
Making In-Memory Learned Indexes Efficient on Disk

JIAOYI ZHANG, Institute for Interdisciplinary Information Sciences, Tsinghua University, China
KAI SU, Institute for Interdisciplinary Information Sciences, Tsinghua University, China
HUANCHEN ZHANG∗, Institute for Interdisciplinary Information Sciences, Tsinghua University, China

Learned indexes have been demonstrated to outperform traditional ones in memory-resident scenarios.
However, recent studies show that they fail to outperform B+tree when extended to disks directly. In this
paper, we argue that it is feasible to create efficient disk-based learned indexes by applying a set of general
transformations and optimizations to existing in-memory ones. Through theoretical analysis and controlled
experiments, we propose six transformation guidelines applicable to various state-of-the-art learned index
structures to fully leverage the characteristics of disk storage. Our evaluation shows that the indexes developed
by applying our guidelines achieve a Pareto improvement in both throughput and space efficiency compared
to the traditional B+tree and previous implementations of disk-based learned indexes.

CCS Concepts: • Information systems→ Data access methods.

Additional Key Words and Phrases: Learned Indexes, Disk-based Indexes

ACM Reference Format:
Jiaoyi Zhang, Kai Su, and Huanchen Zhang. 2024. Making In-Memory Learned Indexes Efficient on Disk. Proc.
ACM Manag. Data 2, 3 (SIGMOD), Article 151 (June 2024), 26 pages. https://doi.org/10.1145/3654954

1 INTRODUCTION
Learned indexes have been a major research topic for database indexing for the last five years [6,
8, 9, 11–13, 22, 23, 27, 30–33, 35]. These indexes claim to reduce index lookup latency by an order
of magnitude and save the memory footprint by up to three orders of magnitude compared to
traditional B+trees [13, 31]. To the best of our knowledge, however, none of the major online
transaction processing (OLTP) database management systems (DBMSs) choose to adopt learned
indexes. One of the key reasons is that most commercial OLTP DBMSs are still disk-based [2, 10,
14, 20, 21, 37] but existing learned indexes were designed to reside purely in memory.

Such a mismatch makes learned indexes less attractive to disk-based OLTP DBMSs. First, the
nano-second latency improvement from learned indexes will likely be overshadowed by the much
slower I/Os in a disk-based system [2]. Moreover, it is still impractical to fit all indexes in memory
for these systems with learned indexes. Previous work has shown that index structures are often as
large as the original tables in an OLTP DBMS, and most of them are secondary (i.e., non-clustering)
indexes [34]. Although learned indexes are reported to be up to 2000× smaller than traditional
tree-based ones [13, 31], their memory savings are insignificant for secondary indexes: the 2000×
∗Huanchen Zhang is also affiliated with Shanghai Qi Zhi Institute.

Authors’ addresses: Jiaoyi Zhang, jy-zhang20@mails.tsinghua.edu.cn, Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China; Kai Su, suk23@mails.tsinghua.edu.cn, Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing, China; Huanchen Zhang, huanchen@tsinghua.edu.cn, Institute for Interdisciplinary
Information Sciences, Tsinghua University, Beijing, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/6-ART151
https://doi.org/10.1145/3654954

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

HTTPS://ORCID.ORG/0009-0008-3075-6147
HTTPS://ORCID.ORG/0009-0003-7622-7201
HTTPS://ORCID.ORG/0009-0001-4821-1558
https://doi.org/10.1145/3654954
https://orcid.org/0009-0008-3075-6147
https://orcid.org/0009-0003-7622-7201
https://orcid.org/0009-0001-4821-1558
https://doi.org/10.1145/3654954

151:2 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

compression is only with respect to the internal nodes of a traditional index (e.g., B+tree), which is
almost negligible compared to the size of the leaf nodes.

Therefore, to make learned indexes useful in the more general disk-based DBMSs, a natural idea
is to only keep the learned models (i.e., internal nodes) in memory while storing the leaf nodes on
disk – the so-called disk-based learned indexes. Note that most DBMSs lay out B+trees in a similar
way by pinning non-leaf nodes in the buffer pool. However, recent experiments show that by
simply locating the leaf nodes on disk, none of the state-of-the-art learned indexes can outperform
a disk-resident B+tree across a broad range of workloads and datasets [14]. The conclusion seems
to be that without a complete redesign from scratch, learned indexes are hardly preferable for
databases operating on disk.

In this paper, we argue that efficient disk-based learned indexes can be obtained by performing a
series of general transformations and optimizations to the existing in-memory ones. To facilitate this
process, we propose the following SGACRU guidelines for converting a state-of-the-art in-memory
learned index into a fast and memory-efficient disk-based learned index:
G1: (Search) Determine the leaf-page fetching strategy during the “last-mile” search based on

disk and workload characteristics.
G2: (Granularity) Determine the prediction granularity (e.g., item vs. page) of the learned models.
G3: (Alignment) Expand1 the error bound (by leveraging page alignment) for index training to

reduce the number of models while keeping the same expected I/O pages.
G4: (Compression) Reduce memory usage by compressing model parameters, accepting a negli-

gible increase in CPU overhead compared to dominant I/O time.
G5: (Robustness) For datasets with CDFs challenging to learn, fall back to an efficiently com-

pressed zone-map index.
G6: (Update) Use hybrid indexes [34] for efficient updates.
A disk-based learned index consists of in-memory models and on-disk leaf pages. The index’s

performance is dominated by the I/O efficiency of fetching the leaf pages, while its memory
efficiency depends on the model storage. The first two guidelines target minimizing disk I/Os.
For G1, we found that whether to fetch the leaf pages “one-by-one” or “all-at-once” during the
“last-mile” search could affect the learned index’s performance significantly. We recommend using
the all-at-once strategy (i.e., fetching all the pages within the error range in one I/O request) by
default because it leads to a lower lookup latency than the one-by-one strategy for disk-based
learned indexes in most cases. However, with higher-end NVMe/Optane SSDs and more concurrent
threads, the one-by-one strategy gains advantages.

ForG2, conventional wisdom is to set the prediction granularity for disk-based learned indexes to
the page level (i.e., the predicted value is a page ID) [14, 20]. Although we proved that the page-level
prediction granularity could reduce the I/Os by up to one page per index lookup compared to the
item-level prediction granularity, we found empirically that the page-level prediction granularity
requires more models to guarantee the same error bound. And the performance gain (due to I/O
reduction) is often not high enough to justify the extra memory consumption (due to more models).
The next two guidelines target reducing the memory footprint of a disk-based learned index.

In G3, we observe that the fixed-length error bound used for index construction typically does
not align with the page boundaries, causing the portion of the fetched page outside the error
bound wasted. We, therefore, propose to expand the error bound dynamically to align with page
boundaries during training to fully utilize the content in each fetched page. With a looser error
bound, the learned index requires fewer models to achieve the same number of expected I/O pages
per lookup.
1We use the term “expand” instead of “relax” because there is no reduction of precision.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:3

We further propose to compress the in-memory learned models using lightweight compression
algorithms in G4. Specifically, we apply the recent “learned compression” (LeCo) [18] which
supports fast random access to the compressed elements in which we store our model parameters
(i.e., keys separating the partitions, intercepts of the linear models). Such compression can reduce
the model memory by up to 96% with a slight decoding overhead negligible in the end-to-end
lookup latency.

Prior studies have reported datasets with unfriendly cumulative distribution functions (CDFs) for
existing learned indexes to capture [31, 35]. In G5, we propose a fall-back design of learned indexes
that are robust against such challenging workloads. The key idea is to compress the plain zone map
(i.e., the minimum value of each leaf page) using the aforementioned learned compression (LeCo)
technique. With further optimizations inspired by G3, our LeCo-based zone map exhibits superior
performance and memory efficiency compared to a regular disk-based learned index, especially
when dealing with challenging datasets.

Finally, we handle index updates with G6. Although several updatable learned indexes [6, 8, 9,
12, 32] have been proposed to support dynamic operations (i.e., inserts, updates, and deletes), their
write performance is inferior to that of a B+tree when the leaf nodes are on disk [14]. Interestingly,
we found that applying the general hybrid-index framework [34] to the disk-based learned index
solves its update problem efficiently, outperforming the B+tree by 5.1× and 1.8× for write-only and
read-write-balanced workloads, respectively with the same memory footprint. More importantly,
the hybrid-index framework does not require the underlying learned index to be updatable, thus
bypassing the challenge of designing updatable learned indexes specifically for disk.
Putting everything together, we developed the hybrid-PGM-disk and the hybrid-LeCo-disk as

the example “end products” of applying the SGACRU guidelines to state-of-the-art in-memory
learned indexes. Our evaluation using the YCSB benchmark [4] shows that hybrid-PGM-disk and
hybrid-LeCo-disk can achieve the same performance as the B+tree for read-only workloads while
consuming up to 83.5% less memory. For read-write-balanced workloads, our indexes outperform
B+tree and the on-disk PGM index [14] by 1.8× and 16.8×, respectively with the same memory
footprint. Besides, our two “end products” scale well, achieving up to 5× the throughput of the
concurrent B+tree on write-only workloads.
We make the following contributions in this paper. First, we propose a set of guidelines that

can make an existing in-memory learned index operate efficiently when located on disk. Second,
we apply the guidelines progressively to various learned indexes and provide detailed analyses of
the performance and memory trade-offs for each guideline. Finally, we affirm that the disk-based
learned indexes developed in accordance with our guidelines are faster and more memory-efficient
compared to traditional B+trees and previous implementations of disk-based learned indexes.
Table 1 summarizes the notation used in this paper. Our implementation and experiment data are
publicly available.2

2 BACKGROUND AND RELATEDWORK
2.1 In-Memory Learned Indexes
Learned indexes address the challenge of indexing by focusing on its key operation: rank. Essentially,
the rank operation is a function that maps a given key to a corresponding memory address. This
can be conceptualized further as a Cumulative Distribution Function (CDF) operating over the
distribution of keys.

Although the designs in various learned indexes are different, they generally adhere to a common
search process and overall structure. Given the keys to be indexed, these learned indexes use their

2https://github.com/JiaoyiZhang/Efficient-Disk-Learned-Index

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

https://github.com/JiaoyiZhang/Efficient-Disk-Learned-Index

151:4 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

Table 1. Notations.

Notation Meaning

𝑃 number of data points (i.e., items) within a disk page
𝑅𝑖 number of items in the last-mile search
𝐺 prediction granularity (#keys sharing the same 𝑦)
𝜖 maximum model error (in items)
𝜖′ maximum model error (in 𝐺)
𝑦 true position of the given key (in items)
𝑦 predicted position of the given key (in items)
𝑅𝑝 number of pages in the last-mile search
E[𝑅𝑝] average of 𝑅𝑝 over all queries

own construction algorithm to obtain tree-like structures, comprising a root node, single or multiple
layers of internal nodes, and leaf nodes used to manage data. Note that some updatable learned
indexes store data alongside models in leaf nodes, whereas static learned indexes only store models
that manage data points in external sorted arrays. Each node typically consists of a linear model3
employed to capture the distribution of a subset of the dataset, along with associated parameters
(e.g., slope, intercept). Detailed designs may vary across different learned indexes.

When a query arrives, the search process begins at the root node, where the model determines
the location of the next node to be visited in the subsequent layer. This process continues until a leaf
node is reached, and the model in the leaf node predicts the location of the querying key, denoted
as 𝑦. Finally, a search for the precise location (i.e., last-mile search) is conducted within this data
partition (the sub-dataset managed by this leaf node). Typically, with the maximum-allowed model
error 𝜖 , the search range is [𝑦−𝜖,𝑦+𝜖), with the number of involved items 𝑅𝑖 = (𝑦+𝜖)− (𝑦−𝜖) = 2𝜖 .
In contrast to the 𝑂 (log𝑛) complexity of the binary search process in a B+tree, model prediction
offers 𝑂 (1) lookup complexity to quickly determine the location of the next node or data point.

Different variants of learned indexes have been proposed since the pioneering work by Kraska
et al. [13] FITing-Tree [9] replaces the leaf nodes of B+tree [3] with linear models, while PGM-
Index [8] uses an optimal algorithm to build the index structure with the minimum number of
models. Updatable learned indexes such as ALEX [6] and LIPP [32] employ gapped arrays and
handle prediction collisions by growing to a tree of models. RadixSpline [12] uses buckets (as in
bucket sort and radix sort) to optimize index build and lookup time with the cost of higher memory
consumption. Other learned index variants [7, 11, 16, 17, 19, 24–26, 28, 29, 33, 36] are designed for
specific application scenarios.

2.2 Disk-Based Learned Indexes
Google Bigtable first proposed a disk-based learned index in their system. However, it does not
allow inserts and introduces storage gaps due to misaligned page boundaries [2]. FILM [20] is
another attempt at building a disk-based learned index, but it requires cold data detection and
append-only inserts, limiting its applicable scenarios. To build general-purpose on-disk learned
indexes, a recent study by Lan et al [14] extends existing in-memory learned indexes to the disk
environment. Their approach is to pin the smaller learned models in memory while storing the
data points (i.e., leaf nodes) on disk. As shown in Figure 1, according to the search range given
by the model, the range of pages to be retrieved from the disk are

[⌊
�̂�−𝜖
𝑃

⌋
,

⌈
�̂�+𝜖
𝑃

⌉)
, where 𝑃 is the

3The original learned index [13] and its subsequent work [23] are composed of simple neural networks, but the state-of-the-
art learned indexes all use linear models.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:5

last-mile search range = [#𝑦 − 𝜖, #𝑦 + 𝜖)
#fetched items: 𝑅! = 2𝜖, #fetched pages: 𝑅" = 2

𝑀! 𝑀" 𝑀# 𝑀$%" 𝑀$

𝑅𝑜𝑜𝑡

…

Partition 0 Partition 1 Data Points Managed by Leaf Nodes

Depends on specific design

𝑘𝑣! … … … 𝑘𝑣!"# 𝑘𝑣 "# 𝑘𝑣$ … … … … … 𝑘𝑣%$ … … … … … 𝑘𝑣&

Internal
Model Nodes

Leaf
Model Nodes

Page 0 Page 1 Page ⌊&
'
⌋…

Memory
Disk

#𝑦

lookup 𝑘%&'

…

Fig. 1. The Structure of Learned Indexes.

number of data points within a disk page. Then the number of I/O pages for a lookup query is:

𝑅𝑝 =

⌈
𝑦 + 𝜖

𝑃

⌉
−
⌊
𝑦 − 𝜖

𝑃

⌋
(1)

However, the experimental results by [14] indicate that none of the disk versions of existing
learned indexes can outperform a regular B+tree.We argue that the primary reason behind the above
results is that the current design of disk-based learned indexes fails to leverage the characteristics
of the disk storage. Unlike DRAM, SSDs and HDDs are block-addressable devices with a larger
performance gap between sequential accesses and random accesses. Considering these device
characteristics, we show in this paper that by applying a series of general transformations and
optimizations to the existing in-memory learned indexes, they are able to outperform traditional
B+trees and current on-disk learned indexes while consuming less memory at the same time.

3 MICROBENCHMARK SETUP
In this section, we outline the experimental setup for our microbenchmark to maintain clarity and
consistency. In the following sections, we use this microbenchmark to validate our proposed general
guidelines and follow the settings explained here unless otherwise stated. The index structures
(e.g., learned models) are kept in memory because they are small and frequently accessed. The
ordered data points are stored sequentially on disk. We enable direct I/O to bypass the OS page
cache when fetching the data points.

Hardware and Platform. Our microbenchmarks are conducted on a machine with 128 Intel®
Xeon® Platinum 8358 CPUs (2.60GHz) and 503GB of RAM. Besides, we also provide four disks
on this machine, as shown in Table 2. The random read performance across these disks displays
differences that span orders of magnitude. The differences are also pronounced when compared to
memory, which exhibits sub-microsecond latency.

Datasets andWorkloads.We use four real-world datasets in SOSD [22] commonly employed in
current studies of learned indexes [6, 14, 31, 32, 35]. Additionally, we generate five synthetic datasets
using the generator provided by GRE [31]. The generator creates datasets that satisfy both local
hardness (𝑙) and global hardness (𝑔). The local hardness 𝑙 refers to the number of models required
in PGM-Index to construct an index for the dataset, and the maximum errors of all these models
do not exceed 𝜖𝑙 . The global hardness 𝑔 is the number of needed models under a more relaxed
requirement of the maximum model error 𝜖𝑔 . Here, we fix 𝜖𝑙 to be 8 and 𝜖𝑔 to be 512 and then vary
the values of 𝑙 and 𝑔 to generate synthetic datasets. Each dataset is composed of 200 million 8-byte

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:6 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

Table 2. Information of Four Disks.

Disk 4KB Random Read Sequential Read
IOPS Latency Bandwidth

Optane SSD Optane P5800X 1.5 M 11.7 𝜇s 7.2 GB/s

NVMe SSD Samsung PM9A3 1.1 M 70 𝜇s 6.9 GB/s

SATA SSD Samsung 870 QVO 98 K 211.6 𝜇s 560 MB/s

HDD Seagate ST2000NX0253 7293 4.8 ms 141 MB/s

unsigned integer keys, with an 8-byte payload. Then, each page (4KiB) can accommodate 256 data
points. Except for the wiki dataset, none of the datasets contain duplicate keys. We provide a brief
description of these datasets: (1) amzn: the popularity of each book from Amazon; (2) wiki: the
time ID of each edit from Wikipedia; (3) osm: the ID of embedded positions from Open Street Map;
(4) fb: user IDs randomly sampled from Facebook; (5) syn_g10_l1: 𝑙 is 1,000,000 and 𝑔 is 100,000;
(6) syn_g10_l2: 𝑙 is 2,000,000 and 𝑔 is 100,000; (7) syn_g10_l4: 𝑙 is 4,000,000 and 𝑔 is 100,000; (8)
syn_g12_l1: 𝑙 is 1,000,000 and 𝑔 is 120,000; (9) syn_g12_l4: 𝑙 is 4,000,000 and 𝑔 is 120,000. These
datasets are sorted by data difficulty, where synthetic datasets are used to assess the ability of
learned indexes to handle more complex datasets.

Because we delay the handling of index updates in Section 9, the microbenchmark only includes
lookups. A more comprehensive evaluation can be found in Section 10. For this microbenchmark,
We first build the index with 200M keys and then randomly select 10M keys for lookup. We measure
the throughput and memory usage (without the data array) for the index under evaluation.
Learned Indexes. We use the state-of-the-art PGM-Index [8] and RadixSpline [12] as repre-

sentatives in Sections 4 to 8, as no updates are involved here. Updatable learned indexes are not
included in this microbenchmark because they typically introduce gaps and additional functionality
to support writes, leading to increased space usage and potential degradation in read performance.

4 LEAF-PAGE FETCHING STRATEGY (G1)
The bottleneck of in-memory learned indexes typically arises from the last-mile search process,
which involvesmultiple memory accesses [31, 35]. Consequently, rather than focusing on optimizing
the internal structure and algorithms of learned indexes, our initial investigation focuses on
understanding the impact of the last-mile search strategies on disk.
It is worth noting that the transition from in-memory to disk-based learned indexes shifts

performance bottlenecks towards the I/O operations[14, 20]. We performed an experiment on the
Optane and SATA SSDs: we built two indexes, PGM-Index and RadixSpline, on the Amazon dataset,
then executed 10M read-only queries and recorded the CPU and I/O latency, respectively. As shown
in Figure 2, the latency of these two indexes with different 𝜖 guarantees are all dominated by the I/O
time on our disks. Notably, even on the highest-performing disk examined in our experiments, the
CPU time remains significantly less than the time consumed by I/O operations. This shift implies a
reordering of priorities, with I/O latency being more prominent than memory access latency. Most
I/O operations come from the last-mile search in the bottom level (i.e., disk pages of leaf nodes)
because the internal nodes are typically cached/pinned in memory.

4.1 Last-Mile Search On Disk
The last-mile search in leaf nodes usually consists of two phases: obtaining the search range from
the linear model in the learned index and performing a binary search (or other search methods)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:7

16 256 512 768 1024
#items in last-mile search

0

2

4

6

8

10

12

14

16

La
te

nc
y

pe
r q

ue
ry

(μ
s)

PGM_CPU
PGM_IO
RS_CPU
RS_IO

(a) Optane (single thread)

16 256 512 768 1024
#items in last-mile search

0

50

100

150

200

La
te

nc
y

pe
r q

ue
ry

(μ
s)

PGM_CPU
PGM_IO
RS_CPU
RS_IO

(b) SATA (single thread)

Fig. 2. CPU Time vs. I/O Time.

within this range. As previously shown in Equation 1, the number of I/O pages for each query is
denoted as 𝑅𝑝 . Here, we also define the number of pages between the start position 𝑦 − 𝜖 of the
search range and the actual position 𝑦 as 𝑑𝑖𝑠𝑡 , which is calculated by

𝑑𝑖𝑠𝑡 =

⌊𝑦
𝑃

⌋
−
⌊
𝑦 − 𝜖

𝑃

⌋
+ 1 (2)

With these two page-related statistics, we can more accurately control the I/O operations of
disk-based learned indexes:

• 𝒅 𝒊𝒔𝒕 : When scanning from 𝑦 − 𝜖 and arrives at the page containing 𝑘𝑦 , we only need to fetch
the first 𝑑𝑖𝑠𝑡 pages, thus saving traffic for each query.

• 𝑹𝒑 : 𝑅𝑝 is the maximum number of fetched pages per query. If 𝑅𝑝 is small, we can take full
advantage of sequential I/O by fetching all pages (containing [𝑦 − 𝜖,𝑦 + 𝜖]) in a single I/O,
thereby reducing latency.

4.2 One-by-One vs. All-at-Once
Based on these two metrics, we have two leaf-page fetching strategies tailored to different scenarios:
an all-at-once strategy and a one-by-one strategy. The former involves fetching all 𝑅𝑝 pages
from disk to memory in a single I/O operation, while the latter indicates fetching only the first few
pages over a total of 𝑑𝑖𝑠𝑡 I/Os, with each I/O obtaining a single page.
Next, through simple experiments, we elucidate the particular scenarios where each leaf-page

fetching strategy is the most preferable. We vary 𝑑𝑖𝑠𝑡 and 𝑅𝑝 and assess the throughput of these two
distinct strategies across multiple disks. There is no need to use a particular index here, as 𝑅𝑝 and
𝑑𝑖𝑠𝑡 can be controlled via the length of a given range and selecting the correct position within this
range, respectively. We use 1, 16, and 256 threads to complete these 10M queries on the machine
equipped with four different disks as described in Section 3. The preferences for the two strategies
at different combinations of 𝑑𝑖𝑠𝑡 and 𝑅𝑝 are shown in Figure 3, where the color of each square
corresponds to the ratio of the throughput of the one-by-one strategy to that of the all-at-once
strategy and the throughput is the number of queries completed per second. A darker red indicates
that the ratio is closer to or even exceeds 2.5, in which case the one-by-one strategy is preferred.
Conversely, the darker blue color with a smaller throughput ratio suggests that the all-at-once
strategy is more suitable. White in the middle signifies that both strategies are approximately equal
in performance.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:8 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

all-at-once one-by-one≤0.5 1 ≥2

10
7

4
1

1
th

re
ad

R p

Optane NVMe SSD SATA SSD HDD

10
7

4
1

16
 th

re
ad

s
R p

1 4 7 10

10
7

4
1

25
6

th
re

ad
s

R p

1 4 7 10
 dist

1 4 7 10 1 4 7 10

Fig. 3. Disk Performance: One-by-One Strategy (red) vs. All-at-Once Strategy (blue) – Darker color indicates
that the corresponding strategy is more dominant in the corresponding pair of 𝑑𝑖𝑠𝑡 and 𝑅𝑝 .

The diverse preferences for leaf-page fetching strategies can be attributed to various performance
characteristics of disks and the number of threads. In scenarios where the access latency of individual
I/Os is high and disk bandwidth is relatively “larger” compared to the latency, the all-at-once strategy
is better. This strategy effectively mitigates latency through a single large I/O and ultimately results
in higher throughput on the HDD. Note that SSDs have multiple channels and chips inside to
implement various levels of parallelism mechanisms, allowing SSDs to read multiple pages in a
single large I/O in parallel. Consequently, the all-at-once strategy can have higher throughput than
the one-by-one strategy when the number of threads is small and 𝑑𝑖𝑠𝑡 is large. On the other hand,
the one-by-one strategy excels when taking advantage of the low random access latency inherent
to SSDs, especially when dealing with a small number of I/O pages that are less likely to saturate
disk bandwidth even in multi-threaded scenarios.
In current disk-based learned indexes [14], the one-by-one strategy is used to retrieve data

from disk, but it is often suboptimal. For example, we measure the throughput of PGM with the
Facebook dataset on Optane after transitioning to the all-at-once strategy with all other settings
unchanged. The results show that the throughput increased from 28.9 Kops/sec to 52.4 Kops/sec,
with an increase of up to 1.81×, which verifies that selecting a suitable fetching strategy for a
real-world scenario can significantly improve performance.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:9

Discussion:We propose that when making decisions regarding leaf-page fetching strategies,
it is necessary to consider specific workloads and performance characteristics of disks. In most
cases, opting for the all-at-once strategy is an effective choice. However, when operating on SSDs
with more threads, we recommend selecting the one-by-one strategy in scenarios where 𝑑𝑖𝑠𝑡 of a
learned index is less than 1.25 pages or much smaller than 𝑅𝑝 .

5 PREDICTION GRANULARITY (G2)
In the context of disk-based learned indexes, existing works usually choose to predict page IDs [13,
20]. Interestingly, according to our experiments, the intuition that page-level prediction granularity
produces comparable or superior results than item-level predictions doesn’t always hold. In this
section, we explore the impact of varying prediction granularities on the space cost and throughput
of learned indexes from theoretical analysis and experiments.

5.1 Theoretical Analysis
Prediction granularity, denoted as 𝐺 , represents the number of data points sharing the same 𝑦.
Then, the new error bound 𝜖′ in terms of 𝐺 is calculated by 𝜖′ = 𝜖

𝐺
, and the number of data points

searched in the last mile can be represented as:

𝑅𝑖 = 2𝜖 = 2𝜖′ ·𝐺 (3)

This indicates that when 𝑅𝑖 is constant, the increase in 𝐺 is traded by a decrease in the 𝜖′. We
assume that the queries follow a uniform distribution for simplicity, and we adopt the all-at-once
page-fetching strategy. The distribution of the true positions within the predicted range also follows
a uniform distribution. With these assumptions, we can establish a connection between 𝐺 and the
number of I/O pages 𝑅𝑝 of a given range.
As 𝑅𝑖 is a multiple of 𝐺 , the predicted range is divided into 𝑅𝑖

𝐺
parts, with each part typically

introducing an expected 𝐺
𝑃
new pages, except for the first part, which consistently introduces a

new page. Then, the expected number of I/O pages E[𝑅𝑝] is:

E[𝑅𝑝] = 1 +

𝑅𝑖
𝐺

−1∑︁
𝑡=1

𝐺

𝑃
= 1 + 𝑅𝑖 −𝐺

𝑃
(4)

According to Equation 4, we can deduce that as the prediction granularity increases, the average
number of I/O pages to be visited decreases under the same last-mile search range. Besides, in the
following experiments, we can set different parameters based on this formula to get the desired
average number of I/O pages.

5.2 Experimental Results
To comprehensively evaluate the impact of prediction granularity on learned indexes, we vary 𝐺
under the same 𝑅𝑖 and test on different 𝑅𝑖s. There are three categories of𝐺 in our microbenchmark:
(1) Item Level (𝐺 = 1): The finest granularity possible.
(2) Mini-Page Level (1 < 𝐺 < 256): The intermediate category.
(3) Page Level (𝐺 = 256): Data points on the same disk page have the same 𝑦.
We build RadixSpline, a learned index, for the Amazon and OSMC datasets on the NVMe SSD

and execute the read-only workload using a single thread and 32 threads. The results are shown in
Figures 4, where the x-axis represents the memory usage of RadixSpline, and the y-axis represents
the throughput. We observe similar results with PGM-Index.
As illustrated in Figure 4, the throughput demonstrates an upward trend as the value of 𝐺

increases under the same 𝑅𝑖 . The reason is that if𝐺 is not an integer multiple of 𝑃 , the accessed data

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:10 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

(a) 1 thread (b) 32 threads

Fig. 4. Throughput and Space of RadixSpline with Different Prediction Granularity – Each symbol denotes a
set of results with the same 𝑅𝑖 . Within each set, the colors, transitioning from light to dark, indicate increasing
values of 𝐺 .

points do not align perfectly with the page boundaries, resulting in waste. Thus, the page-level 𝐺
tends to obtain the highest throughput since it perfectly aligns with page boundaries. Nonetheless,
according to Equation 4, the expected number of I/O pages between page-level 𝐺 and item-level 𝐺
differs by a maximum of one page. This marginal difference has a small impact on throughput in a
single-threaded scenario, as the disk can provide similar throughput on these two settings with the
all-at-once page-fetching strategy. However, in a multi-threaded scenario, where the bandwidth
is saturated, the page-level prediction granularity can enhance throughput by a factor of 1.16
compared to the other option.
However, this improvement in throughput comes at a significant cost in space, resulting in a

6.94× increase in memory footprint, as shown in Figure 4. The reason is that an increase in 𝐺

corresponds to a decrease in 𝜖′, as illustrated in Equation 3, imposing higher demands on model
accuracy. Note that the marginal cost of learned models is high when 𝜖′ → 0, which is the case at
the page level. Thus, regarding space efficiency, a page-level granularity is often not a practical
choice as it inevitably results in increased space costs, and it is better to maintain the item-level
prediction granularity.

Discussion: Considering all these factors, we do not recommend practitioners replace item IDs
with page IDs when transitioning from memory to disk. Instead, we advocate choosing the item
level in most cases. When the saved page brings significant speedup in multi-threaded scenarios,
then the mini-page and page-level prediction granularity are suitable choices.

6 ERROR BOUND ALIGNMENT (G3)
The build process for most learned indexes follows a common pattern4: given an error bound 𝜖
representing the maximum distance between the actual and predicted positions of a key, group all
data points satisfying this error bound into the same partition and use a linear model to approximate
their cumulative distribution function. In other words, a new model is needed when the error of a
data point exceeds 2𝜖 .
This section introduces a general modification to the core build algorithms of learned indexes

following the aforementioned pattern to adapt to disk characteristics. The key principle is to expand
the error bound without compromising throughput performance.

6.1 Disk-based Zero Intervals
As the scenario transitions frommemory to disk, throughput mainly depends on the average number
of I/O pages. Given that each I/O reads an entire page, the error bound may not align precisely with
4Here we set the prediction granularity to be item-level, i.e.,𝐺 is 1 and 𝜖 is 𝑅𝑖

2 .

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:11

on-disk error range for k9

𝑘! 𝑘" 𝑘# 𝑘$ 𝑘% 𝑘& 𝒌𝟔 𝒌𝟕 𝒌𝟖 𝒌𝟗 𝒌𝟏𝟎 𝒌𝟏𝟏 𝒌𝟏𝟐 𝒌𝟏𝟑 𝒌𝟏𝟒 𝒌𝟏𝟓PGM-D: 𝒌𝟏𝟔 𝒌𝟏𝟕 𝑘"1
Page 0 Page 1 Page 2

𝑘! 𝑘" 𝑘# 𝑘$ 𝑘% 𝑘& 𝑘2 𝒌𝟕 𝒌𝟖 𝒌𝟗 𝒌𝟏𝟎 𝒌𝟏𝟏 𝑘"# 𝑘"$ 𝑘"% 𝑘"&

error range for k9

PGM: 𝑘"2 𝑘"3 𝑘"1
Page 0 Page 1 Page 2

Fig. 5. An Example for Disk-based Error Range.

page boundaries, and some fetched pages may be partially wasted. Thus, fully utilizing the wasted
portion of pages offers an opportunity to reduce memory usage while maintaining a constant
average number of I/O pages. Intuitively, a construction algorithm that integrates page information
can make full use of the wasted portion. Specifically, we can expand the error bounds during
training to dynamically align with page boundaries, which reduces the chance of adding new
models when dealing with partitions.

We propose a new strategy to achieve this, which can be applied to many existing learned indexes.
The crucial step is incorporating page information into the original build algorithms, i.e., altering
the error calculation process. First, let us introduce the concept of disk-based zero intervals.
When the predicted and true positions reside on the same page, the error between them should be
recognized as zero instead of the actual difference. Then, the zero interval contains any position
within the page, represented as [𝑧𝑙 , 𝑧𝑟] =

[⌊ 𝑦
𝑃

⌋
∗ 𝑃,

(⌊ 𝑦
𝑃

⌋
+ 1

)
∗ 𝑃 − 1

]
, and the new error is:

𝑒𝑟𝑟𝑜𝑟 =

𝑧𝑙 − 𝑦, 𝑖 𝑓 𝑦 < 𝑧𝑙

0, 𝑖 𝑓 𝑧𝑙 ≤ 𝑦 ≤ 𝑧𝑟

𝑦 − 𝑧𝑟 , 𝑖 𝑓 𝑦 > 𝑧𝑟

(5)

With this disk-based zero interval, we can obtain a new maximum tolerable error range for each
key of [𝑧𝑙 − 𝜖, 𝑧𝑟 + 𝜖], within which the model can make predictions.

We integrate this looser error bound into the core build algorithm in a learned index X. Equipped
with the disk-based zero interval, the original build algorithm in X can then partition data points
with fewer models and obtain a more compact Disk-based index, denoted as X-Disk. Note that we
only alter the length of the error range during construction rather than the length of the last-mile
search range when responding to queries. Hence, the original search method remains capable of
accurately locating the page containing the given key within 2𝜖 , requiring no further modifications.
It is sufficient to prove that the set of fetched pages contains the query 𝑘𝑦 . Let the predicted

position be 𝑦 and the set of fetched elements covers [𝑤𝑙 ,𝑤𝑟], where 𝑤𝑙 =

⌊
�̂�−𝜖
𝑃

⌋
∗ 𝑃 and 𝑤𝑟 =(⌊

�̂�+𝜖
𝑃

⌋
+ 1

)
∗ 𝑃 − 1. If 𝑦 > 𝑧𝑟 , then 𝑒𝑟𝑟𝑜𝑟 = 𝑦 − 𝑧𝑟 ≤ 𝜖 =⇒ 𝑤𝑙 ≤

⌊
𝑧𝑟
𝑃

⌋
∗ 𝑃 = 𝑧𝑙 ≤ 𝑦 ≤ 𝑧𝑟 < 𝑦 ≤ 𝑤𝑟 .

The case 𝑦 < 𝑧𝑙 is similar and the case 𝑧𝑙 ≤ 𝑦 ≤ 𝑧𝑟 is trivial.
We provide an example illustrating the change in the error range in Figure 5, where the 𝜖 for the

PGM-Index is 2 and keys with the same color indicate that they are on the same disk page. The
original algorithm assigns a tolerance range of [𝑘7, 𝑘11] to 𝑘9, which are the keys with darker colors
in Figure 5. This requires the position predicted by the current model in the build process to fall
within the range of 5 keys; otherwise, a new model would be required to handle it. However, with
our expanded errors, the predicted position can fall within a broader range of [𝑘6, 𝑘17], which can
reduce the chance of adding a new model.
Disk-based zero intervals might seem no different from the effect of the page-level prediction

granularity(G2) at first glance, both of which regard the distance between items within the same

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:12 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

Table 3. Models Saving of Learned Indexes Equipped with Disk-based Zero Intervals – Each column represents
the results for the same expected number of I/O pages, which means that the corresponding throughput is
guaranteed to be similar.

Expected Number of PGM-Index RadixSpline
I/O Pages 1.01 1.5 2 3 1.01 1.5 2 3

Facebook #Models (w/o) 27,442,813 531,431 258,373 120,493 31,451,334 1,023,185 504,121 245,665

Dataset #Models (w/) 713,368 240,058 151,847 88,439 2,562,804 581,190 344,880 197,122
% of Saving 97.4% 54.8% 41.2% 26.6% 91.8% 43.2% 31.6% 19.8%

Amazon #Models (w/o) 25,088,692 82,804 22,914 5,997 27,378,554 230,602 68,357 18,705

Dataset #Models (w/) 660,556 42,872 15,758 4,965 2,406,374 130,356 48,616 15,485
% of Saving 97.4% 48.2% 31.2% 17.2% 91.2% 43.5% 28.9% 17.2%

page as zero. The substantial difference is that G3 expands 𝜖 without relaxing 𝑅𝑝 , but in G2, 𝑅𝑝 ∝ 𝜖

according to Equation 3 & 4. To illustrate this, consider Figure 5, where 𝜖 = 2. The distance between
𝑘8 and 𝑘15 is zero, implying that 𝐺 = 8. When the predicted position 𝑦 = 7 (which is in Page 0), the
maximum possible page is

⌊
�̂�+𝜖
𝐺

⌋
= 1, so the granularity-level error in G2 is 𝜖′ ≥ 1. This means

that, even if 𝑦 = 5, the rightmost page we need to search for is
⌊
�̂�

𝐺

⌋
+ 𝜖′ ≥ 1, while in G3 we only

need to search for Page 0.

6.2 Applying to Learned Indexes
We apply this simple yet effective strategy to both PGM-Index and RadixSpline. Table 3 shows the
number of models with and without this strategy on the Facebook and Amazon datasets5, along
with the percentage reduction in the number of models. The columns represent the results under
various constraints on the expected number of I/O pages, which can be controlled by Equation 4.

As shown in Table 3, in most cases, the indexes with expanded errors yield a decrease in the
number of models ranging from 17.2% to 97.4%. This verifies that fully utilizing page information
during the build process significantly contributes to model reduction, and importantly, it does not
come at the cost of an additional increase in the average number of I/Os. Additionally, this effect
diminishes as the average number of I/O pages increases, because the larger 𝜖 is, the smaller the
wasted proportion of the last-mile search range.

Notably, for all scenarios examined, the number of models required for PGM-Index equipped
with disk-based zero intervals is consistently lower than that for RadixSpline under the same setup.
This is expected because the X-Disk versions inherit the fundamental construction algorithm from
their original version X while achieving a more space-efficient layout. It’s worth noting that our
algorithm demonstrates remarkable potential for reducing the number of models in PGM-Index in
disk-based environments, a learned index known for its minimal number of models [8, 31].

7 COMPRESSION TECHNIQUES (G4)
In this section, we discuss the application of compression techniques on models to reduce their
memory usage. Typically, each model consists of a partitioning key, slope, and intercept, where the
partitioning key is the smallest key within the partition of each leaf node and serves to locate the
correct leaf node. While compression for slope and intercept has been discussed in the compressed
PGM [8], we focus on the uncompressed part: the partitioning keys of models. Although various
general compression techniques can be employed for key compression, even with lightweight

5Facebook dataset is harder for learned indexes than Amazon dataset [31].

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:13

…

Partition 1

𝜃! 𝜃" 𝑏 𝛿#𝛿! 𝛿" …

Width = b

Partition k

𝜃! 𝜃" 𝑏 𝛿#𝛿! 𝛿" …

Fig. 6. Storage Format of LeCo [18]

compression algorithms (e.g., Delta Encoding [1, 15]), decompression still requires a certain amount
of CPU time, resulting in a decrease in throughput for in-memory scenarios with random access.
This is why key compression was omitted in the compressed PGM, and it is preferable to choose
the uncompressed ones.
However, we argue that the situation changes when dealing with disk-based indexes, and

that judiciously choosing the appropriate compression algorithm for each part can help improve
performance. As depicted in Figure 2, CPU time accounts for a negligible fraction of the overall
query time, and even if CPU time doubles to support random access, the performance would still be
primarily determined by I/O operations. This observation gives compression techniques a greater
advantage. Meanwhile, we still aim to ensure that CPU time remains within reasonable limits.

During the investigation, we discovered a new learned compressor, called LeCo, that aligns well
with our requirements. First, let’s provide a brief overview of LeCo, and more details can be found
in [18]. LeCo, as a learned compressor, follows a similar construction process of learned indexes:
the dataset is divided into multiple partitions, and a linear model (denoted as 𝜃0 and 𝜃1) is applied to
each partition. To ensure lossless compression, which allows for the accurate recovery of each key,
LeCo must retain specific error values of the learned model for each key. As shown in Figure 6, the
error of each element is stored in an array of 𝛿 , each occupying 𝑏 bits. The better the linear model
fits, the smaller 𝑏 can be set, thus leading to better compression. LeCo exhibits strong compression
capabilities for monotonic value sequences and supports random access efficiently. Consequently,
LeCo can be readily applied to compress the array of keys in our models (i.e., partitioning keys),
making it a superior choice compared to other compression techniques. Thus, we recommend
employing LeCo to compress the smallest key of each model, thus saving memory usage without
sacrificing search performance.

In summary, the methods that can be used for each part are:
• Partitioning Key: Use LeCo to compress the smallest keys used to locate leaf nodes.
• Slope: If the index permits the slope to be any value in an interval within which all values
have the same 𝜖 , the compression method in compressed PGM is a good choice. Otherwise,
the general compression methods can be applied.

• Intercept: Use the strategy in the compressed PGM to make intercepts increase, and then,
succinct data structures or LeCo can be applied to compress them.

Application Examples: Following the guidelines for compression methods, we apply compression
techniques to PGM indexes, which is currently the space-optimal learned index. The effectiveness
is then validated through five indexes: (1) the original PGM, (2) the compressed PGM-Index in [8],
(3) PGM_Disk, (4) PGM_Disk with Compressed slopes and intercepts (denoted as Cpr_PGM_Disk),
(5) and the fully compressed index (CprLeCo_PGM_Disk). More specifically, PGM_Disk com-
prises models derived from the construction algorithm of PGM-Index but enhanced with the
dynamically expanded error bounds (G3) without compression. Cpr_PGM_Disk employs the com-
pression methods utilized in the compressed PGM-Index to compress slopes and intercepts, and
CprLeCo_PGM_Disk adopts LeCo to compress the key of each model. The memory usage of these
indexes is presented in Figure 7 with five groups of expected I/O pages on both the Facebook

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:14 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

1.05 pages0

20

40

60

80

100

Sp
ac

e
(M

iB
)

1.
00

x
0.

54
x

0.
15

x
0.

08
x

0.
04

x
PGM
Cpr_PGM

PGM_Disk
Cpr_PGM_Disk

CprLeCo_PGM_Disk

2 pages0

1

2

3

4

5
1.

00
x

0.
57

x
0.

58
x

0.
33

x
0.

18
x

3 pages0.0

0.5

1.0

1.5

2.0 1.
00

x
0.

58
x 0.

73
x

0.
42

x
0.

24
x

4 pages0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.
00

x
0.

60
x

0.
79

x
0.

47
x

0.
28

x

5 pages0.0

0.2

0.4

0.6

0.8

1.0

1.
00

x
0.

62
x

0.
83

x
0.

48
x

0.
29

x

(a) Facebook Dataset

1.05 pages0

10

20

30

40

50

Sp
ac

e
(M

iB
)

1.
00

x
0.

54
x

0.
26

x
0.

14
x

0.
11

x

PGM
Cpr_PGM

PGM_Disk
Cpr_PGM_Disk

CprLeCo_PGM_Disk

2 pages0.0

0.1

0.2

0.3

0.4

1.
00

x
0.

64
x

0.
68

x
0.

43
x

0.
42

x

3 pages0.00

0.02

0.04

0.06

0.08

0.10

0.12

1.
00

x
0.

72
x 0.
82

x
0.

56
x

0.
52

x

4 pages0.00

0.01

0.02

0.03

0.04

0.05

1.
00

x
0.

77
x 0.
87

x
0.

63
x

0.
58

x

5 pages0.000

0.005

0.010

0.015

0.020

0.025

0.030

1.
00

x
0.

79
x 0.
89

x
0.

67
x

0.
64

x

(b) Amazon Dataset

Fig. 7. Memory Usage of All Indexes – The number above each bar is the ratio of index memory usage to the
memory usage of PGM.

Table 4. Memory Usage: Compressed Learned Indexes vs. Zone Maps – The throughput is similar for all
these indexes in this experiment.

fb amzn wiki osmc

Cpr_PGM 51.36 MiB 30.34 MiB 9.48 MiB 34.58 MiB
CprLeCo_PGM_D 4.05 MiB 6.20 MiB 3.17 MiB 6.58 MiB

Zone Map 5.96 MiB 5.96 MiB 5.96 MiB 5.96 MiB
LeCo-based Zone Map 2.09 MiB 4.22 MiB 1.05 MiB 4.59 MiB

and Amazon datasets. Overall, CprLeCo_PGM_Disk consistently maintains the smallest memory
footprint within these five indexes, and its minimum memory usage is only 4% of the original size
in PGM. This illustrates the effectiveness of our general guidelines of leveraging the disk-based
zero intervals (G3) and applying compression techniques (G4) to all components of models. Our
guidelines are able to significantly reduce both the number of models by extending their error
ranges based on disk information and the average amount of memory footprint needed per model
through compression techniques.

8 FALL-BACK DESIGNS OF LEARNED INDEXES (G5)
The combined use of compression techniques and expanded error bounds based on disk pages
provides a practical method for reducing the memory usage of disk-based learned indexes, and
our CprLeCo_PGM_D6 demonstrates superior spatial efficiency. Nevertheless, in certain scenarios,
CprLeCo_PGM_D may still occupy more space than the zone map that directly stores the minimum
key value of each page. Furthermore, we propose a LeCo-based zone map index that makes this
phenomenon even more apparent.
First, let’s introduce our fall-back design of learned indexes. The key idea is to apply LeCo to

compress the zone map, which contains the minimum keys of each leaf page. Specifically, we use
LeCo to store these minimum key values of leaf pages in a compressed manner and implement
the binary searches by utilizing the interface provided by LeCo. In other words, when we need
to compare the key at position 𝑖 of the LeCo-based zone map with the given key, we input 𝑖 to
LeCo and then obtain the recovered key used for the comparison, thus completing a step of the
binary search process. Given that the zone map index requires log2⌈𝑛𝑃 ⌉ comparisons for a query,
the LeCo-based zone map also needs log2⌈𝑛𝑃 ⌉ decompression, where ⌈𝑛

𝑃
⌉ is the number of leaf

6We use CprLeCo_PGM_D to denote CprLeCo_PGM_Disk in the following description.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:15

25000 50000 75000 100000 125000 150000 175000
Dataset Difficulty: Number of Models in PGM

0.0

0.5

1.0

1.5

2.0
Sp

ac
e

(M
iB

)
Cpr_PGM
CprLeCo_PGM_D
LeCo-based zone map

Fig. 8. Memory Usage on Datasets of Varying Difficulty: Learned Indexes vs. LeCo-based Indexes – The
expected number of I/O pages in each index is three.

pages. As LeCo supports fast random access, this fall-back index can provide compact structures
with only a negligible increase in CPU latency. As shown in Table 4, LeCo-based zone map achieves
a more compact structure, further lessening the competitive edge of learned indexes.

8.1 Challenging Scenarios
To investigate the challenging scenario for learned indexes, we leverage the generator introduced in
Section 3 to obtain numerous synthetic datasets that require different numbers of models for PGM
to handle, since the memory footprint of learned indexes is basically determined by the number of
models. We then use two compressed learned indexes and the LeCo-based zone map to build them
and show their space cost in Figure 8.
Even with our CprLeCo_PGM_D, the advantages in memory usage still diminish when the

number of models grows significantly. As shown in Figure 8, in scenarios where the expected
number of I/O pages is 3, if the PGM demands fewer than 140,000 linear models for a dataset, then
CprLeCo_PGM_D is a suitable option. Conversely, these are challenging cases for learned indexes,
where LeCo-based zone map becomes the preferable choice. Thus, this guideline is intended to
help practitioners make more informed decisions when using learned indexes and to provide a
robust fallback design for learned indexes when they require many models to handle a dataset.

8.2 Further Optimization on LeCo-Zonemap
To further optimize LeCo-based zone maps, we also apply the idea of expanded error bounds to it.

8.2.1 LeCo-Zonemap-D. When we use LeCo to compress the minimum key within each page, our
primary requirement is that LeCo can provide us with the value at a given position. We then use this
value to compare with the input key to identify the block that stores the given key. An interesting
observation is that we do not actually require LeCo’s compression to be completely lossless here;
our main concern is to ensure that the final results of binary searches remain consistent with the
outcome of the uncompressed zone map. Hence it is sufficient to store some “rough” separators.
Consider a sequence of keys to be compressed as an example: 𝑆 = {1, 4, 9, 16, 17}. Let’s assume

that the model predicts a sequence of values: {0, 5, 10, 15, 20}, and the maximum error is calculated
as 20 - 17 = 3. Then, LeCo requires log2 (3 + 1) ∗ 5 = 10 bits to store all the errors. Now, consider
a scenario where the predicted sequence is unchanged, and 𝑆 is modified to 𝑆 ′ = {1, 5, 10, 16, 20},
which remains the same searching results as 𝑆 when finding the first position greater than or equal
to the value for each value in 𝑆 . In this case, only log2 (1 + 1) ∗ 5 = 5 bits are required to store the
errors, resulting in significant memory savings.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:16 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

0

20

40

M
em

or
y

(M
iB

)
at

 1
.0

5
Pa

ge
s

1.
00

x
0.

20
x

0.
14

x
0.

07
x

PGM Cpr_PGM CprLeCo_PGM_D Zonemap LeCo-Zonemap LeCo-Zonemap-D

0

6

12
1.

00
x

0.
31

x
0.

11
x

0.
12

x

0

25

50

1.
00

x
0.

19
x

0.
13

x
0.

08
x

0

40

80

1.
00

x
0.

08
x

0.
04

x
0.

04
x

0

15

30

1.
00

x
0.

20
x

0.
11

x
0.

11
x

0

15

30

1.
00

x
0.

17
x

0.
09

x
0.

09
x

0

30

60

1.
00

x
0.

09
x

0.
05

x
0.

05
x

0

15

30

1.
00

x
0.

20
x

0.
11

x
0.

11
x

0

30

60

1.
00

x
0.

10
x

0.
05

x
0.

05
x

amzn0.0

0.5

1.0

M
em

or
y

(M
iB

)
at

 5
 P

ag
es

1.
00

x
0.

85
x

37
.6

5x
3.

69
x

wiki0.0

0.5

1.0

1.
00

x
0.

74
x 2.
81

x
2.

01
x

osmc0.0

0.5

1.0

1.
00

x
0.

74
x

1.
86

x
0.

84
x

face0.0

0.5

1.0

1.
00

x
0.

47
x 0.
75

x
0.

49
x

syn_g10_l10.0

0.8

1.6

1.
00

x
0.

51
x

0.
39

x
0.

26
x

syn_g10_l20.0

0.8

1.6

1.
00

x
0.

50
x

0.
39

x
0.

25
x

syn_g10_l40.0

0.8

1.6

1.
00

x
0.

49
x

0.
39

x
0.

25
x

syn_g12_l10

1

2

1.
00

x
0.

36
x

0.
34

x
0.

23
x

syn_g12_l40

1

2

1.
00

x
0.

37
x

0.
34

x
0.

22
x

Fig. 9. Memory Usage: PGM-based Indexes vs. Zonemap-based Indexes – The difficulty of datasets increases
from left to right. The first row shows the results for indexes with expected I/O pages of 1.05, and the second
row shows the results at 5 pages.

Hence, we can apply a similar procedure in Section 6 to mitigate the overall space cost of LeCo-
based zone map. This involves providing new error ranges for each data point during constructing
LeCo, thereby reducing the magnitude of the largest error in each model. Among them, the lower
bound of each zero interval is the value of the current key, and the upper bound is smaller than the
value of the next key to be compressed. We refer to this optimized version as LeCo-Zonemap-D,
which incorporates disk-page information.

8.2.2 Results. Until now, we have obtained the most space-efficient indexes among the two types:
CprLeCo_PGM_D for learned indexes and LeCo-Zonemap-D for zone maps. This makes it easy
to handle both model-friendly and challenging datasets. It is worth noting that LeCo is a learned
method, so both types are fundamentally learned indexes designed for different scenarios.
We evaluate them with two different 𝑅𝑝 (1.05 and 5 pages) on nine datasets, and the results in

Figure 9 clearly illustrate two challenging scenarios for learned indexes. First, when strict high-
throughput requirements exist, learned indexes need more models to ensure accurate predictions,
leading to a larger memory footprint. In situations where the expected number of I/O pages is as
low as 1.05, zonemap-based indexes dominate due to the large marginal cost of learned indexes
when 𝜖 → 0. Second, datasets that are unfriendly to linear models pose difficulties to learned
indexes because a small number of linear models cannot effectively capture the data distribution.
Even when the error bound is increased to five pages (i.e., 1280 data points), CprLeCo_PGM_D,
which has the smallest space cost among learned indexes, still requires 1.68× the memory footprint
of LeCo-Zonemap-D on the syn_g12_l4 dataset.
It is worth noting that the two indexes, CprLeCo_PGM_D and LeCo-Zonemap-D excel in sce-

narios that align with their favorable index categories: SOSD datasets for learned indexes7 and
five synthetic datasets for zone maps. Compared to Cpr_PGM, CprLeCo_PGM_D reduces the
memory footprint by up to 92% (greater than 45% in all but three of the 18 cases). LeCo-Zonemap-D,
developed based on expanded error bounds, also reduces the space cost of LeCo-Zonemap, espe-
cially amplifying the advantages of LeCo-Zonemap in its dominant cases. These results reflect that
judicious adoption of indexes can effectively improve the robustness.

7The real-world datasets in [31] are also friendly to learned indexes.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:17

Data Points Managed by
Leaf Nodes of Static Index

𝑘𝑣! … … … … … 𝑘𝑣" … … … … … 𝑘𝑣#" … … … … 𝑘𝑣$

Memory
Disk

Updatable Index

Static Index

lookup
return

(2) lookup
in static stage

(3) fetch data points

insert

Merge
(Periodically Trigger)

Dynamic Stage
Static Stage

(1)

Fig. 10. Hybrid Learned Index Framework.

9 SUPPORTING UPDATES (G6)
9.1 Hybrid Learned Index Framework
The original hybrid index aims to improve the memory efficiency of an in-memory database with
a minimal performance compromise [34]. It batches newly inserted/updated index items in a
write-optimized structure (i.e., the dynamic stage). When the size of the dynamic stage reaches
a threshold, the items are merged into the much larger static stage where the index structure is
highly compact and optimized for lookups.

We extend the original in-memory hybrid index to a framework to support updates efficiently for
an arbitrary on-disk learned index. As shown in Figure 10, the dynamic stage includes a regular in-
memory index (e.g., an in-memory B+tree) to hold both keys and values of recent updates. The static
stage is made of an on-disk learned index described in the previous sections (e.g., CprLeCo_PGM_D)
where the index key-value pairs are stored compactly on disk, while the learned models are kept in
memory. To process a lookup, the hybrid learned index first checks the dynamic stage and returns
the result if the given key is found. Otherwise, it searches the static stage by using the in-memory
learned models to locate the leaf page(s) on disk that might contain the querying key.
All write operations (i.e., insert, update, delete) are carried out in the dynamic stage. As the

size of the dynamic stage grows, a merge routine is triggered periodically to merge all the newly
inserted data to the disk. The merge process works as follows. It scans the leaf pages of the static
learned index on disk and merges the key-value pairs from the dynamic stage with a simple linear
algorithm similar to the merge step in a merge-sort. New learned models are then trained on the
merged leaf nodes before they are written back to the disk. Finally, the dynamic stage is cleared
and continues to accept queries and updates. We next discuss two important aspects of the merging
strategy in our hybrid learned index framework.

Merge Trigger. A constant trigger refers to a fixed predefined memory budget for the dynamic
stage, while a ratio-based trigger allows the maximum size of the dynamic stage to grow with
respect to the size of the static stage to maintain a constant ratio (e.g., 1:100). [34] proved that the
amortized merge overhead remains constant over time with a ratio-based trigger, and it is thus a
preferred merge trigger for our hybrid learned index framework.
To ensure a fair comparison to the B+tree (whose inner nodes are pinned in memory) in the

evaluation, we set the merge ratio to 𝑅 so that the maximum size of the dynamic stage + the model
size in the static stage never exceeds the size of the B+tree inner nodes (i.e., the memory footprint
of the hybrid learned index is less than or equal to that of the B+tree). Given that the B+tree we
use has a fanout of 256, we configure 𝑅 = 178 by default in the subsequent experiments unless
specified otherwise.
Merge Concurrency. In a single-threaded environment, normal index operations are blocked

during a merge, causing a high tail latency for queries. We, therefore, implemented a non-blocking

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:18 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

Table 5. Throughput and Space Cost of Disk-based Indexes Under Balanced-Write Workload on Facebook
Dataset –Memory usage of hybrid indexes includes space for the dynamic stage and the index in the static
stage. A smaller static index allows more space for newly inserted keys under the same memory usage.

Hybrid-Index Structure Baseline
Dynamic Type in Hybrid ALEX ALEX B+treeStatic Type in Hybrid CprLeCo_PGM_D Cpr_PGM

Throughput (k ops/s) 25.66 24.28 14.11

Disk Space (MiB) 2358.22 2358.7 3291.79
Memory Usage (MiB) 9.20 9.26 9.79

and lock-free merge algorithm for our hybrid learned index framework with multiple threads.
When the index enters the merge phase, we first make the current dynamic stage immutable and
create a new empty dynamic stage in front of it to continue accepting writes. The background
threads then start rebuilding the learned index in the static stage to incorporate the new items in
the immutable dynamic stage, as described above. The key range is partitioned equally according
to the number of threads so that each thread works on a single partition independently. Because
the merge follows copy-on-write instead of update-in-place, it does not need to acquire locks to
synchronize with the query threads. Once the concurrent merge completes, it updates the globally
visible version number using a Compare-And-Swap (CAS) operation and garbage collects the old
stages when their reference counts become zero. Note that a query needs to look up three stages
(i.e., the new dynamic stage, the immutable dynamic stage, and the static stage) in sequence during
the merge phase.

Currently, the dynamic stage is not persistent. It must rely on the write-ahead-log (WAL) of the
underlying database to recover upon crash. Alternatively, the index can have its own WAL to speed
up recovery.

9.2 Experimental Results
We conduct single-threaded experiments using two examples on a balanced workload (i.e., 50%
inserts and 50% reads). The first hybrid learned index utilizes ALEX, an in-memory updatable
learned index, as the dynamic index and CprLeCo_PGM_D as the static index, while the other
employs the compressed PGM as the static index. The search range 𝑅𝑝 for static learned indexes is
1.5 pages. Since the existing work [14] has concluded that none of the learned indexes implemented
on disk can compete with the disk-resident B+tree and the reserved gaps of updatable disk-based
learned indexes do not offer better performance, we only select B+tree as the baseline here. More
details and experiments can be found in Section 10.

Based on the results in Table 5, we observe that the hybrid learned indexes consistently outper-
form the baseline, demonstrating superior performance in terms of both time and space efficiency.
Notably, the hybrid index using CprLeCo_PGM_D in the static phase achieves a throughput of
1.82× that of the B+tree, while consuming only 71% of the space cost of the baseline. The primary
distinction between these two hybrid learned indexes lies in their static phases. When the memory
usage is the same, the smaller CprLeCo_PGM_D in the static phase saves more space for the insert
buffer in the dynamic phase, thereby enhancing throughput.
In summary, our hybrid framework offers practitioners a valuable opportunity to concentrate

their efforts on designing more efficient in-memory learned indexes or specialized index structures
tailored to other specific scenarios. This eliminates the need for extensive efforts in adapting
in-memory learned indexes to disk, allowing for more efficient and effective index development.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:19

Table 6. Summary of Parameters in YCSB Evaluation

Parameters Meaning/Implications

Fetching Strategy All-at-once strategy is adopted (G1)

Prediction Granularity Item-level 𝐺 is preferred based on G2

Search Range 𝑅𝑝 Smaller 𝑅𝑝 ⇒ faster lookup but more models

Merge Trigger Ratio Large ratios save memory via more merges.
(Single-Threaded YCSB) Set to 178, 222, 296, 445, and 890.

10 EVALUATION
In this section, we provide a comprehensive evaluation of all the general guidelines discussed
above. We first present the YCSB-based experimental setup in Section 10.1. Then, we evaluate the
hybrid learned indexes in single-threaded and multi-threaded scenarios in Sections 10.2 and 10.3,
respectively. The space efficiency is shown in Section 10.4. We compare against FILM, a learned
index designed for larger-than-memory scenarios, in Section 10.5. Finally, we evaluate the hybrid
learned indexes using the TPC-C benchmark in Section 10.6.

10.1 Experimental Setup
We use the Facebook, Amazon, and OSM datasets from SOSD. The evaluation is conducted on the
same machine in Section 3. The disk is PM9A3 NVMe SSD. Each dataset consists of 200 million
8-byte unsigned integer keys, each with an 8-byte pointer as the payload.

10.1.1 Workloads. Three YCSB benchmarks [4, 34] are used in our experiments: (1) Read-Only:
YCSB-C workload with 100% read. (2) Write-Only: Obtained by YCSB-C workload, but with 100%
insert. (3) Balanced: 50% insert, 50% read. This workload is derived from YCSB-A, and we replace
updates with inserts since update operations are similar to read operations. We establish a one-to-
one mapping between the YCSB keys and the keys from our datasets. We then replace the YCSB
keys with our keys in the generated workloads, as in [34].

We first initialize the indexes with 150 million keys from the randomly shuffled 200 million keys
in each dataset. Then, we carry out 10 million queries from YCSB following a uniform distribution.
Note that all lookup keys already exist in the index, and all inserted keys are not duplicated. As
described in Section 3, we use direct I/O to fetch the data points to bypass the OS page cache.

10.1.2 Metrics. Our evaluation includes three metrics: disk space, memory usage, and throughput.
Memory usage is the peak memory consumption during the execution of 10 million queries for
each index, and the disk space is the space used on disk after completing all queries, both measured
in MiB. These two metrics indicate the space efficiency of indexes. Throughput is calculated as the
total number of operations divided by the execution time.

10.1.3 Our All-in-One Disk-Based Learned Indexes. Following the general guidelines outlined
earlier, we have developed two representative all-in-one index structures: hybrid-PGM-disk and
hybrid-LeCo-disk. As illustrated in Table 6, we employ the all-at-once fetching strategy (G1) and
item-level prediction granularity (G2) for them. Besides, in the static stage of these indexes, we
use CprLeCo_PGM_D (G3, G4) and LeCo-Zonemap-D (G3, G5), both of which are equipped with
expanded error bounds. The dynamic phases (G6) use B+tree to focus more on static structures
since B+tree has the same performance on different datasets.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:20 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

10.1.4 Baselines. We compare our two indexes with two baseline indexes, consisting of a learned
index extended to disk by [14], PGM, as well as a traditional tree index, B+tree. We exclude other
disk-extended learned indexes because previous study [14] showed that they are inferior to a
regular disk-resident B+tree. We use open-source implementations for these indexes, which are
implemented in C++. We modify the original implementation of B+tree to provide users with the
capability to adjust the number of layers that are stored on disk. In our experimental setup, B+tree
comprises four layers: three layers of internal nodes and one layer of leaf nodes. Consequently,
B+tree offers three distinct settings in our YCSB evaluation to represent which layers are stored
on disk: (1) Leaf nodes only. (2) Leaf nodes and the bottom layer of internal nodes. (3) All layers
except the root node. In our evaluation of PGM, we employ the same parameters as those utilized
for our all-in-one indexes. We measure PGM at five settings of E[𝑅𝑝], including 1.05, 2, 3, 4, and 5,
respectively. For multi-threaded experiments, we try our best to extend the single-threaded B+tree
to support concurrency through reader-writer locks and optimistic insertion with a bitmap.

10.2 Single-Threaded YCSB Evaluation
10.2.1 Performance on Static Workload. We first focus on evaluating the lookup performance of
indexes without the impact of updates. As shown in Figure 11, on the read-only workload, both
our all-in-one indexes provide a Pareto improvement to the throughput and memory usage on all
the datasets.

First, our indexes consistently have higher throughput than PGMs for the same length of the last-
mile search. This is due to our choice of the all-at-once strategy based on G1, enabling our hybrid
indexes to achieve higher throughputs. In contrast, PGM experiences multiple I/O operations in the
last-mile search, leading to performance degradation. Second, compared to the B+tree, our indexes
can achieve the same maximum throughput with far less memory usage than its internal nodes. The
reason is that we have reduced memory usage in two ways: by reducing the number of models and
compressing the representation of models. As a result, our all-in-one learned indexes necessitate a
minimum of 16.4% of the memory footprint of B+tree to deliver the highest throughput.

The reason why the results of hybrid-PGM-disk and hybrid-LeCo-disk look similar is that the gap
between them is relatively small compared to the entire range on the x-axis. eActually, hybrid-LeCo-
disk utilizes more space than hybrid-PGM-Disk in most cases. Furthermore, LeCo also employs
linear models to learn data distribution, which is essentially the same approach as learned indexes.
Hence, it is not surprising that they exhibit similar performance.

10.2.2 Performance on Dynamic Workloads. Two dynamic workloads are used to test the update
performance of indexes.
Write-Only Workload.We allocate various memory budgets to accommodate future inserts

for our hybrid learned indexes, and E[𝑅𝑝] in the static phase is 5 pages since there are no read
queries here. As depicted in Figure 11, our recommendation to use a hybrid-index structure, rather
than expanding or designing a dedicated updatable learned index for disk, effectively addresses
the inefficiency in supporting updates of existing disk-based ones [14]. Consequently, the learned
indexes derived from our general guidelines can achieve up to 14.04× the throughput of the B+tree
without consuming additional memory space. The throughput of our indexes already incorporates
the effect of a single-threaded merge process that would block other queries. This implies that a
batch of inserts can perform better than multiple smaller inserts. Note that the throughput of our
indexes might decrease as the memory budget decreases, which is reasonable because the reduced
space allocated to hybrid indexes necessitates more merge operations. Nevertheless, it’s worth
noting that even with a small memory usage of only about 2MiB, both the hybrid-PGM-disk and
the hybrid-LeCo-disk can still maintain approximately the same or even higher throughput as

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:21

0

5

10

15

(a
) R

ea
d
O
nl
y

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

FB Dataset
On-Disk PGM B+tree hybrid-PGM-disk hybrid-LeCo-disk

0

5

10

15

Amzn Dataset

0

5

10

15

OSM Dataset

0

50

100

150

(b
) W

ri
te

 O
nl
y

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

0

50

100

150

200

0

50

100

150

0 5 10 15 20 25
 Memory Usage (MiB)

0

5

10

15

20

25

(c
) B

al
an

ce
d

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

0 2 4 6 8 10
 Memory Usage (MiB)

0

5

10

15

20

25

0 5 10 15
 Memory Usage (MiB)

0

5

10

15

20

25

Fig. 11. Throughput and Memory Usage of Four Indexes on Three Single-ThreadedWorkloads – The expected
number of I/O pages for learned indexes are as follows: (a) Read-Only: 1.05, 2, 3, 4, and 5 pages, respectively;
(b) Write-Only: all five pages. (c) Balanced: 1.5 pages when the memory usage exceeds 2MiB, increasing
to 5 pages when below 2MiB. Some points of PGM overlap because its insert throughput is independent of
memory usage and the memory usage is close in this figure’s scale when 𝜖 is large.

the baseline. Besides, the throughput of PGM on this workload is constant and independent of its
own parameters, as it uses LSM-style multi-layer buffers to support inserts, but this can have a
significant negative impact on mixed read/write workloads, as discussed below.

MixedWorkloads. On mixed workloads, our two indexes demonstrate remarkable performance,
achieving up to 1.81× speedup than the B+tree and 16.76× speedup than the PGM while consuming
the same memory footprint as the B+tree. The main reason for this performance boost is that we
allocate some space for newly inserted keys and ensure that read performance remains efficient by
allocating memory wisely between the two phases. In this way, read operations using the all-at-
once page-fetching strategy only require a single fast I/O and disk-related write operations can be
efficiently amortized. In contrast, due to its LSM-style design but without proper size ratios, PGM
tends to perform poorly on mixed read/write workloads. Lookups in the PGM require traversing
multiple layers of files throughout the index structure, resulting in a throughput of only around 1
Kops/sec. This validates our idea that existing implementations of disk-based learned indexes miss
numerous optimization opportunities.
Moreover, indexes with smaller static stages can allocate more space for inserts when memory

budgets are limited, consequently enhancing overall throughput. In scenarios with constrained
memory, the hybrid-PGM-disk with a smaller memory footprint offers higher throughput than the
hybrid-LeCo-disk.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:22 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

2 4 8 16 32
 # of threads (Read-Only Workload)

0

100

200

300

400

Th
ro

ug
hp

ut
 (k

 o
ps

/s
ec

)

B+tree hybrid-PGM-disk hybrid-LeCo-disk

2 4 8 16 32
 # of threads (Write-Only Workload)

0

200

400

2 4 8 16 32
 # of threads (Balanced Workload)

0

100

200

300

400

Fig. 12. Throughput of Three Multi-Threaded Indexes under Varying Thread Counts – The parameter settings
for the indexes all use the settings with their highest throughput in the single-threaded experiments.

Table 7. Space Cost (MiB) of Four Indexes on Facebook Dataset, Including Memory Usage and Disk Space.

PGM B+tree hybrid-PGM-d hybrid-LeCo-d

Read-Only 2313.8 3301.58 2290.43 2291.77
Write-Only 2451.75 3301.58 2444.16 2443.86
Balanced 2387.54 3301.58 2299.34 2297.71

10.3 Multi-Threaded YCSB Evaluation
In this section, we repeat the above experiments on the Facebook dataset using multiple threads.

Note that we disabled the parallel training of PGM in hybrid-PGM-disk to ensure a fair comparison.
As shown in Figure 12, both hybrid learned indexes and B+tree exhibit excellent scalability in
the read-only and balanced workload. For the write-only workload, the hybrid learned indexes
can scale up to 16 threads before they saturate the disk bandwidth. The non-blocking, lock-free
merge algorithm described in Section 9.1 allows the hybrid learned indexes to scale even with
write-intensive workloads and to achieve a notable speedup over the B+tree.

10.4 Space Efficiency
Table 7 shows the total space cost for these indexes on the Facebook dataset. We only present the
space cost for the configuration with the highest throughput for each workload, as the results align
with those obtained from other setups and datasets. The hybrid-index design without gaps at the
bottom level proves to be more space-efficient than the design that incorporates gaps throughout
the index structure. This observation further highlights the effectiveness of our guidelines for
utilizing a hybrid-index framework to facilitate updates, which not only help index structures
achieve high throughput but also make them more compact.

10.5 Comparison to FILM
FILM [20] is a learned index designed for larger-than-memory scenarios. Its main idea is to incorpo-
rate an in-memory data cache based on adaptive LRU. We compare our approach to FILM using the
above single-threaded YCSB-based workload on the Facebook dataset. We set the memory budget
for our hybrid-PGM-disk to 10 MiB, according to the “best-throughput” configurations in Figure 11.
Because FILM must keep a 16-byte (page #, offset) pair in memory for every data item on disk, it is
impossible to force a small memory footprint with FILM. As shown in Figure 13, FILM has 1.9×
higher throughput than hybrid-PGM-disk for the read-only workload, but it consumes 5 GiB of
the memory space (the on-disk portion is only 0.94 GiB since 58% of data points are in memory).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

Making In-Memory Learned Indexes Efficient on Disk 151:23

Read-Only Write-Only Balanced
0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

)

29.6

0.1 0.4

15.8

68.9

25.5

FILM
hybrid-PGM-disk

Read-Only Write-Only Balanced
0

1

2

3

4

5

6

7

Sp
ac

e
Us

ag
e

(M
iB

)

mem:
5120MiB

mem:
5120MiB

mem:
5120MiB

mem:
3MiB

mem:
10MiB mem:

10MiB

FILM (mem)
FILM (disk)

hybrid-PGM-disk (mem)
hybrid-PGM-disk (disk)

Fig. 13. Throughput and Space Cost Comparison to FILM on the Facebook Dataset

Table 8. TPC-C Workload – Index space includes both memory usage and disk space, and all indexes have
similar memory usage.

100 warehouses B+tree hybrid-PGM-d hybrid-LeCo-d

Throughput (txn/s) 443.65 545.86 533.21
Index Space (MiB) 1100.37 764.111 765.076

Meanwhile, FILM exhibits extremely low performance in the write-heavy workloads because it
has to evict data frequently to disk to maintain the LRU chains. Given the poor write performance
and high memory usage, we conclude that FILM is less efficient compared to our approach as a
general-purpose on-disk index.

10.6 TPC-C Benchmark
We evaluate the hybrid learned indexes using the TPC-C benchmark [5] in this section. To focus
on the performance differences of the on-disk indexes, we store the tuples in memory. Each table
has a primary-key index, and we construct two secondary indexes: last name + first name for the
CUSTOMER table and customer ID for the ORDER table. Each transaction involves multiple index
lookups/insertions (on disk) followed by tuple fetches/insertions (in memory). The transaction
throughput, therefore, is dominated by the index performance. We initialize the workload with 100
warehouses and then execute 200,000 transactions with a single thread. We report the transaction
throughput and space consumption for using B+tree and the two different hybrid learned indexes.
As shown in Table 8, a hybrid learned index can speed up transaction processing by over 20% in
TPC-C compared to a B+tree while consuming 30% less index space.

11 CONCLUSION
In this paper, we delve into the issue of sub-optimal performance exhibited by learned indexes when
transitioning from memory to disk scenarios. To address this issue, we propose several general
guidelines to facilitate the mem-to-disk transformation. We assess our guidelines by developing and
evaluating two disk-based learned indexes using the YCSB benchmark. The results demonstrate that
indexes constructed in accordance with our guidelines can achieve superior throughput compared
to the B+tree (implying supremacy over other implementations as well), while consuming a much
smaller storage footprint. We hope these guidelines can facilitate practitioners and enhance the
functionality and efficiency of learned indexes in a disk-based environment.

ACKNOWLEDGMENTS
The authors thank Shanghai Qi Zhi Institute for supporting this work.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

151:24 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compression and Execution in Column-

Oriented Database Systems. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data (Chicago, IL, USA) (SIGMOD ’06). Association for Computing Machinery, New York, NY, USA, 671–682. https:
//doi.org/10.1145/1142473.1142548

[2] Hussam Abu-Libdeh, Deniz Altınbüken, Alex Beutel, Ed H. Chi, Lyric Pankaj Doshi, Tim Klas Kraska, Xiaozhou (Steve)
Li, Andy Ly, and Chris Olston (Eds.). 2020. Learned Indexes for a Google-scale Disk-based Database. https://arxiv.org/
pdf/2012.12501.pdf

[3] Rudolf Bayer. 1972. Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta informatica 1, 4
(dec 1972), 290–306. https://doi.org/10.1007/BF00289509

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/1807128.
1807152

[5] The Transaction Processing Council. 2007. TPC-C Benchmark. http://www.tpc.org/tpcc/
[6] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli,

Johannes Gehrke, Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 969–984. https://doi.org/10.1145/3318464.3389711

[7] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020. Tsunami: A Learned Multi-Dimensional
Index for Correlated Data and Skewed Workloads. Proceedings of the VLDB Endowment 14, 2 (oct 2020), 74–86.
https://doi.org/10.14778/3425879.3425880

[8] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A Fully-Dynamic Compressed Learned Index with
Provable Worst-Case Bounds. Proceedings of the VLDB Endowment 13, 8 (apr 2020), 1162–1175. https://doi.org/10.
14778/3389133.3389135

[9] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. 2019. FITing-Tree: A Data-
Aware Index Structure. In Proceedings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 1189–1206. https://doi.org/
10.1145/3299869.3319860

[10] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-Attached NVMe Arrays in DBMS.. In
Proceedings of the 10th Conference on Innovative Data Systems Research (CIDR ’20). CIDR Conference, Amsterdam, The
Netherlands, 8 pages.

[11] Andreas Kipf, Dominik Horn, Pascal Pfeil, Ryan Marcus, and Tim Kraska. 2022. LSI: A Learned Secondary Index
Structure. In Proceedings of the Fifth International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management (Philadelphia, Pennsylvania) (aiDM ’22). Association for Computing Machinery, New York, NY, USA,
Article 4, 5 pages. https://doi.org/10.1145/3533702.3534912

[12] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann.
2020. RadixSpline: A Single-Pass Learned Index. In Proceedings of the Third International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (Portland, Oregon) (aiDM ’20). Association for Computing
Machinery, New York, NY, USA, Article 5, 5 pages. https://doi.org/10.1145/3401071.3401659

[13] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. In
Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 489–504. https://doi.org/10.1145/3183713.3196909

[14] Hai Lan, Zhifeng Bao, J. Shane Culpepper, and Renata Borovica-Gajic. 2023. Updatable Learned Indexes Meet Disk-
Resident DBMS - From Evaluations to Design Choices. Proceedings of the ACM on Management of Data 1, 2, Article 139
(jun 2023), 22 pages. https://doi.org/10.1145/3589284

[15] Daniel Lemire and Leonid Boytsov. 2015. Decoding Billions of Integers per Second through Vectorization. Software:
Practice and Experience 45, 1 (jan 2015), 1–29. https://doi.org/10.1002/spe.2203

[16] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: A Fine-Grained Learned Index Scheme for Scalable
and Concurrent Memory Systems. Proceedings of the VLDB Endowment 15, 2 (oct 2021), 321–334. https://doi.org/10.
14778/3489496.3489512

[17] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned Index Structure for Spatial Data. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2119–2133. https://doi.org/10.1145/3318464.3389703

[18] Yihao Liu, Xinyu Zeng, and Huanchen Zhang. 2024. LeCo: Lightweight Compression via Learning Serial Correlations.
Proc. ACM Manag. Data 2, 1, Article 65 (mar 2024), 28 pages. https://doi.org/10.1145/3639320

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1142473.1142548
https://arxiv.org/pdf/2012.12501.pdf
https://arxiv.org/pdf/2012.12501.pdf
https://doi.org/10.1007/BF00289509
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
http://www.tpc.org/tpcc/
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3533702.3534912
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3589284
https://doi.org/10.1002/spe.2203
https://doi.org/10.14778/3489496.3489512
https://doi.org/10.14778/3489496.3489512
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1145/3639320

Making In-Memory Learned Indexes Efficient on Disk 151:25

[19] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang. 2021. APEX: A High-Performance
Learned Index on Persistent Memory. Proceedings of the VLDB Endowment 15, 3 (nov 2021), 597–610. https://doi.org/
10.14778/3494124.3494141

[20] Chaohong Ma, Xiaohui Yu, Yifan Li, Xiaofeng Meng, and Aishan Maoliniyazi. 2022. FILM: A Fully Learned Index for
Larger-Than-Memory Databases. Proceedings of the VLDB Endowment 16, 3 (nov 2022), 561–573. https://doi.org/10.
14778/3570690.3570704

[21] Lin Ma, Joy Arulraj, Sam Zhao, Andrew Pavlo, Subramanya R. Dulloor, Michael J. Giardino, Jeff Parkhurst, Jason L.
Gardner, Kshitij Doshi, and Stanley Zdonik. 2016. Larger-than-MemoryDataManagement onModern StorageHardware
for in-Memory OLTP Database Systems. In Proceedings of the 12th International Workshop on Data Management on
New Hardware (San Francisco, California) (DaMoN ’16). Association for Computing Machinery, New York, NY, USA,
Article 9, 7 pages. https://doi.org/10.1145/2933349.2933358

[22] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons Kemper, Thomas Neumann,
and Tim Kraska. 2020. Benchmarking Learned Indexes. Proceedings of the VLDB Endowment 14, 1 (sep 2020), 1–13.
https://doi.org/10.14778/3421424.3421425

[23] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and Optimizing Learned Index Structures. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2789–2792. https://doi.org/10.1145/3318464.3384706

[24] Mayank Mishra and Rekha Singhal. 2021. RUSLI: Real-Time Updatable Spline Learned Index. In Fourth Workshop in
Exploiting AI Techniques for Data Management (Virtual Event, China) (aiDM ’21). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/3464509.3464886

[25] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-Dimensional Indexes. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 985–1000. https://doi.org/10.1145/3318464.3380579

[26] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively Learning Spatial Indices. Proceedings of
the VLDB Endowment 13, 12 (jul 2020), 2341–2354. https://doi.org/10.14778/3407790.3407829

[27] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Comprehensive Experimental Evaluation.
Proceedings of the VLDB Endowment 16, 8 (jun 2023), 1992–2004. https://doi.org/10.14778/3594512.3594528

[28] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie Wang, and Haibo Chen. 2020. XIndex:
A Scalable Learned Index for Multicore Data Storage. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (San Diego, California) (PPoPP ’20). Association for Computing Machinery, New
York, NY, USA, 308–320. https://doi.org/10.1145/3332466.3374547

[29] Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. 2020. SIndex: A Scalable Learned Index for String Keys.
In Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems (Tsukuba, Japan) (APSys ’20). Association for
Computing Machinery, New York, NY, USA, 17–24. https://doi.org/10.1145/3409963.3410496

[30] Zhaoguo Wang, Haibo Chen, Youyun Wang, Chuzhe Tang, and Huan Wang. 2022. The Concurrent Learned Indexes
for Multicore Data Storage. ACM Transactions on Storage 18, 1, Article 8 (jan 2022), 35 pages. https://doi.org/10.1145/
3478289

[31] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and Tianzheng Wang. 2022. Are Updatable
Learned Indexes Ready? Proceedings of the VLDB Endowment 15, 11 (jul 2022), 3004–3017. https://doi.org/10.14778/
3551793.3551848

[32] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing. 2021. Updatable Learned Index with
Precise Positions. Proceedings of the VLDB Endowment 14, 8 (apr 2021), 1276–1288. https://doi.org/10.14778/3457390.
3457393

[33] Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Jason Xue. 2022. NFL: Robust Learned
Index via Distribution Transformation. Proceedings of the VLDB Endowment 15, 10 (jun 2022), 2188–2200. https:
//doi.org/10.14778/3547305.3547322

[34] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma, and Rui Shen. 2016. Reducing the
Storage Overhead of Main-Memory OLTP Databases with Hybrid Indexes. In Proceedings of the 2016 International Con-
ference on Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 1567–1581. https://doi.org/10.1145/2882903.2915222

[35] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A Cache-Aware Learned Index with a Cost-Based Construction Algorithm.
Proceedings of the VLDB Endowment 15, 11 (jul 2022), 2679–2691. https://doi.org/10.14778/3551793.3551823

[36] Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie, Shouhong Wan, Yun Luo, Xufei Wu, Peng Zou,
Chunyang Zheng, Guoan Wu, and Andy Rudoff. 2022. PLIN: A Persistent Learned Index for Non-Volatile Memory
with High Performance and Instant Recovery. Proceedings of the VLDB Endowment 16, 2 (oct 2022), 243–255. https:
//doi.org/10.14778/3565816.3565826

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

https://doi.org/10.14778/3494124.3494141
https://doi.org/10.14778/3494124.3494141
https://doi.org/10.14778/3570690.3570704
https://doi.org/10.14778/3570690.3570704
https://doi.org/10.1145/2933349.2933358
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/3318464.3384706
https://doi.org/10.1145/3464509.3464886
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.14778/3407790.3407829
https://doi.org/10.14778/3594512.3594528
https://doi.org/10.1145/3332466.3374547
https://doi.org/10.1145/3409963.3410496
https://doi.org/10.1145/3478289
https://doi.org/10.1145/3478289
https://doi.org/10.14778/3551793.3551848
https://doi.org/10.14778/3551793.3551848
https://doi.org/10.14778/3457390.3457393
https://doi.org/10.14778/3457390.3457393
https://doi.org/10.14778/3547305.3547322
https://doi.org/10.14778/3547305.3547322
https://doi.org/10.1145/2882903.2915222
https://doi.org/10.14778/3551793.3551823
https://doi.org/10.14778/3565816.3565826
https://doi.org/10.14778/3565816.3565826

151:26 Jiaoyi Zhang, Kai Su, and Huanchen Zhang

[37] Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A Fast and Cost-Efficient Storage Engine Using
DRAM, NVMe, and RDMA. In Proceedings of the 2022 International Conference on Management of Data (Philadelphia,
PA, USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA, 685–699. https://doi.org/10.
1145/3514221.3526187

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 151. Publication date: June 2024.

https://doi.org/10.1145/3514221.3526187
https://doi.org/10.1145/3514221.3526187

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 In-Memory Learned Indexes
	2.2 Disk-Based Learned Indexes

	3 Microbenchmark Setup
	4 Leaf-Page Fetching Strategy (G1)
	4.1 Last-Mile Search On Disk
	4.2 One-by-One vs. All-at-Once

	5 Prediction Granularity (G2)
	5.1 Theoretical Analysis
	5.2 Experimental Results

	6 Error Bound Alignment (G3)
	6.1 Disk-based Zero Intervals
	6.2 Applying to Learned Indexes

	7 Compression Techniques (G4)
	8 Fall-back Designs of Learned Indexes (G5)
	8.1 Challenging Scenarios
	8.2 Further Optimization on LeCo-Zonemap

	9 Supporting Updates (G6)
	9.1 Hybrid Learned Index Framework
	9.2 Experimental Results

	10 Evaluation
	10.1 Experimental Setup
	10.2 Single-Threaded YCSB Evaluation
	10.3 Multi-Threaded YCSB Evaluation
	10.4 Space Efficiency
	10.5 Comparison to FILM
	10.6 TPC-C Benchmark

	11 Conclusion
	Acknowledgments
	References

