
https://doi.org/10.1109/ICDE60146.2024.00447
https://doi.org/10.1109/ICDE60146.2024.00447
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1109/ISCA45697.2020.00070
https://doi.org/10.1109/ISCA45697.2020.00070
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/3318464.3389714
https://doi.org/10.1145/3318464.3389714
https://doi.org/10.1145/3514221.3526135
https://doi.org/10.1145/3352460.3358284

PUSHtap: PIM-based In-Memory HTAP with Unified Data Storage Format

[26

[27

[28

[29

(30

[31

(32

(33

[34

—

—

—

—

]

—

]

—

flan)

Chanwook Park, Yosub Song, Byeongsu Yang, Hyungdeok Lee, Seho
Kim, Daehan Kwon, Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joon-
hong Park, Gimoon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje
Park, Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Myeongjun Lee,
Minyoung Shin, Minhwan Shin, Jaekyung Cha, Changson Jung, Ki-
joon Chang, Chunseok Jeong, Euicheol Lim, Il Park, Junhyun Chun,
and Sk Hynix. 2022. System Architecture and Software Stack for
GDDR6-AIM. In 2022 IEEE Hot Chips 34 Symposium (HCS). 1-25.
d0i:10.1109/HCS55958.2022.9895629

Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon,
Je Min Ryu, Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee,
Soo Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-
Sung Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun
Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David
Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song,
Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. 25.4 A 20nm
6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS
Programmable Computing Unit Using Bank-Level Parallelism, for Ma-
chine Learning Applications. In 2021 IEEE International Solid-State
Circuits Conference (ISSCC), Vol. 64. 350-352. doi:10.1109/ISSCC42613.
2021.9365862

Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit
Ganesh, Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp,
Teck-Hua Lee, Juan Loaiza, Neil Macnaughton, Vineet Marwah, Niloy
Mukherjee, Atrayee Mullick, Sujatha Muthulingam, Vivekanandhan
Raja, Marty Roth, Ekrem Soylemez, and Mohamed Zait. 2015. Oracle
Database In-Memory: A dual format in-memory database. In 2015
IEEE 31st International Conference on Data Engineering. 1253-1258.
doi:10.1109/ICDE.2015.7113373

Per-Ake Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-time analytical
processing with SQL server. Proc. VLDB Endow. 8, 12 (aug 2015),
1740-1751. doi:10.14778/2824032.2824071

Donghun Lee, Jinin So, MINSEON AHN, Jong-Geon Lee, Jungmin
Kim, Jeonghyeon Cho, Rebholz Oliver, Vishnu Charan Thummala,
Ravi shankar JV, Sachin Suresh Upadhya, Mohammed Ibrahim Khan,
and Jin Hyun Kim. 2022. Improving In-Memory Database Operations
with Acceleration DIMM (AxDIMM). In Proceedings of the 18th Interna-
tional Workshop on Data Management on New Hardware (Philadelphia,
PA, USA) (DaMoN °22). Association for Computing Machinery, New
York, NY, USA, Article 2, 9 pages. doi:10.1145/3533737.3535093

Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-
thy, Xiaodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA Acceler-
ated Near-Storage Data Analytics on SSD. IEEE Computer Architecture
Letters 19, 2 (July 2020), 110-113. doi:10.1109/LCA.2020.3009347
Kitaek Lee, Insoon Jo, Jaechan Ahn, Hyuk Lee, Hwang Lee, Woong Sul,
and Hyungsoo Jung. 2023. Deploying Computational Storage for HTAP
DBMSs Takes More Than Just Computation Offloading. Proc. VLDB
Endow. 16, 6 (feb 2023), 1480-1493. doi:10.14778/3583140.3583161
Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng,
Dongyang Li, and Xiaodong Zhang. 2021. The art of balance: a Rate-
upDB™ experience of building a CPU/GPU hybrid database product.
Proc. VLDB Endow. 14, 12 (jul 2021), 2999-3013. doi:10.14778/3476311.
3476378

Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee,
Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyun-
sung Shin, Jinhyun Kim, O Seongil, Anand Iyer, David Wang, Kyomin
Sohn, and Nam Sung Kim. 2021. Hardware Architecture and Software
Stack for PIM Based on Commercial DRAM Technology : Industrial
Product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). 43-56. doi:10.1109/ISCA52012.2021.
00013

Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon
Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang,

193

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Korni-
jeuk Vladimir, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo,
Haerang Choi, Jaewook Lee, Donguc Ko, Younggun Jun, Keewon Cho,
Ilwoong Kim, Choungki Song, Chunseok Jeong, Daehan Kwon, Jieun
Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2022. A 1ynm 1.25V
8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting
1TFLOPS MAC Operation and Various Activation Functions for Deep-
Learning Applications. In 2022 IEEE International Solid-State Circuits
Conference (ISSCC), Vol. 65. 1-3. doi:10.1109/ISSCC42614.2022.9731711
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. 2015. How good are query optimizers,
really? Proc. VLDB Endow. 9, 3 (nov 2015), 204-215. doi:10.14778/
2850583.2850594

Marzieh Lenjani, Alif Ahmed, Mircea Stan, and Kevin Skadron. 2022.
Gearbox: a case for supporting accumulation dispatching and hybrid
partitioning in PIM-based accelerators. In Proceedings of the 49th An-
nual International Symposium on Computer Architecture (New York,
New York) (ISCA °22). Association for Computing Machinery, New
York, NY, USA, 218-230. doi:10.1145/3470496.3527402

Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New
and What is Next. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD °22). As-
sociation for Computing Machinery, New York, NY, USA, 2483-2488.
doi:10.1145/3514221.3522565

Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee, Seongyeon
Park, Hanjun Kim, Jinho Lee, and Youngsok Kim. 2023. Design and
Analysis of a Processing-in-DIMM Join Algorithm: A Case Study with
UPMEM DIMMs. Proc. ACM Manag. Data 1, 2, Article 113 (jun 2023),
27 pages. doi:10.1145/3589258

Haifeng Liu, Long Zheng, Yu Huang, Chaogiang Liu, Xiangyu Ye, Jin-
grui Yuan, Xiaofei Liao, Hai Jin, and Jingling Xue. 2023. Accelerating
Personalized Recommendation with Cross-level Near-Memory Pro-
cessing. In Proceedings of the 50th Annual International Symposium
on Computer Architecture (Orlando, FL, USA) (ISCA °23). Association
for Computing Machinery, New York, NY, USA, Article 66, 13 pages.
doi:10.1145/3579371.3589101

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun,
A. Giray Yaglik¢i, and Onur Mutlu. 2023. Ramulator 2.0: A Modern,
Modular, and Extensible DRAM Simulator. arXiv:2308.11030 [cs.AR]
https://arxiv.org/abs/2308.11030

Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo
Alonso. 2017. BatchDB: Efficient Isolated Execution of Hybrid
OLTP+OLAP Workloads for Interactive Applications. In Proceedings
of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing
Machinery, New York, NY, USA, 37-50. doi:10.1145/3035918.3035959
Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M.
Patel, and Xiangyao Yu. 2022. How Good is My HTAP System?. In
Proceedings of the 2022 International Conference on Management of Data
(Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Ma-
chinery, New York, NY, USA, 1810-1824. doi:10.1145/3514221.3526148
MySQL. 2024. MySQL 8.0 Reference Manual: OPTIMIZE TABLE State-
ment. https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
Accessed on July, 2024.

Nevine Nassif, Ashley O. Munch, Carleton L. Molnar, Gerald Pasdast,
Sitaraman V. Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikr-
ishnan Venkataraman, Sireesha Kandula, Rafi Marom, Alexandra M.
Kern, Bill Bowhill, David R. Mulvihill, Srikanth Nimmagadda, Varma
Kalidindi, Jonathan Krause, Mohammad M. Haq, Roopali Sharma, and
Kevin Duda. 2022. Sapphire Rapids: The Next-Generation Intel Xeon
Scalable Processor. In 2022 IEEE International Solid-State Circuits Con-
ference (ISSCC), Vol. 65. 44-46. doi:10.1109/ISSCC42614.2022.9731107
Thomas Neumann. 2011. Efficiently compiling efficient query plans
for modern hardware. Proc. VLDB Endow. 4, 9 (jun 2011), 539-550.

https://doi.org/10.1109/HCS55958.2022.9895629
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/ICDE.2015.7113373
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.1145/3533737.3535093
https://doi.org/10.1109/LCA.2020.3009347
https://doi.org/10.14778/3583140.3583161
https://doi.org/10.14778/3476311.3476378
https://doi.org/10.14778/3476311.3476378
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISSCC42614.2022.9731711
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3470496.3527402
https://doi.org/10.1145/3514221.3522565
https://doi.org/10.1145/3589258
https://doi.org/10.1145/3579371.3589101
https://arxiv.org/abs/2308.11030
https://arxiv.org/abs/2308.11030
https://doi.org/10.1145/3035918.3035959
https://doi.org/10.1145/3514221.3526148
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://doi.org/10.1109/ISSCC42614.2022.9731107

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

(46

—

(47]

(48]

(49

[

(50]

[51

—

(52]

(53

—_

[54

=

(55]

(56]

[57]

(58]

(59]

d0i:10.14778/2002938.2002940

Ataberk Olgun, Juan Gémez Luna, Konstantinos Kanellopoulos,
Behzad Salami, Hasan Hassan, Oguz Ergin, and Onur Mutlu.
2022. PIDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM. ACM Trans. Archit. Code Optim. 20, 1, Article 8
(nov 2022), 31 pages. doi:10.1145/3563697

Marcelo Orenes-Vera, Esin Tureci, David Wentzlaff, and Margaret
Martonosi. 2023. Dalorex: A Data-Local Program Execution and Ar-
chitecture for Memory-bound Applications. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 718~
730. doi:10.1109/HPCA56546.2023.10071089

Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Ed-
jlali. 2014. Hybrid transaction/analytical processing will foster op-
portunities for dramatic business innovation. Gartner (2014, Jan-
uary 28) Available at https://www.gartner.com/doc/2657815/hybrid-
transactionanalyticalprocessing-foster-opportunities (2014), 4-20.
PingCAP. 2024. TiDB: a distributed SQL database. https://github.com/
pingcap/tidb Accessed on July, 2024.

Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and
Anastasia Ailamaki. 2020. Adaptive HTAP through Elastic Resource
Scheduling. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD °20).
Association for Computing Machinery, New York, NY, USA, 2043-2054.
doi:10.1145/3318464.3389783

Christian Riegger, Tobias Vingon, Robert Gottstein, and Ilia Petrov.
2020. MV-PBT: multi-version indexing for large datasets and HTAP
workloads. In Advances in data base technology-EDBT 2020: 23rd Inter-
national Conference on Extending Database Technology, Copenhagen,
Denmark, March 30-April 2, 2020: proceedings. Open Proceedings. org,
Univ. of Konstanz, 217-228.

Shahin Roozkhosh, Denis Hoornaert, Ju Hyoung Mun, Tarikul Islam
Papon, Ulrich Drepper, Renato Mancuso, and Manos Athanassoulis.
2021. Relational Memory: Native In-Memory Accesses on Rows and
Columns. CoRR abs/2109.14349 (2021). arXiv:2109.14349 https://arxiv.
org/abs/2109.14349

Vishal Sikka, Franz Farber, Wolfgang Lehner, Sang Kyun Cha, Thomas
Peh, and Christof Bornhovd. 2012. Efficient transaction processing in
SAP HANA database: the end of a column store myth. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data
(Scottsdale, Arizona, USA) (SIGMOD °’12). Association for Computing
Machinery, New York, NY, USA, 731-742. doi:10.1145/2213836.2213946
SingleStore. [n.d.]. SingleStore Documentation, SingleStore Helios.
[Online]. https://docs.singlestore.com/.

Utku Sirin, Sandhya Dwarkadas, and Anastasia Ailamaki. 2021. Per-
formance Characterization of HTAP Workloads. In 2021 IEEE 37th In-
ternational Conference on Data Engineering (ICDE). 1829-1834. doi:10.
1109/ICDE51399.2021.00162

Haoze Song, Wenchao Zhou, Feifei Li, Xiang Peng, and Heming Cui.
2023. Rethink Query Optimization in HTAP Databases. Proc. ACM
Manag. Data 1, 4, Article 256 (dec 2023), 27 pages. doi:10.1145/3626750
Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik.
2018. C-store: a column-oriented DBMS. Association for Computing
Machinery and Morgan & Claypool, 491-518. https://doi.org/10.1145/
3226595.3226638

Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. 2021.
ABC-DIMM: Alleviating the Bottleneck of Communication in DIMM-
based Near-Memory Processing with Inter-DIMM Broadcast. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA). 237-250. doi:10.1109/ISCA52012.2021.00027

Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang
Yao, and Hao Zhang. 2015. In-memory Databases: Challenges and
Opportunities From Software and Hardware Perspectives. SIGMOD

194

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Yilong Zhao et al.

Rec. 44, 2 (Aug. 2015), 35-40. doi:10.1145/2814710.2814717

Boyu Tian, Qihang Chen, and Mingyu Gao. 2023. ABNDP: Co-
optimizing Data Access and Load Balance in Near-Data Processing. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing
Machinery, New York, NY, USA, 3-17. doi:10.1145/3582016.3582026
Boyu Tian, Yiwei Li, Jiang Li, Shuangyu Cai, and Mingyu Gao. 2024.
NDPBridge: Enabling Cross-Bank Coordination in Near-DRAM-Bank
Processing Architectures. In Proceedings of the 51st Annual Interna-
tional Symposium on Computer Architecture (ISCA °24). Association for
Computing Machinery, Article 1, 16 pages.

UPMEM. 2023. The UPMEM DPU toolchain - UPMEM DPU SDK
2023.2.0 Documentation. https://sdk.upmem.com/2023.2.0/.

Tobias Vingon, Christian Knédler, Leonardo Solis-Vasquez, Arthur
Bernhardt, Sajjad Tamimi, Lukas Weber, Florian Stock, Andreas Koch,
and Ilia Petrov. 2022. Near-data processing in database systems on
native computational storage under HTAP workloads. Proc. VLDB
Endow. 15, 10 (jun 2022), 1991-2004. doi:10.14778/3547305.3547307
Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and Tony
Nowatzki. 2023. Infinity Stream: Portable and Programmer-Friendly
In-/Near-Memory Fusion. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 359-375.
doi:10.1145/3582016.3582032

Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony
Nowatzki. 2023. Affinity Alloc: Taming Not - So Near-Data Computing.
In 2023 56th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 784-799.

Zhengrong Wang, Jian Weng, Sihao Liu, and Tony Nowatzki. 2022.
Near-Stream Computing: General and Transparent Near-Cache Accel-
eration. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 331-345. doi:10.1109/HPCA53966.2022.
00032

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino,
and Deep Ganguli. 2014. Druid: a real-time analytical data store.
In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association
for Computing Machinery, New York, NY, USA, 157-168. doi:10.1145/
2588555.2595631

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. 2014. Staring into the abyss: an evaluation of
concurrency control with one thousand cores. Proc. VLDB Endow. 8, 3
(nov 2014), 209-220. doi:10.14778/2735508.2735511

Yilong Zhao, Mingyu Gao, Fangxin Liu, Yiwei Hu, Wang Zongwu,
Han Lin, Ji Li, He Xian, Hanlin Dong, Tao Yang, Naifeng Jing, Xiaoyao
Liang, and Li Jiang. 2024. UM-PIM: DRAM-Based PIM with Uniform
& Shared Memory Space. In Proceedings of the 51st Annual Interna-
tional Symposium on Computer Architecture (ISCA °24). Association for
Computing Machinery, Article 1, 16 pages.

Zhe Zhou, Cong Li, Fan Yang, and Guangyu Sun. 2023. DIMM-Link:
Enabling Efficient Inter-DIMM Communication for Near-Memory Pro-
cessing. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 302-316. doi:10.1109/HPCA56546.2023.
10071005

Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu,
Yanzhi Wang, and Xuehai Qian. 2019. GraphQ: Scalable PIM-Based
Graph Processing. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 712-725. doi:10.1145/3352460.3358256

https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3563697
https://doi.org/10.1109/HPCA56546.2023.10071089
https://github.com/pingcap/tidb
https://github.com/pingcap/tidb
https://doi.org/10.1145/3318464.3389783
https://arxiv.org/abs/2109.14349
https://arxiv.org/abs/2109.14349
https://arxiv.org/abs/2109.14349
https://doi.org/10.1145/2213836.2213946
https://docs.singlestore.com/
https://doi.org/10.1109/ICDE51399.2021.00162
https://doi.org/10.1109/ICDE51399.2021.00162
https://doi.org/10.1145/3626750
https://doi.org/10.1145/3226595.3226638
https://doi.org/10.1145/3226595.3226638
https://doi.org/10.1109/ISCA52012.2021.00027
https://doi.org/10.1145/2814710.2814717
https://doi.org/10.1145/3582016.3582026
https://sdk.upmem.com/2023.2.0/
https://doi.org/10.14778/3547305.3547307
https://doi.org/10.1145/3582016.3582032
https://doi.org/10.1109/HPCA53966.2022.00032
https://doi.org/10.1109/HPCA53966.2022.00032
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.1109/HPCA56546.2023.10071005
https://doi.org/10.1109/HPCA56546.2023.10071005
https://doi.org/10.1145/3352460.3358256

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM-based PIM
	2.2 PIM-based HTAP Systems
	2.3 Database Concurrency Control

	3 Challenges
	4 The Unified Data Format
	4.1 Aligned Data Format
	4.2 Block-circulant Data Placement for PIM Parallelism

	5 MVCC Support
	5.1 MVCC Storage
	5.2 Snapshotting
	5.3 Defragmentation.

	6 Architecture Support
	6.1 Architecture Overview
	6.2 OLAP Operations Execution
	6.3 APIs for OLTP and OLAP Operations

	7 Evaluation
	7.1 Experimental Setup
	7.2 Results on Unified Data Format
	7.3 OLTP and OLAP Performance
	7.4 Defragmentation Operation
	7.5 Architecture Comparison
	7.6 Area Overhead.

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

