
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

HotRAP: Hot Record Retention and Promotion
for LSM-trees with Tiered Storage

Jiansheng Qiu, Fangzhou Yuan, Tsinghua University; Mingyu Gao, and
Huanchen Zhang, Tsinghua University and Shanghai Qi Zhi Institute

https://www.usenix.org/conference/atc25/presentation/qiu

HotRAP: Hot Record Retention and Promotion for LSM-trees with Tiered Storage

Jiansheng Qiu † Fangzhou Yuan †

qjc21@mails.tsinghua.edu.cn yfz23@mails.tsinghua.edu.cn

Mingyu Gao † ‡ Huanchen Zhang † ‡ ∗

gaomy@tsinghua.edu.cn huanchen@tsinghua.edu.cn

† Institute for Interdisciplinary Information Sciences, Tsinghua University ‡ Shanghai Qi Zhi Institute

Abstract
Tiered storage architectures are promising to improve cost ef-
ficiency by combining small and fast storage with slower
but cheaper mediums. However, existing designs of Log-
Structured Merge-trees (LSM-trees) on tiered storage can-
not simultaneously support efficient read and write accesses.
Keeping the upper and lower LSM-tree levels in the fast and
slow storage respectively (i.e., tiering) allows efficient writes
to the fast disks, but read-hot data may be stuck in the slow
disks. Putting all the levels in the slow storage and using
the fast disks as a cache (i.e., caching) can handle frequently
read data efficiently, but LSM-tree compactions now need to
happen in the slow disks.

We present HotRAP, a key-value store based on RocksDB
that follows the tiering approach above, but enhances it to
timely promote hot records individually from slow to fast stor-
age and keep them in fast storage while they are hot. HotRAP
uses an on-disk data structure (a specially-made LSM-tree) to
track the hotness of keys in a fine-grained manner, and lever-
ages two pathways to ensure that hot records reach fast storage
with short delays. Our experiments show that HotRAP outper-
forms state-of-the-art LSM-trees on tiered storage by up to
1.6× compared to the second best under read-write-balanced
YCSB workloads with common access skew patterns, and up
to 1.5× under Twitter production workloads.

1 Introduction

Log-Structured Merge-trees (LSM-trees) [20, 30] are widely
adopted to build key-value stores [6, 12, 16, 19, 27, 36] and
database storage engines [1, 2, 18, 22, 24] because of their
superior write performance on traditional storage mediums.
When the underlying storage architecture evolves, the design
of LSM-trees also needs to adapt to new hardware character-
istics. Specifically, with the recent trend of tiered storage, a
small fast tier, e.g., local solid-state drives (SSDs), is com-
bined with a slower but cheaper tier, e.g., hard disk drives

∗Corresponding author.

Table 1: Trade-offs on read and write performance among
different LSM-tree designs on tiered storage.

Tiering Caching HotRAP

Write-heavy ! ✘ !

Read-heavy ✘ ! !

(HDDs) or cloud storage, to achieve better cost efficiency. Op-
timizing LSM-trees for tiered storage thus becomes a practical
and important topic to explore.

Intuitively, there are two basic approaches to porting LSM-
trees to tiered storage. Since LSM-trees naturally organize
into multiple levels, the tiering design1 locates their upper
levels in the fast tier while storing the lower levels with the
majority of the records in the slow tier [17, 26, 31, 33, 39, 43].
Alternatively, the caching design directly uses the fast tier as
a cache of the slow tier, with the entire LSM-tree located in
the latter [8, 9, 21, 28, 35]. However, neither approach is ideal,
as summarized in Table 1. The tiering design is inherently
efficient for write operations (i.e., inserts, updates) because
the append-only nature of the LSM-tree keeps the most recent
writes automatically in the fast tier. However, read-hot records
have few ways to be promoted to the upper levels, and are left
in the slow tier with high access latency, thus compromising
the read performance. The caching design, in contrast, can
effectively migrate frequently read records to the fast tier
cache. However, compactions in the caching design all happen
in the slow tier, which constrains system performance under
write-heavy workloads. Moreover, writes to these records
would need to be performed twice in both tiers to keep data
consistency, leading to extra time and energy overheads.

While slow tier compactions and duplicated writes in the
caching design seem fundamental and difficult to avoid,
we believe it is possible to introduce additional promotion
mechanisms in the tiering design to improve its read perfor-
mance. Several prior solutions such as LogStore [26] and Mir-

1Note that this is different from the tiering compaction policy.

USENIX Association 2025 USENIX Annual Technical Conference 497

rorKV [33] adjust the placement of blocks/SSTables across
storage tiers periodically based on access frequencies. Never-
theless, these approaches still exhibit several key limitations.
First, they cannot efficiently utilize the precious fast tier ca-
pacity because they move data at a coarse granularity, where
many cold records in the identified hot blocks/SSTables are
altogether piggybacked to the fast tier (limitation 1). Second,
even if we directly reduce the granularity to record-level, the
huge number of individual records would require excessive
metadata information for hotness tracking, easily exceeding
the limited memory capacity [40,41] and requiring efficient in-
storage structures (limitation 2). Third, the above solutions
can only promote hot data to the fast tier through LSM-tree
compactions. To deal with read-heavy workloads where com-
pactions happen infrequently, several systems [26, 31] allow
triggering compactions proactively, but they must wait for the
hot records to accumulate in the slow tier before promoting
them. Such a delay harms read performance because it could
overstep the time window when a record is hot (limitation 3).

In this paper, we present HotRAP (Hot record Retention
And Promotion), an LSM-tree design specifically optimized
for tiered storage. HotRAP can accurately identify hot records
in the LSM-tree, promote them timely from the slow disk
(abbr. as SD hereafter) to the fast disk (abbr. as FD hereafter)
at a fine granularity, and retain them in FD as long as they stay
hot. We design HotRAP based on RocksDB [14]. Figure 1
shows its big picture.

HotRAP addresses the aforementioned three limitations in
the following ways. First, HotRAP supports hotness tracking
and data promotion/retention at the record level rather than at
the block/SSTable level, thus preventing cold records from be-
ing piggybacked to FD (addressing limitation 1). It logs each
record access in a specifically designed structure, called RALT
(Recent Access Lookup Table). RALT is essentially a small
LSM-tree, located in FD instead of the memory (addressing
limitation 2). We choose LSM-tree to implement RALT in
order to benefit from its low write latency on disks because
inserting access records into it is on the critical path. RALT
tracks the access history for each logged key and maintains a
hotness score for the key. RALT then evicts low-score keys
periodically from itself to stay under a size limit that can be
automatically tuned according to the workload.

Also, besides waiting for LSM-tree compactions to re-
tain/promote hot records, HotRAP introduces a small in-
memory promotion buffer to buffer records read from SD
and timely promotes the hot ones (via checking RALT) by
flushing them to the top of the data LSM-tree (addressing
limitation 3). More specifically, HotRAP provides the fol-
lowing two pathways for hot records to reside in FD: hotness-
aware compaction, and promotion by flush. First, during com-
pactions from FD to SD, HotRAP extracts records within the
compaction range from the mutable promotion buffer and
adds them to the input of the compaction. Then HotRAP
checks the hotness of each record in the compaction out-

Insert access
 records

Insert
key-value mPB

immPB

If fullHotness-aware
compaction

Promote
by flushFast Disk

Slow Disk

RALT

Check hotness
of keys

Figure 1: The high-level picture of HotRAP. RALT is a
small LSM-tree in FD that tracks the hotness of keys. mPB
and immPB stand for the mutable and immutable promotion
buffers. Hot records are retained in FD during compactions.
Records accessed in SD are inserted into the promotion buffer
and then promoted by compaction or flush if they are hot.

put by sequentially scanning the corresponding key range
in RALT. Hot records are written to FD instead of down
to SD. Consequently, hot records in FD are retained in FD,
and hot records in SD are promoted to FD. We call this path
hotness-aware compaction. Second, when the mutable promo-
tion buffer grows too big due to insufficient compactions, we
turn it into an immutable promotion buffer and trigger promo-
tion by flush to bulk-insert the hot records in the immutable
promotion buffer (also identified via consulting RALT) to L0
of the LSM-tree. Thus we effectively restrict the size of the
promotion buffer. To prevent promotion by flush from over-
writing records with a newer version (i.e., promoting a stale
record to L0 that has a higher level than the newly updated
version), we perform extra checks and carry out a concurrency
control mechanism to guarantee correctness.

We evaluate HotRAP using YCSB workloads and Twit-
ter production traces [37] on AWS instances with fast lo-
cal NVMe SSDs and slower cloud storage. We compare
against the state-of-the-art LSM-trees on tiered storage,
e.g., RocksDB using tiering/caching design, SAS-Cache [9]
(caching design, based on RocksDB with secondary block
cache [28]), and PrismDB [31] (tiering design, proactively
triggering compactions). HotRAP achieves 5.2× speedup
over the second best baseline with the tiering design for read-
only YCSB workloads, 2.1× speedup with the caching de-
sign for write-heavy YCSB workloads, and 1.6× speedup
over both designs for read-write-balanced YCSB workloads.
HotRAP also achieves 1.5× speedup for Twitter production
workloads. These results match the insights in Table 1. Our
experiments also show that HotRAP adds < 4% overhead to
the plain RocksDB under uniform workloads and is robust
against hotspot shifts, where RALT quickly evicts stale access
records and adds keys in the new hotspot into the hot set.

We make three primary contributions in this paper. First,
we propose an on-disk data structure (i.e., RALT, a specially-
made LSM-tree) for tracking the hotness of key-value records.
It operates at the record level so that the system can efficiently
utilize the limited space of FD. Second, we design two path-
ways in a tiered LSM-tree for timely promoting/retaining hot

498 2025 USENIX Annual Technical Conference USENIX Association

records to/in FD. Finally, we implement HotRAP, a key-value
store based on RocksDB that outperforms state-of-the-art
LSM-trees on tiered storage because of its efficient hot record
tracking and movement features. The code is available at
https://github.com/hotrap/HotRAP.

2 Background & Related Work

2.1 Log-Structured Merge-tree (LSM-tree)
A Log-Structured Merge-tree (LSM-tree) consists of in-
memory buffers (i.e., MemTables) and multiple levels
L0, . . . ,Ln on disk. The capacity of level Li is made T times
larger than Li−1, where T is the size ratio of the LSM-tree.
Records are first inserted into the mutable MemTable. When
it is full, it becomes immutable and then flushed to L0 as
an SSTable (i.e., a file format called Sorted String Table) in
the background. When level Li−1 reaches its capacity, it will
trigger the compaction process to merge its content into the
next level Li. There are typically two kinds of compaction
policies: leveling and tiering. The leveling policy only allows
one sorted run per level while the tiering policy allows mul-
tiple. This paper focuses on the leveling policy because it is
RocksDB’s default choice [27]. RocksDB also adopts partial
compaction: each compaction picks an SSTables from Li−1
whose key range overlaps with a minimal number of SSTables
in Li to merge to the next level. Such a compaction strategy
leads to a write amplification of ≈ nT

2 [11].
A lookup first checks the MemTable and then searches the

levels from top to bottom until a matching key is found. A
block index in memory is used to determine which SSTable
data block to search for a particular key in a sorted run. Per-
SSTable Bloom filters are used to reduce the number of can-
didate SSTables to further save I/Os. RocksDB provides snap-
shot isolation via multi-version concurrency control (MVCC)
to prevent compactions from blocking normal read operations.
A snapshot in RocksDB, called a superversion, is created after
a flush or compaction completes. An old snapshot is garbage
collected when no active queries refer to it.

Although many LSM-trees such as RocksDB are initially
designed for local SSDs, the multi-level nature of LSM-trees
is a good fit for the tiering design. The upper levels contain
the recently inserted and updated records and are therefore
kept in the fast storage such as local SSDs because they are
more likely to be accessed in the near future. To improve
the system’s cost efficiency, the majority of records in the
lower levels are placed in HDDs [13, 14] or low-tier cloud
storage based on HDDs [15]. HDDs exhibit higher latency
than SSDs, but they are much cheaper. For example, the unit
price for a 20TB Seagate Enterprise HDD Exos X20 today
is 6.75× cheaper than a 7.68TB SAMSUNG Enterprise SSD
PM9A3 [4,5]. That means a tiered storage with a size ratio of
1:10 based on these hardware can reduce the storage cost by
77% compared to pure SSDs of the same capacity.

2.2 LSM-trees with the tiering design
LogStore [26] maintains histograms in memory to track the
hotness of SSTables and retains/promotes hot SSTables in/to
the faster storage. However, the granularity of SSTables is
too coarse because there can be considerable cold data in the
same SSTable that is considered hot.

MirrorKV [33] splits the LSM-tree into the key and value
LSM-tree and caches the hottest key SSTables in the faster
storage. Additionally, MirrorKV retains the hottest blocks
(e.g., 10%) during compactions from L1 to L2. However, the
granularity of blocks is still too coarse because small objects
are prevalent in large-scale systems [25], and there can be
many cold tiny records in a hot data block.

SA-LSM [43] accurately predicts cold data with survival
analysis and demotes cold records from the faster storage to
the slower storage. However, SA-LSM does not support pro-
moting hot records back to the faster storage, and the training
cost of the survival model is heavy.

PrismDB [31] estimates key popularity with the clock al-
gorithm, and the clock bits are indexed with a hash table.
Hot records are retained/promoted in/to the fast disk during
compactions. However, the hash table can consume consider-
able memory. Also, the promotion speed of PrismDB is slow
because it only promotes during compactions.

Although not an LSM-tree, 2-Tree [44] also uses tiered
storage by maintaining two B-trees: one in memory for hot
records and one on disk for cold records. However, it does
not support tiered disk storage and the in-memory B-tree
consumes huge memory.

2.3 LSM-trees with the caching design
Numerous prior studies aim to improve the performance of
LSM-trees with in-memory caches [32, 34, 38, 42, 45]. How-
ever, the size of hot records can be far larger than the memory
capacity. RocksDB, therefore, introduces the secondary cache
on fast SSDs for data blocks not hot enough for the in-memory
block cache [28]. SAS-Cache [9] further proposes several op-
timizations on the block cache, such as actively removing
the cached blocks invalidated by compactions. However, the
granularity of blocks is too coarse.

It is also a common practice to employ a separate key-value
cache such as CacheLib [8] on top of the LSM-tree. However,
the cache incurs extra disk I/O when updating, because it
needs to update the key in both the cache and the LSM-tree.
It is also challenging to ensure consistency between the cache
and the LSM-tree. As a common problem of the caching
design, write performance suffers because all compactions
happen in the slow storage.

2.4 Memory footprint of hotness tracking
As discussed above, the granularity of SSTable/block is too
coarse for retention and promotion. However, tracking the

USENIX Association 2025 USENIX Annual Technical Conference 499

https://github.com/hotrap/HotRAP

…

L0

Li

Li+1

③Hotness-aware
compaction

⑧ ⑨

①Get

Get

Li-1

②Insert

I

mPB …K1 K2
K1

K3

immPB

Memory

RALT

⑦Scan hot keys

…K3

K0

K3

K5 K6

⑥Hot records

④Extract records in range

⑤Check & update
hotness of Ki

ⓑCheck & update
hotness of Kj

ⓐIf full

ⓒFlush hot records to L0

InsertII K0

K0 K1
…K3

K3

K7

K3

Fast Disk
Slow Disk

Figure 2: Overview of HotRAP. mPB and immPB stand for the mutable and immutable promotion buffers. Solid arrows are data
flow. Dashed arrows are control flow. The accessed keys in SD are firstly inserted into the mutable promotion buffer (1⃝ to 2⃝).
A compaction can piggyback hot records in its range to FD (3⃝ to 6⃝). Hot records are retained in FD during compactions (7⃝ to
8⃝). If the mutable promotion buffer becomes full, hot records in it will be flushed to Level 0 (a⃝ to c⃝).

access history of (potentially) hot records in memory can
incur a large footprint. According to the Twitter trace [37],
for example, 50% of the workloads have a value size smaller
than 5× the key size. We take the AWS EC2 i4i.2xlarge
instance for example, which is equipped with 64GB memory
and an 1875GB local AWS Nitro SSD [3]. The configuration
reflects the typical memory-disk ratio in the industry. If 1TB
of its local SSD is used to store hot records, we need at least
1TB/(1+ 5) = 166.7GB memory to track those hot keys,
which exceeds the physical memory of the instance.

3 Design & Implementation

3.1 Overview
The overview of HotRAP is shown in Figure 2. There are two
components to facilitate retention and promotion: Recent Ac-
cess Lookup Table (RALT) and the promotion buffer. RALT
is responsible for tracking the hotness of records. It maintains
a set of hot keys (without values) worth promoting and retain-
ing. The promotion buffer consists of a mutable promotion
buffer and a list of immutable promotion buffers. Records
read from SD are inserted into the mutable promotion buffer.
The mutable promotion buffer is turned into immutable when
full. Immutable promotion buffers are flushed to disk in the
background. The promotion buffers reside between the last
level of FD and the first level of SD. To read a key, HotRAP
first searches in MemTables and levels in FD, then in the
mutable promotion buffer, and finally in levels in SD.

When a record in FD is accessed (I⃝), its key will be in-
serted into RALT to record the access (II⃝). When a record in
SD is accessed (1⃝), HotRAP first inserts the key into the mu-
table promotion buffer (2⃝), and the key’s hotness information

in RALT is updated later.
Hotness-aware compaction. During compactions from FD
to SD (3⃝), HotRAP extracts records within the compaction
range from the mutable promotion buffer (4⃝). For the exam-
ple in Figure 2, K1 and K2 are extracted. HotRAP consults
RALT about whether each key is hot, and updates the hotness
score in RALT accordingly (5⃝). Hot records (K1) are added
to the input of the compaction (6⃝). Cold records (K2) are
dropped and future lookups to them would go to SD. Then
HotRAP checks the hotness of each record in the compaction
output, and writes hot ones to FD. It does so by construct-
ing a RALT iterator in the compaction range. This iterator
produces the hot records identified by RALT in the order of
keys. Therefore, we can advance the compaction iterator and
the RALT iterator in a sort-merge manner (7⃝), to decide the
records to be written into new SSTables in FD instead of SD.
Consequently, hot records in FD are retained in FD (8⃝), and
hot records in SD are promoted to FD (9⃝). The I/O incurred
by the RALT iterator is small because RALT does not store
values of HotRAP records. Compactions within SD are also
hotness-aware: hot records are retained/promoted in/to the
higher level in SD. Unlike the compactions from FD to SD,
no records are extracted from the mutable promotion buffer.
Promotion by flush. For read-heavy workloads, there may
not be enough compactions, and hotness-aware compaction
alone may not effectively limit the size of the mutable promo-
tion buffer. Therefore, when the size of the mutable promotion
buffer grows to the target size of SSTables (64MiB by default),
HotRAP converts it to an immutable promotion buffer, and a
new mutable promotion buffer will be created (a⃝). For the
example in Figure 2, K1 and K2 have been handled by hotness-
aware compaction. Therefore, only K3,K5, . . . are packed into
an immutable promotion buffer. The immutable promotion

500 2025 USENIX Annual Technical Conference USENIX Association

L1

L2
…….

Ln

Access key user12345

(1) Insert access record

(2) Key hotness check

Y/N

(3)(4) Range queries

Iterators / range hot size

Unsorted buffer Bloom filters

user12345 200 ……

Value
lengthKey

Hotness
metadata

Fast Disk
Memory

Figure 3: RALT structure. Suppose key user12345, whose
value length is 200B, is accessed in HotRAP and an access
record is inserted to RALT. The figure shows the RALT access
record format, as well as the four supported operations (1) to
(4). The HotRAP size is len(user12345) + 200 = 209 bytes.
The physical size is (9+4)+4+8 = 25 bytes, where we use
4 bytes each for the length of the key and value, and 8 bytes
for the hotness metadata used by our eviction policy.

buffer consults RALT whether the records are hot (b⃝). Hot
records (K3) will be flushed to L0 in FD (c⃝), while cold
records (K5,K6) are dropped. To avoid creating tiny SSTables
in L0 which will trigger compactions from L0 to L1 prema-
turely, if the total size of hot records is less than half of the
target SSTable size, we insert them back into the mutable pro-
motion buffer instead of flushing to L0. The original records
promoted by flush will remain in SD. Hotness-aware com-
paction can promote these duplicates to FD and merge them
with previously promoted records, thus reducing disk usage.

This section is organized as follows. We first introduce
RALT (§3.2, §3.3) and analyze its cost (§3.4). Then we detail
the implementation of promotion by flush and its correctness
(§3.5, §3.6). Next, we examine the influence of hotness-aware
compaction on the benefit-cost scores (§3.7) and write ampli-
fication (§3.8). Finally, we analyze the relationship between
the promotion buffer and the block cache (§3.9).

3.2 Recent Access Lookup Table (RALT)

RALT is a lightweight LSM-tree on FD, logging the accesses
to records in HotRAP. Its structure is shown in Figure 3. Each
access record in RALT consists of the key, the length of the
value (instead of the value itself), and the scoring metadata
tick and score. Keys are considered hot if their scores are
greater than a threshold. We distinguish the size of the original
key-value record in HotRAP (called the HotRAP size) and
the size of the RALT access record itself (called the physical
size). The total HotRAP size of hot records is called the hot
set size. RALT has two parameters: the hot set size limit and
the physical size limit, which constrain the total size of hot
records and the disk usage of RALT itself, respectively. We
set their values based on workload characteristics in §3.3.

RALT supports four operations, as shown in Figure 3:
(1) Inserting access records. When HotRAP inserts an access
record into RALT, it first goes into an in-memory unsorted
buffer. We use an unsorted buffer to improve performance
because a sorted memory table does not benefit much: if a
key is accessed again while its last access record is still in the
buffer, it should be super hot and promoted very fast. When
the unsorted buffer becomes full, it is sorted and flushed to
FD. There are several levels on FD, following the leveling
compaction policy. To avoid blocking reads, RALT maintains
multiple versions of the LSM-tree structure.
(2) Checking the hotness of a key. Reading keys from SSTa-
bles is expensive. So for each SSTable, RALT stores bloom
filters in memory that contain hot keys (keys with scores
higher than the threshold). When checking whether a key is
hot, RALT checks the bloom filters at each level and returns
true if any bloom filter gives a positive result. We use 14-
bit bloom filters to achieve a low overall false positive rate
(≪ 1%). The small number of false positives does not affect
performance. Thus we do not perform a second verification.
(3) Scanning hot keys in a range. During hotness-aware com-
pactions, HotRAP scans hot keys within the compaction range.
To achieve this, RALT builds iterators for each level, simi-
lar to other LSM-trees. These iterators, which produce hot
keys for their respective levels, are then merged into a single
iterator that is returned to HotRAP.
(4) Calculating the hot set size in a range. RALT needs to
calculate the hot set size in a given range, for HotRAP to
select which SSTable to compact (details in §3.7). Similar to
a normal LSM-tree, we have data blocks and index blocks for
SSTables. For each data block, its first key and the sum of
the HotRAP size of hot keys in all previous data blocks are
added to the index block. For a range query, at each level, we
read the two edge index blocks and calculate the difference
of their stored sums, to obtain the total HotRAP size of hot
keys in the range. The results of all levels are summed up and
returned, as an estimation of the hot set size in the range.

The above result is slightly overestimated because of two
error sources. First, the total HotRAP size of hot keys in
the one or two edge data blocks is small, so we choose to
tolerate the error and not read them. Second, there may be
duplicate keys in different levels. If the number of levels
is small and the size ratio between levels is large, we can
expect the overestimation rate to be small. For example, if the
size ratio is 10, the result in the second largest level may be
about 1/10 of the result in the largest level on average. So
the overestimation is only about 10%. §3.7 discusses how we
handle such overestimation in HotRAP.

3.3 Auto-tuning RALT size limits

In §3.2, RALT takes two parameters: the hot set size limit
and the physical size limit, to constrain the total size of hot
records and the space of RALT itself, respectively. However,

USENIX Association 2025 USENIX Annual Technical Conference 501

Algorithm 1 Algorithm for auto-tuning size limits
1: Let the set of tracked keys T ←∅
2: for each access ki do
3: cki ← cmax
4: if ki /∈ T then
5: T ← T ∪{ki}
6: tki ← 0
7: else
8: tki ← 1
9: end if

10: if accessed data amount reaches R then
11: forall ki ∈ T do cki ←max(cki −1,0)
12: end if
13: if hot set size limit or physical size limit is exceeded then
14: Evict unstable keys with low scores
15: If not enough, evict stable keys with low scores
16: % Update size limits.
17: t← HotRAP size of stable records
18: p← Physical size of stable records
19: r← Average ratio between physical and HotRAP size
20: Hot set size limit←min(t +Dhs,Rhs)
21: Physical size limit← p+ rDhs
22: end if
23: end for

the hot set size is determined by the distribution of the work-
load, which is usually unknown to the user and may further
dynamically vary over time. Therefore, an automatic tuning
approach for these size limits is necessary.

We define a key as hot if the expected amount of data
accessed (in terms of HotRAP size) between two accesses
to the key is below a threshold R. We aim to automatically
adjust the hot set size limit and the physical size limit so that
hot keys are identified as hot with a high probability. Our
algorithm is outlined in Algorithm 1.

We maintain a counter c and a tag t in each RALT access
record. Records are deemed stable if c > 0 and t = 1, and
unstable otherwise. Accessing a key sets c = cmax (Line 3).
The first access sets t = 0 (Line 5 to 6). A hit on an existing
key sets t = 1, making the key stable (Line 8). We lazily
update counters and tags during compactions. Every time the
amount of data accessed (in terms of HotRAP size) reaches R,
we decrease all counters by 1, eventually making cold records
no longer stable (Line 11). The maximum counter value cmax
ensures that keys not reaccessed can be evicted after accessing
at most cmax ·R data.

When the hot set size or physical size exceeds the limit,
RALT evicts 10% of access records, and all access records
are merged into a single sorted run. 10% is a good trade-off
between the I/O cost and the stability of HotRAP’s hit rate.
We maintain a score for each access record with exponen-
tial smoothing [23]. During evictions, we first evict unstable
records with low scores (Line 14). If the size is still too large,
stable records with low scores will also be evicted (Line 15).

After each eviction, we update the two limits (Lines 17 to

21). Rhs is the upper bound of the hot set size to cap the write
amplification of retention. We set Rhs = 0.85 × last level size
in FD, allowing a maximum additional SD write amplification
of about 3.3 as analyzed in §3.8. Dhs is the maximum HotRAP
size of unstable records. Essentially, we set the new size limit
(HotRAP size at Line 20, or physical size at Line 21) to be
the size of stable records plus the maximum size of unstable
records, subject to constraints of Rhs.
Analysis. Our algorithm ensures that if we set Dhs and cmax
properly and accesses are identically distributed and indepen-
dent, then almost all hot keys will become stable, while the
size of stable cold keys is bounded. We have formally proved
these properties, but we omit the proof due to the space limit.
Intuitively, because of the tag t, we need to access an origi-
nally untracked key at least two times with less than Dhs other
data accessed in between, to make it stable. Suppose each
key k has an access probability of pk. While the difference
between ∑k is hot pk and ∑k is cold pk may not be large enough
due to the very large number of cold keys, the difference be-
tween ∑k is hot p2

k and ∑k is cold p2
k is typically large enough to

separate them apart.
We set R = FD size, Dhs = 0.05×R, cmax = 5. With these

parameters, the probability that keys with access probability
> 1

0.5×FD size become stable is ≈ 99.8%. The HotRAP size of
cold keys with access probability < 1

6×FD size is smaller than
0.1×FD size. Therefore, these parameters should work well
under most workloads. The experiments are shown in §4.6.

3.4 Cost analysis of RALT

Disk and memory usage. Suppose the HotRAP record size
is 200B, and the key length is 24B with 5% hot keys. The
disk usage of RALT is about 5%× (24+ 16)/200 = 1% of
the data size. Bloom filters and index blocks are cached in
memory so that checking key hotness and calculating range
hot size do not incur random disk I/O. The memory usage of
the bloom filters in RALT is 5%×14/8/200 = 0.0438% of
the data size. An index block record is less than 40B, and a
data block in RALT is 16KiB. Therefore, the memory usage
of the index blocks is 5%× 40/16/1024 = 0.0122% of the
data size. In total, the memory usage is only 0.056% of the
data size. By storing RALT on disk instead of in memory, we
can save 1−0.056%/1%≈ 95% of memory.
I/O cost. Suppose RALT has NL levels, and the size ratio
is T . Since we evict 10% of data each time, the total write
amplification is T

2 NL +
1

10% . The total read amplification is
T
2 NL +

2
10% because we need two full scans to calculate the

score threshold. In our experiments in §4.4, T = 10,NL ≈ 2,
the read amplification is about 30 and the write amplification
is about 20. The experiment results show that RALT only ac-
counts for 5.2%–9.7% of the total I/O, because a RALT record
does not contain the value in a HotRAP record, therefore the
total I/O of RALT is small compared to HotRAP.

502 2025 USENIX Annual Technical Conference USENIX Association

…….
L0

Li

Li+1

mPB

Mut

In memory In fast disk

Imms

①Get

K1

ⓑ Mark updated

⑤Check

⑦Flush ⑥ Hot &
non-updated

②Insert

immPB
③ If fullⓐ If full

④

In slow disk

Figure 4: Concurrency control of promotion by flush. Pro-
cesses with lock icons are protected by the DB mutex lock.
5⃝ ensures that no newer versions exist in the snapshot of

the LSM-tree. a⃝ and b⃝ mark all updated keys in immutable
promotion buffers. Records with updated keys are excluded
in 6⃝. The snapshot is taken (4⃝) after the creation of the
immutable promotion buffer (3⃝), therefore, a key updated
before 6⃝ is either found out by 5⃝ or by a⃝ and b⃝.

3.5 Checks before promotion buffer insertion
The promotion buffer resides between FD and SD. Therefore,
before promoting a record into the promotion buffer, it is cru-
cial to verify the absence of a newer version of this record
in SD, which would otherwise be shielded by the inserted
older record in the promotion buffer. For a point read that
wants to insert the latest version just retrieved from SD into
the promotion buffer, it is known that no newer version ex-
ists in the same superversion (i.e., the LSM-tree’s snapshot).
However, it is still possible that a newer version of the record
is compacted into SD before the previous record has finished
being inserted into the promotion buffer.

To address this issue, HotRAP marks SSTables as being
or having been compacted when setting up compaction jobs.
When searching for the value of a key in SD levels, SD SSTa-
bles whose range contains the key are recorded. Before in-
serting the key-value pair into the promotion buffer, HotRAP
checks if any of the recorded SSTables is being or has been
compacted. If there is, HotRAP aborts the insertion. The abort
rate is low because of the small number of compaction jobs.
Our experiments show that this check only aborts less than
1% of insertions into the promotion buffer.

3.6 Concurrency control of promotion by flush
Now we discuss the details of promotion by flush in Fig-
ure 4. As mentioned before, a read to SD record (1⃝) inserts
it to the mutable promotion buffer (2⃝), which may be later
made immutable when full (3⃝). At this point, a snapshot
is taken by incrementing the reference count of the caller’s
superversion (4⃝). We pass the immutable promotion buffer’s
reference and the superversion’s reference to a background
thread called Checker, which handles the rest part. This mini-

mizes the impact on foreground reads. Checker then picks out
hot records in the immutable promotion buffer by consulting
RALT. These hot records are candidates to be flushed to L0.

Proper concurrency control is needed to avoid the issue
that flushing a hot record to L0 may shield a newer version of
this key in the FD levels. Checker looks for newer versions
of the hot records in the snapshot’s immutable MemTables
and the levels in FD (5⃝). Checker only checks bloom filters
for levels in FD for speed. The key is marked updated2 if any
filter returns a positive result. Hot records without possible
newer versions are packed into a new immutable MemTable
(6⃝)3. Those records will eventually be flushed into L0 (7⃝).

However, there is still a corner case: newer versions can
be flushed into L0 in the normal access path when HotRAP
is looking for newer versions during step 5⃝. To address this
issue, when a mutable MemTable becomes immutable during
normal accesses (a⃝), for every record in it, HotRAP checks
whether the same key exists in immutable promotion buffers.
If so, HotRAP marks the key as updated2 (b⃝), and the record
will not be packed into the immutable MemTable at step 6⃝.

We create immutable promotion buffers with the DB mu-
tex (the only major lock in RocksDB) held at step 3⃝. Since
flushes are protected by the DB mutex, there are only two pos-
sible cases and both are correct: (1) An immutable MemTable
is created before an immutable promotion buffer is created.
The newer versions of records in the immutable MemTable
will be detected by the check of 5⃝. (2) An immutable pro-
motion buffer is created before an immutable MemTable is
created. The newer versions of records in the immutable
MemTable will be marked updated by a⃝ and b⃝.

3.7 Cost-benefit analysis of compaction
RocksDB calculates a score for each SSTable and picks the
one with the highest score to compact into the next level. By
default, the score is defined as FileSize/OverlappingBytes,
where OverlappingBytes represents the total size of the target
level’s SSTables whose key ranges overlap with the picked
SSTable. This is essentially a cost-benefit trade-off score:
FileSize is the benefit, and (FileSize+OverlappingBytes) is
the cost, in which FileSize is optimized out.

However, the cost-benefit score needs some adjustment to
better support HotRAP. During a cross-tier compaction from
FD to SD in HotRAP, hot records in the chosen SSTable
will be retained in the source level. Therefore, the benefit
becomes (FileSize - HotSize), and the cost is still (FileSize +
OverlappingBytes). Their ratio is the new cost-benefit score.

HotRAP estimates the HotSize of an SSTable by query-
ing RALT about the hot set size in the corresponding range
(§3.2). Recall that the obtained HotSize is an overestimation.

2By inserting the key into the updated field attached to the immutable
promotion buffer.

3Or inserted back into the mutable promotion buffer if there are too few
of them.

USENIX Association 2025 USENIX Annual Technical Conference 503

Therefore, it is possible, although very unlikely, that all benefit
values are zero. In such cases, HotRAP falls back to choosing
the oldest SSTable for compaction.

3.8 Write amplification of retention

Suppose the fraction of cold data in the last level of FD is p.
Since each compaction from FD to SD only compacts p of the
selected data to SD and writes the remaining (1− p) of data
back to FD, 1

p× more compactions are needed to compact
the same amount of data. Therefore, suppose the size ratio of
the LSM-tree is T , FD and SD respectively have nFD and nSD
levels, the write amplification in FD is T

2 nFD + 1−p
p and the

write amplification in SD is T
2p +

T
2 (nSD−1), which are 1−p

p

and T
2p −

T
2 larger than a normal LSM-tree, respectively.

Write amplification can be lowered by tuning the level size
ratios. Specifically, we can shrink the first level of SD to make
the size ratio between the last level of FD and the first level of
SD be pT . To keep the size of the LSM-tree in SD unchanged,
we can add an extra level after the last level with a size ratio
of 1

p . The size ratio between other levels in SD remains T . In
this way, the write amplification in SD is T

2 nSD + 1
2p , which

is only 1
2p larger than a normal LSM-tree.

3.9 The promotion buffer and block cache

The promotion buffer and the block cache complement each
other. When a record is in the promotion buffer, its readers
are served by the promotion buffer. After being flushed into
FD, its readers are served by the block cache. Therefore,
the promotion buffer serves reads to SD, while the block
cache mainly serves reads to FD. Our design is orthogonal
to Leaper [38] and Range Cache [32], i.e., their optimization
techniques can also be applied to HotRAP, and by promoting
hot records to FD with our techniques, records evicted from
their cache will be read from FD instead of SD.

The main function of the promotion buffer is to batch
records from SD before flushing them to L0, to avoid many
tiny SSTables in L0. Serving readers is only the secondary
function of the promotion buffer to avoid accessing SD when
the record is already in the promotion buffer but must wait
for more records to be batch-flushed into FD. Therefore, we
fix its size to the target size of SSTables (64MiB by default).
As a result, the promotion buffer contributes less to the hit
rate when the hotspot is larger. However, we do not need to
increase the promotion buffer size for a larger hotspot (either
due to higher hotspot percentage or larger dataset), because
the record’s readers will be served by the larger block cache
after it is flushed to FD.

Table 2: Disk performance on our EC2 instances.

Fast Disk Slow Disk
Type AWS Nitro SSD gp3

16 threads rand 16K read IOPS ≈83000 10000 4

Sequential read bandwidth ≈1.4GiB/s 300MiB/s4

Sequential write bandwidth ≈1.1GiB/s 300MiB/s4

Table 3: Read-write ratios of YCSB workloads in our tests.

Notation Meaning Read-write ratio
RO read-only 100% read
RW read-write 75% read, 25% insert
WH write-heavy 50% read, 50% insert
UH update-heavy 50% read, 50% update

4 Evaluation

4.1 Experimental setup
Testbed. We evaluate HotRAP on AWS EC2 i4i.2xlarge in-
stances running Debian 12. Each instance has 8 vCPU cores,
64GiB memory, and a 1875GB local AWS Nitro SSD. We
use local SSDs as FD and gp3 as SD. Their performance
characteristics are shown in Table 2.
Sizes of tiers. We set the space ratio between tiers to 10: the
initial expected used size of SD and FD is set to 100GB and
10GB respectively, and the memory budget is 1GB. HotRAP
is also evaluated with a larger dataset in §4.7.
Compared systems. We compare HotRAP with Pris-
mDB [31], SAS-Cache [9], and the following three variants
of RocksDB: RocksDB-FD, RocksDB-tiering, and RocksDB-
CL. RocksDB-FD stores all data in FD, which is used to indi-
cate the upper-bound performance that HotRAP can achieve.
RocksDB-tiering tunes its size ratios between levels so that
the total size of FD levels becomes 10GB, which is the same
as HotRAP. PrismDB is also tuned to use about 10GB of FD
expectedly. RocksDB-CL caches records on FD using Cache-
LiB [8], while SAS-Cache caches blocks on FD. Among the
baseline systems, RocksDB-tiering and PrismDB use the tier-
ing design like HotRAP, while RocksDB-CL and SAS-Cache
use the caching design.
Configurations. All experiments run with 16 threads. To
minimize the impact of the file system cache, direct I/O is
used in all systems. We set the initial hot set size limit and
RALT physical size limit to 50% and 15% of the FD size
respectively. HotRAP is configured with a 256MiB block
cache, while other systems are configured with 64MiB more
block cache to compensate for the memory usage of RALT.
The 256+64=320MiB block cache uses about 1/3 of our 1GB
memory budget, which is recommended by the RocksDB
tuning guide [29]. Other configurations are set following the
RocksDB tuning guide [29], e.g., 16KiB block size, 10-bit
bloom filters, and 6 maximum number of background jobs.

4The maximum sustainable IOPS and throughput of gp3.

504 2025 USENIX Annual Technical Conference USENIX Association

(a) Load-
phase

0

5

10

15

O
pe

ra
tio

ns
 p

er
 se

co
nd ×104

RO RW WH UH
(b) hotspot-5%

0

5

10

15
×104

RO RW WH UH
(c) zipfian

0

5

10

15
×104

RO RW WH UH
(d) uniform

0

5

10

15
×104

RocksDB-FD RocksDB-tiering RocksDB-CL SAS-Cache PrismDB HotRAP

Figure 5: Throughput comparison with 1KiB record size.

RO RW WH UH
(a) hotspot-5%

0

4

8

12

O
pe

ra
tio

ns
 p

er
 se

co
nd

×104

RO RW WH UH
(b) uniform

0

1

2

3
×104

RocksDB-FD RocksDB-tiering HotRAP

Figure 6: Throughput comparison with 200B record size.

4.2 Performance on YCSB workloads

To assess the performance of HotRAP under various key
distributions and read-write ratios, we evaluate HotRAP with
the YCSB workloads [10] shown in Table 3. RO (read-only)
tests the effectiveness of promotion by flush. RW (read-write)
and WH (write-heavy) test the effectiveness of hot-awareness
compaction. UH (update-heavy) is the worst case for HotRAP.
With UH, the key distributions of reads and updates are the
same. Therefore, newer versions of read-intensive records
are frequently inserted into the database and flushed into FD,
making the proactive promotion of HotRAP barely needed.

We test three skewness types: hotspot-5%, Zipfian, and
uniform. In the hotspot-5% distribution, 5% of records are ac-
cessed by 95% operations uniformly. The other 5% operations
uniformly access the other 95% of records. In the Zipfian dis-
tribution, the access probability of the k-th hottest record is
proportional to 1/ks [7]. In our experiments, s = 0.99. In the
uniform distribution, the access probability of all records is
the same. We evaluate two record sizes, 1KiB (≈24B key and
1000B value) and 200B (≈24B key and 176B value).

All workloads have a load phase and a run phase. The
load phase loads 110GB of records into the LSM-tree. The
run phase executes read/write operations. For workloads with
1KiB records, the run phase executes 2.2×108 operations. For
200B records, the run phase executes 1.1×109 operations.

Figures 5 and 6 compare the average throughput (over
the final 10% for the run phase) of evaluated systems under
different read-write ratios and skewness types, with 1KiB

and 200B records, respectively. Since the trends are similar,
we only show a representative subset in Figure 6 to save
space: hotspot-5% to show near-optimal efficiency compared
to RocksDB-FD, uniform to show low overhead compared to
RocksDB-tiering.

During the load phase, HotRAP’s behavior is the same as
RocksDB-tiering; thus, their performance is the same. We
next focus on the run phase. The performance of HotRAP
when running non-write-heavy hotspot-5% workloads is close
to that of the ideal RocksDB-FD, because HotRAP promotes
almost all hot data into FD and achieves about 95% hit rate.
Compared to other systems, HotRAP achieves 5.2× speedup
over the second best baseline with the tiering design under
read-only (RO) workloads, 2.1× speedup over the caching
design under write-heavy (WH) workloads, and 1.6× speedup
over both designs for read-write-balanced (RW) workloads.
Additionally, HotRAP matches the performance of RocksDB-
CL for read-only (RO) workloads, and RocksDB-tiering for
update-heavy (UH) workloads. On the other hand, HotRAP
is only 4.0% slower than RocksDB-tiering under uniform
workloads, showing the overhead of HotRAP is low when
promotion has no benefits. For the Zipfian distribution, there
is a noticeable gap in Figure 5 between HotRAP and the upper-
bound RocksDB-FD, because the hit rate is lower (79%) com-
pared to hotspot-5%. There is also a gap between HotRAP and
RocksDB-FD under write-heavy (WH) workloads, because
compactions saturate SD5. But HotRAP still outperforms
other designs in these scenarios.

For the baseline designs, SAS-Cache shows negligible im-
provements over RocksDB-tiering, as its block-level caching
is too coarse. PrismDB also only has small improvements
over RocksDB-tiering due to its inefficient promotion mecha-
nism. While RocksDB-CL performs comparably to HotRAP
under read-only (RO) workloads, its performance degrades
under other workloads (RW, WH, UH) due to SD being over-
whelmed by compactions.

Among different read-write ratios, we notice that systems
using the tiering design exhibit significantly higher throughput

5As hot records progressively migrate to FD, read latency reductions
create proportional write throughput gains due to the workload’s fixed 1:1
read-write ratio. This synchronized acceleration ultimately triggers excessive
compactions that saturate SD’s throughput ceiling at 300 MiB/s.

USENIX Association 2025 USENIX Annual Technical Conference 505

RO RW WH
(a) 99%

100

101

La
te

nc
y

(m
s)

RO RW WH
(b) 99.9% (log scale)

100

101

RocksDB-FD
RocksDB-tiering

RocksDB-CL
SAS-Cache

PrismDB
HotRAP

Figure 7: Get tail latency comparison under hotspot-5% work-
loads with 1KiB record size.

under update-heavy (UH) workloads. This is because the
updated data have a skewed distribution, and thus update
operations can be considered as promotions to FD. However,
PrismDB performs relatively poorly in this case, because it
suffers from lock contention and inefficient random writes
to FD. RocksDB-CL and SAS-Cache barely benefit from the
update-heavy workloads because they use the caching design
and all levels are stored in SD.

Figure 7 shows the tail latencies (again over the final 10%
of the run phase) under hotspot-5% workloads with 1KiB
record size. For read-only (RO) workloads, HotRAP achieves
lower tail latency than other systems except RocksDB-FD. It
is because HotRAP has a higher FD hit rate and thus reduces
accesses to SD, so there are proportionally fewer long-latency
accesses affected by the SD tail latency among all FD and
SD accesses. In contrast, under write-heavy workloads (WH),
HotRAP has a higher tail latency than RocksDB-tiering. We
believe this is because the throughput of HotRAP is higher
than RocksDB-tiering, therefore compactions in HotRAP are
more frequent, which deteriorates the tail latency.

4.3 Performance on real-world Twitter traces
To show the performance of HotRAP under real-world work-
loads, we evaluate HotRAP with the Twitter production
traces [37]. We pre-process every trace into two phases: the
load phase and the run phase. In the load phase, we ignore
reads and keep inserting about 110GB of data. In the run
phase, we execute 5× 108 operations. We augment small
traces by repeating operations until reaching 110GB of data.
For example, if a trace has 40GB of data, we repeat each op-
eration 3 times, e.g., an operation “INSERT user1” becomes
“INSERT 0user1, INSERT 1user1, INSERT 2user1”.

Traces are categorized based on their read proportions: read-
heavy has >75% reads; read-write has >50% and ≤75%
reads; write-heavy has ≤50% reads. In some traces, it is com-
mon for a frequently read key to be also frequently updated.
Proactively promoting this key has little benefit because its
newer version will be automatically inserted into FD. We
define that a read is performed on a sunk record if the data
amount written since the last update of its key exceeds 5% of

0.0 0.2 0.4 0.6 0.8 1.0
of reads on hot records / # of reads

0.0

0.2

0.4

0.6

0.8

1.0

of

 re
ad

s o
n

su
nk

 re
co

rd
s /

 #
 o

f r
ea

ds read-heavy read-write write-heavy

Figure 8: Characteristics of Twitter production traces. Each
point stands for a cluster’s trace. Dark black points are our
selected traces for evaluation in Figure 9.

0.0 0.2 0.4 0.6 0.8 1.0
of reads on hot records / # of reads

0.0

0.2

0.4

0.6

0.8

1.0

of

 re
ad

s o
n

su
nk

 re
co

rd
s /

 #
 o

f r
ea

ds
02 1.50x

11 2.26x

15 0.98x

16 2.01x

17 5.35x

18 3.98x

19 1.06x

22 3.07x

23 0.94x
29 1.03x

46 1.00x

48 1.85x

51 1.27x

53 2.19x

read-heavy read-write write-heavy

0.9

1.0
2.0
3.0
4.0
5.0
6.0

Figure 9: Speedup of HotRAP over RocksDB-tiering on Twit-
ter production traces. Numbers on the two sides of a point are
the cluster ID and the speedup. Traces with bold cluster IDs
are selected for further analysis in Figure 10.

11 17 19 53 15 29
Cluster ID

0

10

20

30

O
pe

ra
tio

ns
 p

er
 se

co
nd ×104

RocksDB-FD
RocksDB-tiering

RocksDB-CL
SAS-Cache

PrismDB
HotRAP

Figure 10: Throughput comparison under several Twitter pro-
duction traces.

the DB size, so that the latest version is now likely sunk to
SD when being read. For example, suppose we first update
keys A,C,D,B, then we read key A. If the total size of records
C,D,B surpasses 5% of the DB size, then we say A is sunk
when being read. Similarly, we define that a read is performed
on a hot record if the data amount read since the last read of

506 2025 USENIX Annual Technical Conference USENIX Association

RO RW WH UH
(a) hotspot-5%

0

1

2

3

CP
U

tim
e

(se
co

nd
s) ×104

RocksDB-FD HotRAP

RO RW WH UH
(b) uniform

0

2

4

CP
U

tim
e

(se
co

nd
s) ×104

RocksDB-tiering HotRAP

Read
Insert

Compaction
Checker

RALT
Others

Figure 11: CPU time breakdown with 200B record size.

this record is less than 5% of the DB size, so that the record is
likely to be identified as hot. If there are many reads on such
sunk and hot records, then promoting them to FD is necessary.

Figure 8 shows the categories and proportion of reads on
sunk/hot records in the Twitter traces. We select some rep-
resentative traces to evaluate the speedup of HotRAP over
RocksDB-tiering in Figure 9. HotRAP performs better when
the proportions of reads on sunk and hot records are higher,
e.g., achieving up to 5.35× speedup under the trace of cluster
17. On the other hand, HotRAP is not significantly slower
than RocksDB-tiering under traces with low proportions of
reads on sunk and hot records, showing its low overhead.

We further analyze several traces with high (11, 17),
medium (19, 53), and low (15, 29) proportions of sunk record
reads, and present their throughput in Figure 10. HotRAP is
almost always the best among compared systems, achieving
up to 1.5× speedup over the second best. As the proportion
of sunk record reads decreases, almost all systems perform
better, but HotRAP’s relative speedup diminishes. At medium
and high sunk record read proportions, if we increase the
amount of hot record reads, HotRAP throughput would sig-
nificantly increase, while PrismDB and SAS-Cache perform
moderately better, and RocksDB-tiering does not benefit from
it at all. Although RocksDB-CL performs well under work-
loads with few writes like cluster 17, it underperforms under
other workloads.

4.4 Cost breakdown

Figures 11 and 12 show CPU time and I/O breakdowns for
the run phase of YCSB workloads with 200B record size.
The size of RALT here exceeds our 1GB memory budget,
and thus needs to be stored in FD instead of memory. The
results show that RALT accounts for only 3.7%–11.2% of
total CPU time and 5.2%–9.7% of total I/O. The I/O cost of
RALT6 is background FD I/O. Since the throughput of FD

6Measured by maintaining the number of bytes read/written in the file
system interface wrapper.

RO RW WH UH
(a) hotspot-5%

0

10

20

I/O
 (T

B)

RocksDB-FD HotRAP

RO RW WH UH
(b) uniform

0

10

20

I/O
 (T

B)

RocksDB-tiering HotRAP

Get in SD
Get in FD

Compaction in SD
Compaction in FD

RALT
Others

Figure 12: I/O breakdown with 200B record size.

Table 4: Costs with/without hotness-aware compaction under
the RW hotspot-5% workload with 1KiB record size.

Version Promoted Compaction Hit rate Disk usage
HotRAP 5.5GB 2092.5GB 94.8% 170.0GB

no-hot-aware 35.8GB 2841.8GB 72.0% 178.6GB

is abundant, the I/O cost of RALT barely affects the overall
system performance.

In hotspot-5% workloads, HotRAP incurs more CPU time
and I/O on compactions than RocksDB-FD, because reten-
tion increases write amplification. Interestingly, HotRAP uses
less CPU time and I/O on reads than RocksDB-FD. We be-
lieve it is because hot records are promoted to higher levels,
so there are fewer levels to probe to read those records. In
uniform workloads, HotRAP consumes more CPU time than
RocksDB-tiering because most accesses are in SD and thus
the records are inserted into the promotion buffer. However,
few records are promoted into FD due to the hotness checking
(5⃝ & b⃝ in Figure 2), therefore they have similar compaction
I/O.

4.5 Effectiveness of individual techniques
Hotness-aware compaction. We disable the hotness-aware
compaction mechanism in HotRAP and call the design no-
hot-aware. Table 4 shows that no-hot-aware incurs higher
promotion costs and achieves a lower final hit rate compared
to HotRAP. The reason is that although no-hot-aware still
promotes records into FD by flush, the promoted records are
compacted into SD again during subsequent compactions.
Consequently, hot records have to be promoted repeatedly,
with much more promotion traffic. Additionally, HotRAP in-
curs less disk usage than no-hot-aware. It is because hotness-
aware compaction gradually promotes duplicate data (left in
SD by promotion by flush) into FD and merges them with
previously promoted records.
Promotion by flush. We disable the promotion by flush mech-
anism and call the design no-flush. Figure 13 shows that the
hit rate increases very slowly without promotion by flush, es-
pecially for read-heavy workloads. In contrast, the hit rate of

USENIX Association 2025 USENIX Annual Technical Conference 507

0.0 0.5 1.0 1.5 2.0
Completed operation count ×108

0.0
0.2
0.4
0.6
0.8
1.0

H
it

ra
te

HotRAP 0% W
no-flush 50% W

no-flush 25% W
no-flush 15% W

no-flush 10% W
no-flush 0% W

Figure 13: Effectiveness of promotion by flush. x% W means
x% of operations are writes and (1− x)% are reads.

Table 5: Promotion costs with/without hotness checking under
the RO uniform workload with 1KiB record size.

Version Promoted Retained Compaction
HotRAP 1.0GB 15.7MB 34.8GB

no-hotness-check 200.6GB 4.3GB 5870.3GB

HotRAP increases rapidly even under the read-only workload.
Hotness checking before promotion. HotRAP promotes
only hot records to reduce the overhead introduced by pro-
motion. To show its effectiveness, we remove the hotness
checking and promote all accessed records, and call the de-
sign no-hotness-check. Table 5 shows that under uniform
workloads, no-hotness-check promotes 204.1× more records
and thus incurs 167.7× more compaction I/O than HotRAP.

4.6 Performance on dynamic workload
To show that HotRAP can adapt to changes in the access pat-
tern, we evaluate it under a dynamic workload. The details of
the dynamic workload and the results are shown in Figure 14.

The first stage has a uniform distribution, so there are few
stable records, and the hot set size stays low. At the second
stage, the key distribution becomes hotspot-2%. With the auto-
tuning method, HotRAP gradually increases the hot set size
limit until all hotspot keys are added to the hot set. Eventually,
the hot set size stabilizes around the hotspot size. After the
hotspot expands from 2% to 4% and from 4% to 6%, the FD
hit rate temporarily drops because new hot keys are not yet
promoted. Then HotRAP gradually increases the hot set size
limit until all new hot keys are added to the hot set, thus recov-
ering the hit rate. After the hotspot expands from 6% to 8%,
the hotspot size exceeds the max hot set size (≈ 7GB). There-
fore, the performance of HotRAP is relatively low. When
the hotspot shifts, HotRAP reacts adaptively by evicting old
hot keys after they become unstable, and gradually adding
new hot keys to the hot set. Both the throughput and the hit
rate recover eventually. After the hotspot shrinks from 5%
to 3% and from 3% to 1%, the throughput and the hit rate
do not drop because new hot keys are already considered hot

0

5

Si
ze

 (G
B)

Hotspot shifts
Hotspot size
Hot set size

0.0

0.5

1.0

H
it

ra
te

Hotspot shifts

0.0 0.5 1.0 1.5 2.0
Completed operation count ×109

0

5

O
pe

ra
tio

ns
 p

er
 se

co
nd ×104 Hotspot shifts

Figure 14: HotRAP under dynamic workload. The run phase
consists of nine stages, whose data distributions are first uni-
form, then hotspot-2%→ 4%→ 6%→ 8%→ 5%→ 5%→
3%→ 1%. Each stage executes 2.2×108 read operations. The
two 5% hotspots in the 6th and 7th stages are non-overlapping.
When the hotspots increase from 2% to 8%, the new hotspot
completely contains the old hotspot. When they decrease, the
new one is completely contained by the old one.

and have already been promoted. Nevertheless, HotRAP in
this case could decrease the hot set size limit after old access
records become unstable.

In summary, the results show that the auto-tuning mech-
anism enables HotRAP to find the most suitable hot set
size limit under a dynamic workload with hotspot expand-
ing, shrinking, and shifting.

4.7 Large dataset
Figure 15 compares the average throughput (over the final
10% of the run phase) of RocksDB-FD, RocksDB-tiering,
and HotRAP under different read-write ratios and skewness
types, with 1.1TB datasets and 1KiB record size. HotRAP
is configured with a 2GiB block cache while other systems
are configured with 1GiB more block cache to compensate
for the memory usage of RALT. The run phase of HotRAP
executes 2.2×109 operations. The run phase of RocksDB-FD
and RocksDB-tiering executes 1.1×109 operations to save
test time since their performance barely changes during the
run phase. The results are similar to Figure 5, showing the

508 2025 USENIX Annual Technical Conference USENIX Association

RO RW WH UH
(a) hotspot-5%

0

5

10

15

O
pe

ra
tio

ns
 p

er
 se

co
nd

×104

RO RW WH UH
(b) zipfian

0

5

10

15
×104

RO RW WH UH
(b) uniform

0

5

10

15
×104

RocksDB-FD RocksDB-tiering HotRAP

Figure 15: Throughput comparison with 1KiB record size and
1.1TB datasets (1TB in SD and 100GB in FD).

Table 6: Comparison with Range Cache under the read-only
Zipfian YCSB workload with 1KiB record size. OPS means
Operations Per Second.

System OPS FD IOPS SD IOPS
RocksDB-tiered 20927 1311 9998

Range Cache 29217 1019 9995
HotRAP 46156 14632 9998

HotRAP + Range Cache 46180 8443 9986

scalability of HotRAP.

4.8 Comparison with Range Cache

Range Cache [32] addresses the block-cache invalidation
problem by introducing a separate in-memory key-value
cache on top of the LSM-tree. Since Range Cache is not open-
source and this paper focuses on point query performance, we
simulate Range Cache by enabling the row cache in RocksDB.
Table 6 shows the experimental results collected during the
final 10% of the run phase. Range Cache improves through-
put compared to RocksDB-tiered by finer-grained caching.
However, the in-memory cache is insufficient to hold all hot
records due to the limited memory capacity; therefore, many
accesses to SD still occur. HotRAP outperforms Range Cache
by promoting all hot records to FD, which is possible due
to the large capacity of FD. Combining Range Cache with
HotRAP further alleviates the load of FD by caching some hot
records in memory. The throughput is not improved because
the performance remains bottlenecked by SD.

5 Discussion

Scan workloads. HotRAP behaves the same as RocksDB-
tiering under scan workloads: scanned records are not inserted
into RALT or the promotion buffer, and there is no metadata
lookup for RALT during scans. It is our future work to speed
up range scans by maintaining the set of promoted ranges
so that a range scan does not need to read SD if it is in a
promoted range. Details will be revealed in our future paper.

Limitation of the auto-tuning algorithm. The algorithm
keeps unstable records of HotRAP size Dhs to detect hot
records. It assumes that hot records are accessed randomly,
so every hot record has a probability > 0 of being detected.
However, if a hot record is accessed only once every > Dhs
accesses, it will not be captured. In extreme cases such as
“sequential flooding”, the algorithm cannot work unless Dhs is
increased. But this is uncommon in real-world datasets (e.g.,
the Twitter traces in §4.3).
Portability. The key HotRAP techniques (RALT and promo-
tion by flush) can be easily applied to other modern LSM-tree
implementations. (1) RALT is implemented as a standalone
library with a minimum interface (insert, key hotness check,
iterate, and range hot size) to ensure cross-system portability.
(2) Promotion by flush leverages the multi-version concur-
rency control (MVCC) of the LSM-tree structure to minimize
the impact on foreground tasks. The MVCC capability should
be available in modern LSM-tree implementations.

6 Conclusion

We introduced HotRAP, an LSM-tree-based key-value store
on tiered storage. Unlike previous solutions, HotRAP adopts
an efficient on-disk hotness tracker, along with a fine-grained
record-level retention and promotion mechanism that offers
two pathways for hot records to be stored in the fast tier. These
techniques allow HotRAP to efficiently manage data across
tiers to fully utilize the fast tier under various workloads.

Acknowledgments

We thank our shepherd, Suzhen Wu, and the anonymous re-
viewers for their constructive comments. This work was par-
tially supported by the Shanghai Qi Zhi Institute Innovation
Program (SQZ202406 & SQZ202314).

References

[1] Apache cassandra, 2009. https://cassandra.
apache.org.

[2] Scylladb, 2015. https://github.com/scylladb/
scylladb.

[3] Amazon ec2 instance types, 2024. https://aws.
amazon.com/ec2/instance-types/.

[4] Samsung pm9a3 2.5" u.2 7.68tb pcie 4.0 x4 nvme
1.4 v-nand tlc enterprise solid state drive, 2024.
https://www.newegg.com/p/N82E16820147858?
Item=9SIA12KJA14195.

[5] Seagate exos x20 st20000nm007d 20tb
7200 rpm 256mb cache 3.5" internal hard

USENIX Association 2025 USENIX Annual Technical Conference 509

https://cassandra.apache.org
https://cassandra.apache.org
https://github.com/scylladb/scylladb
https://github.com/scylladb/scylladb
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.newegg.com/p/N82E16820147858?Item=9SIA12KJA14195
https://www.newegg.com/p/N82E16820147858?Item=9SIA12KJA14195

drive, 2024. https://www.newegg.com/
seagate-exos-x20-st20000nm007d-20tb/p/
N82E16822185011?Item=N82E16822185011.

[6] Tikv is a highly scalable, low latency, and easy to use
key-value database, 2024. https://tikv.org/.

[7] Zipf’s law, 2024. https://en.wikipedia.org/
wiki/Zipf%27s_law.

[8] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, et al.
The cachelib caching engine: Design and experiences
at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
753–768, 2020.

[9] Zhang Cao, Chang Guo, Ziyuan Lv, Anand Ananthab-
hotla, and Zhichao Cao. Sas-cache: A semantic-aware
secondary cache for lsm-based key-value stores. In The
38th International Conference on Massive Storage Sys-
tems and Technology (MSST 2024), 2024.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[11] Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael
Pan, Edward Bortnikov, and Moshe Twitto. Spooky:
granulating lsm-tree compactions correctly. Proceed-
ings of the VLDB Endowment, 15(11):3071–3084, 2022.

[12] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in rocksdb. In CIDR, vol-
ume 3, page 3, 2017.

[13] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
{rocksdb} experience. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 33–49,
2021.

[14] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Rocksdb: Evolution of development priorities
in a key-value store serving large-scale applications.
ACM Transactions on Storage (TOS), 17(4):1–32, 2021.

[15] Siying Dong, Shiva Shankar P, Satadru Pan, Anand
Ananthabhotla, Dhanabal Ekambaram, Abhinav Sharma,
Shobhit Dayal, Nishant Vinaybhai Parikh, Yanqin Jin,
Albert Kim, et al. Disaggregating rocksdb: A production
experience. Proceedings of the ACM on Management
of Data, 1(2):1–24, 2023.

[16] Google. Leveldb, 2011. https://github.com/
google/leveldb.

[17] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy
Belluomini, and Raju Rangaswami. Cost effective stor-
age using extent based dynamic tiering. In 9th USENIX
Conference on File and Storage Technologies (FAST 11),
2011.

[18] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, et al. Tidb: a raft-based htap database. Proceed-
ings of the VLDB Endowment, 13(12):3072–3084, 2020.

[19] Junsu Im, Jinwook Bae, Chanwoo Chung, Sungjin Lee,
et al. Pink: High-speed in-storage key-value store with
bounded tails. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 173–187, 2020.

[20] HV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudar-
shan, and Rama Kanneganti. Incremental organization
for data recording and warehousing. In VLDB, pages
16–25, 1997.

[21] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh,
Zhichao Cao, Vaibhav Gogte, and Ronald Dreslinski.
Improving performance of flash based key-value stores
using storage class memory as a volatile memory exten-
sion. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 821–837, 2021.

[22] Cockroach Labs. Cockroachdb, 2015. https://
github.com/cockroachdb/cockroach.

[23] Justin J Levandoski, Per-Åke Larson, and Radu Stoica.
Identifying hot and cold data in main-memory databases.
In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 26–37. IEEE, 2013.

[24] Yoshinori Matsunobu, Siying Dong, and Herman Lee.
Myrocks: Lsm-tree database storage engine serving face-
book’s social graph. Proceedings of the VLDB Endow-
ment, 13(12):3217–3230, 2020.

[25] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S
Berger, Nathan Beckmann, and Gregory R Ganger. Kan-
garoo: Caching billions of tiny objects on flash. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 243–262, 2021.

[26] Prashanth Menon, Thamir M Qadah, Tilmann Rabl, Mo-
hammad Sadoghi, and Hans-Arno Jacobsen. Logstore:
A workload-aware, adaptable key-value store on hybrid
storage systems. IEEE Transactions on Knowledge and
Data Engineering, 34(8):3867–3882, 2020.

510 2025 USENIX Annual Technical Conference USENIX Association

https://www.newegg.com/seagate-exos-x20-st20000nm007d-20tb/p/N82E16822185011?Item=N82E16822185011
https://www.newegg.com/seagate-exos-x20-st20000nm007d-20tb/p/N82E16822185011?Item=N82E16822185011
https://www.newegg.com/seagate-exos-x20-st20000nm007d-20tb/p/N82E16822185011?Item=N82E16822185011
https://tikv.org/
https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach

[27] Meta. Rocksdb: A persistent key-value store for
flash and ram storage, 2012. https://github.com/
facebook/rocksdb/.

[28] Meta. Secondarycache (experimental), 2022.
https://github.com/facebook/rocksdb/wiki/
SecondaryCache-(Experimental).

[29] Meta. Setup options and basic tuning, 2022.
https://github.com/facebook/rocksdb/wiki/
Setup-Options-and-Basic-Tuning.

[30] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33:351–385, 1996.

[31] Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael J
Freedman. Efficient compactions between storage tiers
with prismdb. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
3, pages 179–193, 2023.

[32] Xiaoliang Wang, Peiquan Jin, Yongping Luo, and Zhaole
Chu. Range cache: An efficient cache component for ac-
celerating range queries on lsm-based key-value stores.
In 2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 488–500. IEEE, 2024.

[33] Zhiqi Wang and Zili Shao. Mirrorkv: An efficient key-
value store on hybrid cloud storage with balanced per-
formance of compaction and querying. Proceedings of
the ACM on Management of Data, 1(4):1–27, 2023.

[34] Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and
David HC Du. Ac-key: Adaptive caching for lsm-based
key-value stores. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 603–615, 2020.

[35] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ram-
natthan Alagappan, Rathijit Sen, Kwanghyun Park, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
The storage hierarchy is not a hierarchy: Optimizing
caching on modern storage devices with orthus. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 307–323, 2021.

[36] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-
trie: An lsm-tree-based ultra-large key-value store for
small data items. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 71–82, 2015.

[37] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
191–208. USENIX Association, November 2020.

[38] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng,
Feifei Li, Lei Zou, Yujie Wang, Rongyao Chen, Jiany-
ing Wang, and Gui Huang. Leaper: A learned prefetcher
for cache invalidation in lsm-tree based storage engines.
Proceedings of the VLDB Endowment, 13(12):1976–
1989, 2020.

[39] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu
Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-
trixkv: Reducing write stalls and write amplification in
lsm-tree based kv stores with matrix container in nvm. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 17–31, 2020.

[40] Huanchen Zhang, David G Andersen, Andrew Pavlo,
Michael Kaminsky, Lin Ma, and Rui Shen. Reducing the
storage overhead of main-memory oltp databases with
hybrid indexes. In Proceedings of the 2016 International
Conference on Management of Data, pages 1567–1581,
2016.

[41] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. Surf: Practical range query filtering with
fast succinct tries. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
323–336, 2018.

[42] Jianshun Zhang, Fang Wang, and Chao Dong. Halsm:
A hotspot-aware lsm-tree based key-value storage en-
gine. In 2022 IEEE 40th International Conference on
Computer Design (ICCD), pages 179–186. IEEE, 2022.

[43] Teng Zhang, Jian Tan, Xin Cai, Jianying Wang, Feifei Li,
and Jianling Sun. Sa-lsm: optimize data layout for lsm-
tree based storage using survival analysis. Proceedings
of the VLDB Endowment, 15(10):2161–2174, 2022.

[44] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael
Stonebraker. Two is better than one: The case for 2-tree
for skewed data sets. memory, 11:13, 2023.

[45] Yuanhui Zhou, Jian Zhou, Shuning Chen, Peng Xu, Peng
Wu, Yanguang Wang, Xian Liu, Ling Zhan, and Jiguang
Wan. Calcspar: A contract-aware lsm store for cloud
storage with low latency spikes. In 2023 USENIX An-
nual Technical Conference (USENIX ATC 23), pages
451–465, 2023.

USENIX Association 2025 USENIX Annual Technical Conference 511

https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/wiki/SecondaryCache-(Experimental)
https://github.com/facebook/rocksdb/wiki/SecondaryCache-(Experimental)
https://github.com/facebook/rocksdb/wiki/Setup-Options-and-Basic-Tuning
https://github.com/facebook/rocksdb/wiki/Setup-Options-and-Basic-Tuning

	Introduction
	Background & Related Work
	Log-Structured Merge-tree (LSM-tree)
	LSM-trees with the tiering design
	LSM-trees with the caching design
	Memory footprint of hotness tracking

	Design & Implementation
	Overview
	Recent Access Lookup Table (RALT)
	Auto-tuning RALT size limits
	Cost analysis of RALT
	Checks before promotion buffer insertion
	Concurrency control of promotion by flush
	Cost-benefit analysis of compaction
	Write amplification of retention
	The promotion buffer and block cache

	Evaluation
	Experimental setup
	Performance on YCSB workloads
	Performance on real-world Twitter traces
	Cost breakdown
	Effectiveness of individual techniques
	Performance on dynamic workload
	Large dataset
	Comparison with Range Cache

	Discussion
	Conclusion

