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Log-structured merge-trees (LSM-trees) are widely used in key-value stores because of its excellent write
performance. To reduce LSM-tree’s read amplification due to overlapping sorted runs, each file (i.e., SSTable)
in an LSM-tree is typically associated with a point or range filter to reduce unnecessary I/Os to the runs that
do not contain the target key (range). However, as modern SSDs get faster, probing multiple in-memory filters
per query often makes the system CPU bottlenecked, thus compromising the system’s throughput. In this
paper, we developed the Global Range Filter (GRF) for RocksDB that reduces the number of filter probes per
query to one. We follow the pioneering Chucky’s approach by storing the sorted run IDs within the filter.
However, we identify two practical challenges in building a global range filter: correctness in multi-version
concurrency control and efficiency in frequent updates. We solve both challenges by the novel Shape Encoding
algorithm. With further optimizations, GRF achieves a dominating performance over the state-of-the-art filters
under different workloads when integrated into RocksDB.
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1 INTRODUCTION
The Log-structured merge-tree (LSM-tree) is the basis of many modern key-value stores [1, 2, 4]
that powers a wide range of real-world applications [15, 23, 32, 35]. An LSM-tree buffers inserted
keys in memory and then flushes them to disk in batches as sorted runs. Sorted runs are organized
into levels, and smaller sorted runs in upper levels are periodically compacted to lower levels
according to different compaction policies [49]. Each sorted run can contain multiple files, called
SSTables. Because the key ranges of these sorted runs overlap, a point query must probe each
sorted run to find a particular key-value pair, causing significant read amplification.
∗Huanchen Zhang is also affiliated with Shanghai Qi Zhi Institute.

Authors’ addresses: Hengrui Wang, wang-hr21@mails.tsinghua.edu.cn, Institute for Interdisciplinary Information Science,
Tsinghua University, China; Te Guo, guo777@purdue.edu, Department of Computer Science, Purdue University, USA;
Junzhao Yang, yang-jz20@mails.tsinghua.edu.cn, Institute for Interdisciplinary Information Science, Tsinghua Univer-
sity, China; Huanchen Zhang, huanchen@tsinghua.edu.cn, Institute for Interdisciplinary Information Science, Tsinghua
University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/6-ART141
https://doi.org/10.1145/3654944

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 141. Publication date: June 2024.

https://doi.org/10.1145/3654944
https://doi.org/10.1145/3654944
https://doi.org/10.1145/3654944


141:2 Hengrui Wang, Te Guo, Junzhao Yang, & Huanchen Zhang

Build Locally Build Globally

Point Bloom[6]
Ribbon[21] Chucky[18]
XOR[31]

Range

SuRF[54]
SNARF[51] Remix(?)[55]
Rosetta[41]
REncoder[52]

Table 1. State-of-the-art filters for LSM-trees.

To reduce such read amplification, LSM-trees typically equip each SSTable with a filter data
structure (i.e., point filter [6, 13, 21, 26, 27, 31, 47, 56] or range filter[34, 41, 51, 52, 54]) to reduce
unnecessary I/Os to the sorted runs that do not have the target key or key range. Under this
construction, a key-value lookup must probe one filter (pinned in memory) per sorted run. Such
a CPU cost is no longer negligible with much faster modern SSDs. Recent studies [10, 18, 55]
have shown that the time taken by probing the Bloom filters constitutes a significant portion of
the query latency on Optane SSDs, especially when using the state-of-the-art lazier compaction
policies [11, 16, 17]. We further found that filter probing would make the system CPU bottlenecked
even with a standard NVMe SSD with asynchronous I/O enabled [3].
Therefore, building one global filter for the entire LSM-tree becomes an attractive solution.

Chucky [18] is a pioneer work that constructs a global Cuckoo filter on top of RocksDB [4]. The
key idea of Chucky is to efficiently store the sorted-run ID for each key along with its fingerprint
in the Cuckoo filter so that a key-value lookup can be directed to the sorted run containing the key
after probing the global filter. Essentially, Chucky functions as a memory-efficient approximate
(i.e., with false positives) hash index, but it cannot handle range queries. Remix [55] attempts to
build a space-efficient global range index for the LSM-tree. However, it sacrifices the ability to filter
unnecessary I/Os for negative queries (details in Section 2).
Table 1 summarizes the existing filters for LSM-trees. The purpose of this paper is to fill in the

missing piece of global range filters. A basic idea is to follow Chucky’s approach by embedding each
key’s run ID into an existing range filter. However, we identify two practical challenges regarding
its correctness and efficiency.
First, storing a single run ID for each key, as done in Chucky and Remix, fail to support the

Multi-Version Concurrency Control (MVCC) typically adopted by modern LSM-tree systems such
as RocksDB [4]. These systems rely on background threads to perform compaction with concurrent
read operations. Therefore, each query is confined to a snapshot, and different snapshots may exist
simultaneously at run time. As a result, a key may appear temporarily in multiple physical positions
in different snapshots, and the single run ID in the global filter (no matter up-to-date or not) may
lead to incorrect query results (details in Section 3.1).
Second, unlike local filters that are rebuilt only at compaction, a global filter must handle

individual inserts and updates efficiently. To achieve this, Chucky requires pre-allocating space
for insertion before the next last-level compaction, resulting in up to 2× memory overhead, while
Remix needs to read all keys in the system for rebuilding at each memory table flush. Moreover,
each LSM-tree compaction would trigger run-ID updates for a considerable portion of keys in the
global filter. The corresponding CPU overhead is significant because those run IDs are scattered in
the global filter, causing cache misses.
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Term Definition
𝐿 total levels in LSM-tree (Level 𝐿 − 1 is the last level.)
𝑇 LSM-tree size ratio
𝑀 bitset length in SNARF and GRF
𝐾 bits per key in sparse bitset
𝑙 key’s physical level
𝑟 key’s physical sorted run in its level
𝑠 number of keys per segment in Remix
𝐶 Learned CDF Model in SNARF and GRF

Table 2. Terms in this paper.

In this paper, we address both challenges by introducing the Global Range Filter (GRF) for
LSM-trees. GRF uses the state-of-the-art range filter SNARF as the base data structure. The key idea
in GRF is to store the current shape (i.e., number of sorted runs per level) of the LSM-tree for each
key in the global filter when it is flushed to disk. We refer to this approach as Shape Encoding(SE).
The beauty of SE is that it represents a key’s run-ID trace during its lifetime, that is, the key’s entire
future positions are determined at its insertion time. By storing the SE for each key in GRF, it no
longer requires the costly run-ID updates at every compaction because the SE already contains all
the future run IDs. Moreover, we can use the SE for each snapshot as its identifier and determine
the correct run ID for the querying key by intersecting the snapshot identifier with the key’s SE
in GRF. To reduce the space overhead of storing the keys’ SEs, we developed a garbage collection
mechanism to achieve a memory overhead similar to Chucky’s Huffman Encoding.

We evaluated the performance of GRF in RocksDB. We compared GRF to the following baselines:
Chucky[18], Monkey[13], SuRF[54], SNARF[51], REncoder[52] and Remix[55]. The following
comparisons are under the condition of the same filter sizes (i.e., bits per key). For negative
point queries, GRF is on par with Chucky while outperforming locally-built filters by an order of
magnitude. For negative range queries where Chucky is unable to accelerate, GRF exhibits a similar
(≈ 10×) performance advantage over the locally-built filters. For positive queries, GRF outperforms
the baselines by 33% and 2× on NVMe SSD and Optane SSD, respectively. When asynchronous I/O
is enabled, the speedup improves to 4 − 6× over the baseline filters.
We make the following contributions in this paper. First, we identify the two challenges in

building a global (range) filter for LSM-trees: correctness in concurrency control and efficiency in
frequent updates. Second, we propose the novel Shape Encoding for storing the sorted run IDs in
the global filter that solves both challenges with a minimal space overhead. Finally, we build the
Global Range Filter (GRF) and integrate it into RocksDB. Experiments show that GRF dominates
the other solutions in improving the performance of RocksDB under different workloads. We hope
our work fills in the last missing piece in the research of LSM-tree filters, as indicated in Table 1.

2 BACKGROUND AND RELATEDWORK
LSM Tree Overview. The LSM tree maintains multiple sorted runs to store data. These sorted
runs exist in multiple levels with exponentially increasing capacities. The LSM tree also maintains
in-memory tables as write buffers. As shown in Table 2, we assume the LSM tree has 𝐿 sorted runs,
and the size ratio is 𝑇 . When an in-memory table becomes full, a background thread flushes it to
level 0 in the storage. Each level will be compacted to its next level when it reaches its capacity.
The compaction process can be triggered by different conditions and has different compaction
granularity. According to [49], different compaction methods have different trade-offs. The LSM
tree has numerous variants that optimize its various aspects [5, 8, 9, 16, 17, 33, 40, 45, 50].
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Fig. 1. An overview of two LSM tree compaction policies with full merge.

Partitioned Merge Partial Merge

Fig. 2. Different colors represent SSTables with distinct ranges.

Compaction Policies.When a level reaches its compaction conditions, the LSM tree uses back-
ground threads to compact the data in that level into the next level. This process is repeated until a
level is found that can hold all key-value pairs from upper levels. There are mainly two types of
compaction policies for the LSM tree. The first is the leveling policy, which greedily sorts all data in
a level. The second is the tiering policy, which allows each level to have up to𝑇 − 1 sorted runs. As
shown in Figure 1, level 0 and level 1 use the tiering policy, and level 2 uses the leveling policy. With
the tiering policy, the compaction process does not need to read and rewrite data in the next level,
resulting in better write performance. However, it leads to more sorted runs, which can decrease
read performance. On the other hand, the leveling policy provides better read performance. Modern
LSM trees always using a hybrid policy that using tiering policy in upper levels and leveling policy
in lower levels. In RocksDB [4], the first level uses the tiering policy, while the other levels use the
leveling policy. Dostoevsky [16] uses the leveling policy for the last level and the tiering policy for
others, which is known as Lazy Leveling. With the help of filters [13], Dostoevsky can achieve
similar read performance as RocksDB while greatly improving write performance.
Compaction Granularity. During compaction, adjacent levels can merge either at the level
granularity (full merge) or at the SSTable granularity (partial merge). A full merge compacts the
entire level to the first non-full level at once, while a partial merge selects only one SSTable from
the current level and merges it with overlapping SSTables in the next level. Spooky [19] introduced
the concept of partitioned merge. This approach partitions SSTables in non-last levels based on
the boundaries of the last-level SSTables and selects one group of perfectly overlapping files for
compaction, as illustrated in Figure 2. Full merge results in lower write amplification but requires
temporary space amplification. In contrast, partial merge leads to higher write amplification because
an SSTable in the target level may overlap with multiple SSTables in the upper level, resulting in
multiple rewrites, as demonstrated by the pink SSTable in Figure 2. Partitioned merge combines
the advantages of both full merge and partial merge. In the case of Spooky, the LSM tree employs
partitioned merge for compaction between level 𝐿 − 2 and level 𝐿 − 1, while using full merge for all
the upper levels. Upper levels are not allowed to be compacted into level 𝐿 − 2 when level 𝐿 − 2 is
in the middle of a partitioned merge to level 𝐿 − 1.
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Bloom Filters. LSM trees leverage filters to reduce I/O operations for queries. Various filter data
structures [6, 21, 26, 27, 31, 34, 37, 41, 51, 54] are widely employed. Filters can quickly determine
the presence of keys within a dataset but with a false positive rate (FPR). In an LSM tree, each
SSTable builds a bloom filter to avoid unnecessary I/O. Monkey [13] proposed an optimal memory
allocation principle that assigns more bits to upper-level keys, resulting in lower FPR with same
memory. There are also some learned filters [7, 12, 20, 25, 34, 38, 39, 43, 44, 48, 53]. Their high-level
idea is to leverage query workload knowledge for better performance.
Range Filters. To further optimize range queries, range filters have been proposed [34, 41, 51,
51, 52, 54]. The high-level design involves maintaining distribution information for keys in a
compact manner. Some of them [51, 54] accurately record keys’ prefixes using different methods but
completely ignore suffixes. False positives occur when the queried key range shares a common prefix
with existing keys. These types of range filters experience significant performance degradation
with correlated workloads. REncoder and Rosetta [41, 52] use a set of bloom filters to approximately
record the full key information. In this case, FPR significantly increases for longer ranges. These
types of range filters are primarily used for short-range queries or correlated workloads.
SNARF. SNARF [51] introduces a novel learning-based range filter inspired by learned indexes [22,
28, 29, 36]. SNARF is the state-of-the-art range filter with the lowest FPR and supports incremental
updates. SNARF utilizes learned models to fit the cumulative distribution function (CDF) of the
entire dataset, enabling it to efficiently store prefixes of keys compared to SuRF. After training the
model, SNARF maps each key to a location in a large sparse bitmap with length 𝑀 and sets the
corresponding bit to 1. To query a key range [𝑙𝑘,𝑢𝑘], SNARF simply tests the sparse bitmap from
𝐶 (𝑙𝑘) ∗𝑀 to 𝐶 (𝑢𝑘) ∗𝑀 to see if any bits are set. For space efficiency, the set bits positions in the
sparse bitmap is then compressed using Golomb coding [30]. The storage of these set bits positions
are similar to fingerprints in a fingerprint based filter, such as cuckoo filter. We refer to the set bit
position of a key as its learned fingerprint in the rest of our paper. Assuming there are 𝑁 set bits
in the sparse bitmap, Golomb coding could compress the sparse bitmap to 𝑁 learned fingerprint
with length 2 + 𝑙𝑜𝑔(𝑀

𝑁
). Figure 3a is an overview of SNARF. To improve query and insertion speed,

SNARF divides the bitmap into multiple blocks and compresses them individually.
Golomb Coding. The primary concept behind Golomb coding is to represent both the quotient and
remainder of each fingerprint with a fixed number 𝐾 . In Figure 3b, we illustrate the compression of
numbers 3, 6, 11, 18 using𝐾 = 4. These numbers have respective quotients of 0, 1, 2, 4 and remainders
of 3, 2, 3, 2. We directly store the remainders in the remainder part with normal binary encoding. In
the quotient part, quotients are encoded in unary. Each set bit corresponds to a learned fingerprint
(we refer the set bit as the quotient bit for the learned fingerprint), and the count of preceding unset
bits signifies the quotient (denoted as quotient number) for that particular fingerprint . In Figure
3b, the first set bit represents the first fingerprint, which is ’3’, and its quotient is 0. The second set
bit represents the quotient for ’6’, with one preceding unset bit, indicating the quotient is 1.
Decoding Normal Golomb Coding. In regular Golomb coding, we begin by sequentially reading
the bits of the quotient part. Two variables, 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 and 𝑟𝑎𝑛𝑘 , are initialized to 0. When we
encounter an unset bit, we increment 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 by one. In the case of a set bit, it signifies a learned
fingerprint, which we decode as 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 · 𝐾 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 [𝑟𝑎𝑛𝑘]. Following this, we increment
𝑟𝑎𝑛𝑘 by 1 and proceed to read the next bits for further decoding.
Updatability. For incremental updates, SNARF only needs to decode and rebuild a small compressed
bit block. This is important for building a global range filter. We choose SNARF as the building
block of GRF because of its efficient updates and robust FPR.
Chucky. Chucky [18] replaces Bloom filters with a single Cuckoo filter. The Cuckoo filter stores
fingerprints and compressed run IDs for each key. For point queries, we only need to probe a single
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Fig. 3. Overview of SNARF.
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Fig. 4. Remix Overview with 𝑠 = 4.

Cuckoo filter. Since most keys are located in the last level, run IDs are highly compressible. Chucky
employs Huffman encoding to compress combinations of run IDs within the Cuckoo filter’s buckets.
Such compressed run IDs require less than one bit per key to store. As an approximate hash index,
Chucky does not provide any benefits for range queries.
Remix. In Remix [55], all keys are logically sorted. Remix partitions consecutive keys into segments.
Only the maximum key in each segment is recorded, as illustrated in Figure 4. Within each segment,
only run IDs are stored to indicate keys’ physical positions. These run IDs are sorted according
to their corresponding keys. When serving queries, Remix employs a binary search to locate the
correct segments. Within each segment, another binary search helps find the target key and all
reported sorted runs must be searched. Assuming there are 𝑠 keys in a segment, the expected
number of I/O operations is approximately 𝑂 (𝑙𝑜𝑔(𝑠)). This is a significant number for negative
queries or point queries.

2.1 FPR of Global and Local Filters
In the case of locally constructed filters, a filter needs to be queried for each sorted run during a
query operation. Consequently, the overall FPR increases linearly with the number of sorted runs.
This problem is addressed by Monkey, as explained in [13], which maintains a consistent overall
FPR for bloom filters by allocating different bpk values for different sorted runs.

With the global filter Chucky, there’s no longer a need to query numerous filters. However, we
do face the task of allocating bits for run IDs. Binary encoding of run IDs results in additional space
overhead. By employing compressed run IDs, Chucky achieves a FPR similar to that of Monkey. In
fact, the core principles of compressing run IDs and Monkey’s allocation method are fundamentally
the same. Similarly, binary encoding run IDs and using uniform bpk bloom filters are also identical.

When it comes to local range filters, Monkey’s approachmay not be an ideal fit, as range filters are
influenced by data distribution. Nevertheless, employing a lightweight encoding of run IDs, similar
to Chucky, consistently reduces space overhead for a global range filter. Intuitively, constructing a
global range filter with compressed run IDs can still yield a significantly lower FPR when compared
to local range filters with uniform bpk values. A theoretical analysis will be presented in Section 4.3.
In summary, building a global range filter can benefit both CPU overhead and LSM tree’s overall FPR.
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Fig. 5. MVCC problem of global Filter. F stands for flush. C stands for compaction. LLC stands for last level
compaction. We assume each sorted run has only one SST file in this figure.

3 PROBLEMS OF EXISTING GLOBAL FILTERS
3.1 The Concurrency Problem
Multi-Versions in LSM Tree. Concurrency control is essential as LSM trees use background
threads for flushing and compaction. Most LSM tree implementations employ multi-version con-
currency control methods [24]. For instance, in RocksDB, a new version is created after each
compaction or flush operation. A version contains a list of files. To ensure consistency, queries
are confined to snapshots created within specific versions. In LSM trees, multiple versions always
coexist simultaneously. For the same key, queries on different versions may need to read different
files. In RocksDB’s implementation, snapshots are automatically created from the current version
when invoking the Get API or creating new iterators. Subsequently created files are invisible in
these snapshots. In Figure 5, Version 1 encompasses a list of files: 𝑓4, 𝑓3, 𝑓2, 𝑓1, 𝑓0. A compaction
operation may lead to the creation of Version 2. During this process, key-value pairs from 𝑓4, 𝑓3, 𝑓2
are merged into a single file, denoted as 𝑓5 at level 1. A snapshot constructed based on Version 1
cannot access 𝑓5, requiring queries based on this snapshot to search files 𝑓4, 𝑓3, 𝑓2 for the requested
data. Therefore, these files cannot be immediately deleted after the creation of 𝑓5. They will continue
to exist until all snapshots built on Version 1 have been released. Filters of these files will also
coexist in memory. As each filter is small, keeping multiple versions of these files’ filters does not
incur a huge additional memory overhead.
Lack of MVCC Support. In Chucky and Remix, only the current run ID for each key was recorded.
Background threads would update each key’s stored run ID during flush and compaction to keep
it up-to-date. However, with multiple versions, storing only the current run ID for each key is
not sufficient because the key’s current file may not be visible in an old snapshot. As a result, a
query might need to search through all sorted runs. In the worst-case scenario, a query may even
experience false negatives. In LSM trees, it’s possible to store filters of old files for snapshots when
using small local filters. However, it’s not practical to store multiple global filters for different
snapshots because global filters are too large.
Example. In Figure 5, Snapshot 1 is created based on Version 1. In Snapshot 1, we may want
to query a key 𝑘 , which is stored in sorted run 0 at level 0 (𝑓 2). However, background threads
continue to perform flushes and compactions simultaneously. This could lead to a change in the
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stored run ID of key 𝑘 . If the current version is Version 2, querying for key 𝑘 in the global filter may
incorrectly report that it is in sorted run 1 at level 1. However, we cannot find any corresponding
files in the snapshot for this case. Consequently, we may need to search through all sorted runs
one by one. In the event of a last-level compaction, all previous key-value pairs will be stored in
the last level, and Version 3 will be created. If Version 3 is the current version, the global filter will
report that key 𝑘 is in the last level. But when we search the last level in Snapshot 1, we cannot
find key 𝑘 . This situation results in a false negative.

3.2 Maintenance Overhead
Key Insert Overhead. Traditionally, during a flush operation, we allocate new space and build a
filter for the new SSTable. However, in the case of Chucky, it is necessary to pre-allocate sufficient
space because the size of Chucky (number of slots) remains fixed until the next last-level compaction.
In the worst case, Chucky can only achieve a 50% load factor, resulting in significant space wastage.
The recent work InfiniFilter [14] proposed an elegant approach for dynamically resizing fingerprint-
based filters. It assigns longer fingerprints to recent keys. However, applying this idea to Chucky is
challenging because Chucky requires longer fingerprints for old keys and shorter fingerprints for
recent keys. Maintaining Remix is even more challenging. When a key is inserted into a segment,
determining where to place its run ID within the segment is crucial. However, we lack information
about the original keys in this segment, necessitating a complete rebuild of Remix. To amortize the
overhead of such rebuilding, Remix utilizes a 4GB write buffer. This is an unusual setting.
Run ID Update and Filter Rebuilding Overhead. When keys are compacted to the next level,
local filters need to be rebuilt from scratch. The filter rebuilding overhead has a complexity of
𝑂 (𝐿 + ℎ · 𝑇 ), where ℎ represents the number of levels adopting a leveling policy. On the other
hand, Chucky must update the stored physical positions (run IDs) of all the keys in the upper
level in each compaction. It also requires a complete rebuild during the last-level compaction.
The combined overhead has a complexity of 𝑂 (𝐿 + 𝑇 ). Changing run IDs contributes the 𝑂 (𝐿)
term while rebuilding Chucky during last-level compactions contributes the 𝑂 (𝑇 ) term. Although
Chucky has a lower maintenance complexity, it has poor cache locality because the keys involved
in a compaction are scattered in the global filter. According to our evaluation, an LSM tree with
Chucky exhibits similar insertion speed compared to an LSM tree with local bloom filters. Directly
combining Chucky with SNARF leads to a much-compromised insertion speed with a maintenance
complexity of 𝑂 (𝐿 · log𝑁 + 𝐿 · 𝑅 +𝑇 ), where 𝑂 (log𝑁 ) is the overhead of finding a single run ID,
and 𝑂 (𝑅) is the overhead of rebuilding a compressed bit block for updating a run ID.

4 GLOBAL RANGE FILTER
In this section, we introduce GRF, a practical global range filter for LSM trees.We begin by presenting
an overview of GRF. Subsequently, we delve into howGRF addresses the aforementioned challenges.
For ease of discussion, we assume that the LSM tree uses Lazy Leveling with full merge. We will
relax this assumption and discuss how to generalize our designs in the next section.

4.1 GRF Overview
GRF is constructed on top of the entire LSM tree to facilitate query processing. It can directly tell
where to find target keys and key ranges. In GRF, run ID(s) are stored within a range filter. The
central component of GRF is SNARF. As shown in Figure 6, each key’s run ID, referred to as its
Shape Encoding, is stored after its quotient in the compressed bit block. GRF is built using keys in
the last level during the last level compaction, and all keys’ learned fingerprints are stored in the
same GRF.
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k, k’
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Insert k’ Learned CDF Model

fp(k) = Q1*K + Rd1

Fig. 6. GRF Overview. We only show a compressed bit block instead of whole global range filter.

During the flush operation, new keys need to be added to GRF. To insert a new key 𝑘 ′, we start
by calculating its learned fingerprint using the CDF model. Then, we locate the corresponding
compressed bit block and modify it to include 𝑘 ′’s learned fingerprint and SE. Since we’re only
rebuilding a small compressed bit block for the insertion, there’s no need to allocate memory in
advance. This keeps our GRF consistently compact. The model is retrained only during the last-level
compaction, and until then, we continue to use the previously learned model. We will explore how
incremental insertion might impact GRF’s FPR in Section 4.3.
For both point and range queries, we initially follow the query process outlined in SNARF and

check for a matching learned fingerprint. If a match is found, we then interact the stored Shape
Encoding with the Shape Encoding of the version to determine the accurate physical location. To
support MVCC, a key’s SE should report different physical positions for different versions. As
depicted in Figure 6, when querying 𝑘 in version 1, 𝑆𝐸1 indicates that 𝑘 is in sorted run 0 at level 0.
In version 2, 𝑆𝐸1 points to sorted run 1 at level 1. Further details are presented below.

4.2 Shape Encoding
LSM Tree’s Shape. Our Shape Encoding is based on the shape of the LSM Tree. We define the
shape of an LSM tree with a sequence of 𝐿 numbers. Each number in the sequence represents the
number of sorted runs in a level. As illustrated in the first part of Figure 7, the LSM tree has 2 sorted
runs at level 0 and level 1, and 1 sorted run at level 2 and level 3. We denote the current shape of
the LSM tree as 2211. As flushes and compaction operations proceed, the shape of the LSM tree
will change. In the second part of Figure 7, a new sorted run is flushed into level 0, altering the
LSM tree’s shape to 3211. When another sorted run is flushed, there will be 4 sorted runs at level
0, triggering a compaction from level 0 to level 1. After the compaction, a new sorted run will be
created at level 1, and the LSM tree’s shape in the third part of Figure 7 is 0311. Finally, after many
rounds of flushes and compactions, the LSM tree will compact all sorted runs into a single sorted
run at level 3 since level 3 is a leveling level. At this point, the LSM tree’s shape is 0001.
Full Shape Encoding (SE) and Future Run ID Trace. We define the LSM tree’s shape at a key’s
flush time as the key’s Full SE. As depicted in the left part of Figure 8, when the key 𝑘 is flushed, the
LSM tree’s shape is 1211, which is also the Full SE of 𝑘 . A key’s Full SE is also the key’s future run-ID
trace. Specifically, if there is only one sorted run (denoted as sorted run 0) at level 0 when flushing
𝑘 , 𝑘 will be in sorted run 1 at level 0. This corresponds to the first number in its Full SE (1211).
Similarly, a compaction from level 0 to level 1 will create the third sorted run at level 1 (denoted as
sorted run 2). As a result, 𝑘 will be in sorted run 2 at level 1, as shown in the right part of Figure
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Fig. 7. Examples of Shape Encoding, the rectangle outlined with solid lines represents an existing sorted run.
The size ratio 𝑇 in this case is 4.
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Fig. 8. Search keys in a snapshot with Shape Encoding.

8. This corresponds to the second number at its Full SE. The reason behind this is that the LSM
tree rewrites all keys from level 0 to level 𝑖 − 1 to a new sorted run at level 𝑖 during compaction,
except for the last level. A key’s future positions (denoted as sorted run index) at any level can be
determined at its flush time based on the LSM tree’s shape at that time. A key will only be stored in
those 𝐿 positions in its Full SE at any time.
Supporting MVCC and Efficient Updates with Full SE. As a key’s Full SE can be determined at
flush time, we only need to insert its Full SE into GRF once. No further operations are required
during compaction, which allows for efficient updates. As discussed earlier, a key will only be
stored in those 𝐿 sorted runs in its Full SE at any time. When querying the key in a snapshot, we
first check if its learned fingerprint exists. After finding a matching learned fingerprint, we can
obtain the correct query result by searching among those 𝐿 positions in the corresponding Full SE.
This enables MVCC support. However, searching through 𝐿 sorted runs for each query is slow. We
can further reduce the number of target sorted runs from 𝐿 to 1 (ignoring FPR here) by leveraging
Snapshot’s SE.
Shape Encoding for Versions and Snapshots. After a flush or compaction alters the shape of the
LSM tree, a new version is created. We define the Shape Encoding of a version and the snapshots
built on it as the LSM tree’s shape at that version. A version’s Shape Encoding is exactly the Full
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Shape Encoding of the flushed keys at that version. As illustrated in Figure 8, the Shape Encoding
of version 1 is also 1211, which is also the Full Shape Encoding of key 𝑘 .
Summary of Terminologies. We denote a key’s SE as 𝐾𝑆𝐸 and the SE of a version/snapshot
of the LSM tree as 𝑉𝑆𝐸. We refer to the number for level 𝑖 in an SE as a position, denoted by
𝐾𝑆𝐸 [𝑖]/𝑉𝑆𝐸 [𝑖]. We say an SE is larger than another SE if it has more sorted runs in larger levels.
For example, 1211 is larger than 3301 because 1 > 0 at level 2. Besides, we define the time between
two consecutive last-level compaction as a compaction round. A snapshot’s lifetime may span across
a last-level compaction, we define such snapshot as a cross-round snapshot. We use𝑚 to denote the
maximum common suffix length between a 𝐾𝑆𝐸 and a 𝑉𝑆𝐸.
Reducing Number of Target Sorted Runs. To avoid searching through 𝐿 sorted runs, we
must accurately determine the level at which the key is located. Then, we can utilize the level’s
corresponding number in the 𝐾𝑆𝐸 to identify the correct sorted run at that level. The correct
level can be identified in a snapshot by extracting the maximum common suffix between the
𝐾𝑆𝐸 and the snapshot’s 𝑉𝑆𝐸. If the 𝐾𝑆𝐸 and 𝑉𝑆𝐸 share a common suffix with a length of𝑚 (i.e.,
𝐾𝑆𝐸 [𝐿 − 1 − 𝑖] = 𝑉𝑆𝐸 [𝐿 − 1 − 𝑖] for 𝑖 = 0, 1, . . . ,𝑚 − 1 and 𝐾𝑆𝐸 [𝐿 −𝑚 − 1] ≠ 𝑉𝑆𝐸 [𝐿 −𝑚 − 1]), it
indicates that the last𝑚 levels have remained unchanged from the key’s flush time to the snapshot’s
time. This implies that the key’s level must be in the range from level 0 to level 𝐿 −𝑚 − 1, including
both endpoints. 𝐾𝑆𝐸 [𝐿 −𝑚 − 1] ≠ 𝑉𝑆𝐸 [𝐿 −𝑚 − 1] indicates that keys in upper levels have been
compacted into level 𝐿 −𝑚 − 1 at least once. In such cases, the key’s level must be in the range from
level 𝐿 −𝑚 − 1 to level 𝐿 − 1. As a result, we can conclude that the key resides at level 𝐿 −𝑚 − 1 in
this snapshot. This approach enables an SE to consistently report only one correct sorted run in
any snapshot.
Example. As depicted in Figure 8, 𝑘’s 𝐾𝑆𝐸 is 1211, indicating that when compacted to level 0,
𝑘 will be in sorted run 1, and when compacted to level 1, it will be in sorted run 2. We store this
sequence in the GRF when inserting key 𝑘 . Assuming the current version is version 2 and its 𝑉𝑆𝐸
is 3311, we want to find the position of 𝑘 in version 2. 𝑘’s 𝐾𝑆𝐸 is 1211 and the version’s 𝑉𝑆𝐸 3311
share a common suffix of length 2 (11), which means that the number of sorted runs at level 1 has
changed while level 2 remains the same. From this, we deduce that 𝑘 must be at level 1 in version 2.
We can then determine 𝑘’s position at level 1 by referring to its stored sequence, which indicates
that it belongs to sorted run 2 at level 1.
Garbage Collection. Storing 𝐿 positions for each key can be expensive. We observed that only the
maximum common suffix and the first position before the maximum common suffix are relevant
when querying a key in a snapshot. Consequently, if a key’s stored 𝐾𝑆𝐸 has a maximum common
suffix with the oldest snapshot’s 𝑉𝑆𝐸 of length𝑚, we can store only the last𝑚 + 1 positions in
𝐾𝑆𝐸 (𝐾𝑆𝐸 [𝑖] for 𝑖 = 𝐿 −𝑚 − 1, . . . , 𝐿 − 1) and discard other positions. In Figure 8, if the oldest
snapshot was built on version 2, we can clear key 𝑘’s 𝐾𝑆𝐸 from 1211 to 211 because𝑚 = 2 in this
case (as shown in Figure 8). To handle variable-length 𝐾𝑆𝐸s, we use unary encoding. We use a 1-bit
indicator for each position in the 𝐾𝑆𝐸 to mark the end of an 𝐾𝑆𝐸. For example, for 𝐾𝑆𝐸 231, where
2(0102) and 3(0112) are not the last positions, their indicators will be set to 0. These positions will
be stored as 0010 and 0011, respectively. On the other hand, position 1(0012) is in the last level, so
its indicator will be set to 1, and it will be recorded as 1001. Additionally, as all keys’ positions in
the last level are the same due to the leveling policy of the last level, 001 can be omitted, and only
the indicator is necessary. As a result, 𝐾𝑆𝐸 211 will be represented as (0010) (0001) (1) and will be
stored as 001(010) (001) with the indicators grouped together. Garbage collections are performed
lazily when new entries are inserted into a compressed bit block (i.e., at flush time). In cases of
insertion skew, obsolete positions in certain blocks may not get GCed promptly. To address this,
we monitor the size of each compressed bit block and trigger GC periodically on the blocks larger
than a predefined threshold.
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Fig. 9. Varying-length Learned Fingerprint and compressed bit block’s layout. The upper half and the lower
half of this figure are independent.

Dealing with Cross-Round Snapshots. After a last-level compaction, the LSM tree’s shape
transitions to 0001, and a new compaction round begins. For ease of management, we set all 𝐾𝑆𝐸s
in the new GRF to a single set bit since all keys are in the last level. However, the new last level
is invisible to cross-round snapshots. We, therefore, must keep the original GRF around until the
old cross-round snapshots are no longer referred. Because the 𝐾𝑆𝐸s of the last-level keys (i.e., =
1) in the original GRF stay the same in the new GRF, we only need to maintain the non-last-level
keys in the original GRF to save memory: the size of the shrunk original GRF is only ≈ 1

𝑇
of that of

the new GRF. Consequently, for a query referring to a cross-round snapshot, we search both the
shrunk original GRF for the previously non-last-level keys and the new GRF for the rest.
Dealing with Duplicate GRF Entries. There might be identical learned fingerprints in GRF
caused either by fingerprint collision of nearby keys or by updates or deletes of the same key1. GRF
allows identical fingerprints if they belong to different sorted runs (i.e., with different 𝐾𝑆𝐸s). If
they end up in the same sorted run, one of the duplicates will be remained in GRF and others will
be removed during garbage collection. If one of the duplicated learned fingerprints corresponds to
a tombstone entry, both duplicates can be removed. However, during garbage collection, we are
unable to determine whether a learned fingerprint corresponds to a tombstone entry or not. We,
therefore, must keep both duplicates until the next GRF rebuild at last-level compaction, trading
memory space for compaction speed. Alternatively, we can eagerly handle tombstones by deleting
the corresponding GRF entry during compaction when the tombstone has been merged with the
corresponding key, trading compaction speed for memory efficiency.

4.3 Maintaining Robust FPR
The GRF exhibits the lowest FPR (denoted as 𝑝) at the start of a compaction round, when it has
just been rebuilt. To understand the impact of inserting new keys into the GRF on its FPR. We
differentiate between two types of updates: in-distribution updates that follow the distribution of
existing data, and out-of-distribution updates that do not.

4.3.1 FPR is Robust for In-distribution Updates. With in-distribution updates, the positions of set
bits in the sparse bitmap are uniformly distributed. For a sparse bitmap of size𝑀 with 𝑁 set bits2

1LSM trees use out-of-place deletions and updates. Initially, a new version (or tombstone) of a key is inserted into the
mem-table. The actual deletions and updates take place when different versions of the same key are compacted into the
same sorted run.
2Following SNARF’s paper, we also assume that the number of set bits is equal to the number of keys.
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its FPR is approximately 1
𝐾
= 𝑁

𝑀
. 𝑀 remains unchanged in a compaction round. For 𝑁 , suppose

inserting every 𝐵 keys to the LSM tree will trigger a last-level compaction, and the last-level
compaction has already happened 𝑧 times, then there will be a total of 𝑧 · 𝐵 keys in the last level at
the moment. Thus, 𝑁 (≈ the total number of keys in the LSM tree) will increase by 1

𝑧
for the next

compaction round. The average FPR in this compaction round is 1
2 (𝑝 + (1 + 1

𝑧
) · 𝑝) = 𝑝 + 𝑝

2·𝑧 , where
𝑝 denotes algorithm’s FPR at the start of a compaction round. As the value of 𝑧 varies from 1 to

𝑇 − 1, the average FPR over time is (1 +
1
2·1+

1
2·2+...+

1
2· (𝑇 −1)

𝑇−1 ) · 𝑝 = (1 + ln(𝑇−1)
2· (𝑇−1) )𝑝 . When 𝑇 = 10, GRF

has an average FPR of 1.12 · 𝑝 .

4.3.2 Optimizing Robustness for Out-of-Distribution Updates. In GRF, out-of-distribution keys can
lead to a higher FPR because the learned CDF model does not fit these keys. A natural idea is to use
a larger sparse bitmap and longer learned fingerprints for these keys to compensate for the loss
of accuracy in the learned model. An insight can be incorporated into such a design: more recent
keys should have longer learned fingerprints. Because the learned model is trained/constructed
using keys in the last level, more recent keys, such as those in level 0 and level 1, are more likely to
be out-of-distribution.
Our Method. As discussed above, a key’s learned fingerprint should be gradually shortened as it is
compacted downward. During insertion, we generate a long fingerprint for the key. When the key
is compacted to the next level, the least significant bit is removed from its fingerprint. This process
of shortening the fingerprint is conducted during garbage collection. A key at level 𝑙 should have
𝐿−𝑙 −1 extra bits3 for its fingerprint. In the original SNARF, a key’s learned fingerprint is calculated
as ⌈𝐶 (𝑘) ·𝑀⌉, where𝑀 is determined by the bpk budget. In our GRF, a larger number, denoted as
𝑀 ′ = 𝑀 · 2𝐿−1 is used, where 𝐿− 1 represents the number of non-last levels. After being compressed
by Golomb Coding, the generated learned fingerprints of newly inserted keys at level 0 have extra
𝐿 − 1 bits of suffixes. When the key has moved through 𝐿 − 1 levels to the last level, these extra
bits have all been cleared, and the length of the fingerprint is equal to that of the original SNARF.
This approach ensures that the stored learned fingerprint for each key aligns with our insight. In
this paper, prefix comparison is adopted to compare two fingerprints. For instance, to compare
100111012 and 100101111112, it can be determined that the first one is greater by comparing 100112
and 100102. Through prefix comparison, learned fingerprints of varying lengths can maintain the
correct order of their corresponding keys.
Example. If𝐶 (𝑘) = 0.612,𝑀 = 256, and 𝐿 = 4, then𝑀 ′ = 256× 23 = 2048. The full fingerprint for 𝑘
is ⌈0.612×2048⌉ = 100111001102. As a result, the stored learned fingerprint of 𝑘 will be 100111001102
if it is at level 0, and 100111002 if it is at level 3. Suppose we are querying 𝑘 ′ and 𝐶 (𝑘 ′) = 0.613.
With𝑀 = 256, the initially learned fingerprints for both 𝑘 and 𝑘 ′ are 100111012, resulting in a false
positive. With𝑀 ′, the learned fingerprint of 𝑘 ′ becomes ⌈0.613 × 2048⌉ = 100111010002. 𝑘 and 𝑘 ′
can be distinguished from each other even if 𝑘 is in the last level. As illustrated in Figure 9, the 𝐾𝑆𝐸
of 𝑘 is 1211. When 𝑘 has been compacted to level 1, the positions in its SE corresponding to level 0
can be deleted (causing the SE to change from 1211 to 211). At this point, the least significant bit of
𝑘’s suffix, which is 0, will also be removed. This process will be repeated every time 𝑘 is compacted
to the next level.
Storage and compressed bit block’s Layout. For a last-level key, we denote the length of its
fingerprint as 𝑙𝑒𝑛. The 𝑙𝑒𝑛-bit prefixes of all fingerprints are compressed into compressed bit blocks
through normal Golomb Coding. For keys in non-last levels, their fingerprints still have suffixes,
which are stored together with their SEs. As discussed above, if a key is at level 𝑙 , it has 𝐿 − 1 − 𝑙

3Starting from the last level, for each level we move up, we compensate the fingerprint with one more extra bit. We could
choose to compensate with more, but our current setting already effectively addresses the out-of-distribution problem.
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positions in its SE and the same number of bits for the suffix. We need to know the key’s level to
determine the number of bits to read for the suffix and the number of positions to read for 𝐾𝑆𝐸.
Therefore, we store the indicators of the key right after its quotient bit, followed by its 𝐾𝑆𝐸 and
the suffix of its fingerprint. As shown in Figure 9, each underlined 1 represents the quotient bit of a
learned fingerprint, followed by the indicators (blue), positions in 𝐾𝑆𝐸 (purple), and suffix (yellow)
of this fingerprint. When we first read a set bit in the quotient part, we know it is the quotient bit.
We continue reading the following bits until encountering another set bit, which is the indicator
bit for the last level. Suppose there are 𝑎 unset bits between the quotient bit and the indicator bit,
then we know that there are 𝑎 non-last levels and we thus read 𝑎 · log(𝑇 ) bit positions and 𝑎 extra
bits for the suffix.
Example. In Figure 9, assuming 𝐾 = 4, the first bit is a set bit, so it is a quotient bit. It does not
have any preceding unset bit, so its quotient number is 0. It is followed by another set bit, so we
could know that the corresponding key of this quotient bit is a last-level key. After reading the
remainder part with index 0, we know the learned fingerprint is 4 × 0 + 3 = 3 (00112). Then, we
start to decode the next learned fingerprint. When we read another set bit in the quotient part, we
know it is a quotient bit. We will read the remainder part with index 1 and get a remainder of 2. As
the second set bit has only 1 preceding unset bit (as pointed in Figure 9), the learned fingerprint’s
prefix is 4 × 1 + 2 = 6 (01102). Then we decode the indicators. We find 3 unset bits before the next
set bit. Consequently, we read the following 3 positions (121) and 3 extra bits (011) as the learned
fingerprint’s suffix. As a result, the key has a learned fingerprint 0110011 and its 𝐾𝑆𝐸 is 1211. The
last 1 in its 𝐾𝑆𝐸 serves as the indicator for the last level.

4.4 Space Overhead
We provide an analysis of the static space overhead of GRF in this section. Because of the

interference of snapshots, it is hard to compute the space overhead in a specific scenario. In this
following analysis, we assume that no snapshots are built on previous versions and that all obsolete
positions in 𝐾𝑆𝐸s have been cleared. Also, we provides an upper bound for the worst-case space
overhead when using periodical GC.
Shape Encoding and Extra Bits Space Overhead. The keys in the last𝑚th level require𝑚 bits
for indicators (𝑚 − 1 indicators are 0, one indicator is 1), 𝑚 − 1 positions (log(𝑇 ) bits for each
non-last level), and𝑚 − 1 extra bits for learned fingerprints. The number of keys in the last𝑚th
level accounts for 1

𝑇𝑚−1 of all keys. As a result, the average bits for a 𝐾𝑆𝐸 can be calculated as:∑𝐿
𝑚=1

(1+(𝑚−1) · (2+log(𝑇 ) ) )
𝑇 (𝑚−1) = 𝑇

𝑇−1 +
𝑇 (2+log(𝑇 ) )

(𝑇−1)2 . When 𝑇 = 10, it is approximately 1.6 bits. Assuming
that GC is periodically conducted when compaction happens at level 𝐿 − 2. All keys at level 𝐿 − 1
and level 𝐿 − 2 have been garbage-collected. Meanwhile, assuming that all keys in other levels have
𝐿 − 1 positions in their 𝐾𝑆𝐸s (no GC has been conducted on them at all), then the additional bpk is
bounded by 1+(𝐿−1) · (2+log(𝑇 ) )

𝑇 2 (less than 0.2 bit when 𝑇 = 10).
GRF Overhead. SNARF can achieve an FPR of 1

2BPK−3 [51]. According to the analysis above, GRF
requires less than 2 extra bpk for Shape Encoding and extra bits in the worst case when 𝑇 = 10.
Therefore, in our implementation, GRF can achieve an FPR of 𝑝 = 1

2BPK−5 at the beginning of a
compaction round and an average FPR of 1.12 · 𝑝 throughout the round. Compared to the use of
local SNARFs, our GRF can achieve a better FPR with the same BPK when there are more than 5
sorted runs. This is a common case in modern LSM trees, as level 0 is always a tiering level.

5 GENERALIZATIONS AND LIMITATIONS
In this section, we discuss how to generalize Shape Encoding to different compaction policies

and compaction granularity. We first propose the basic requirements of Shape Encoding for LSM
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trees, followed by a discussion of its limitations. Then, we demonstrate how to generalize Shape
Encoding to example common LSM tree designs that meet the basic requirements.
Basic Requirements. Shape Encoding requires the LSM tree to have a deterministic compaction
scheduling. For any key, we must know its future run-ID trace at insertion time. Also, we must be able
to locate the key’s current run-ID in the trace (i.e., to compute the number of compactions/rewrites the
key has experienced) according to the key’s 𝐾𝑆𝐸 and the LSM tree’s 𝑉𝑆𝐸. Shape Encoding applies to
any compaction design that meets the above requirements.
Limitations. The partial merge strategy, which is typically associated with the leveling policy,
violates the above requirements because a key can get rewritten an arbitrary number of times at each
level. However, [19] has shown that a partitioned merge, which satisfies our basic requirements, can
achieve a better performance than a partial merge. In the case of a large number of delete and update
entries, a non-last leveling level may not reach its capacity threshold after 𝑇 compactions. We
must force the level to trigger a compaction to the next level to stick to a deterministic compaction
schedule. This may lead to a worse write amplification.
Generalization 1: Concurrent Flush and Compaction. If the LSM tree allows flushing the
mem-table in concurrent with the level compaction, level 0 could temporarily have more than 𝑇
SSTables. For example, if the current𝑉𝑆𝐸 is 3311 (𝑇 = 4), and level 0 and level 1 are being compacted
to level 2, the keys flushed during this compaction would record their future run-ID traces as 𝑥021
rather than the current𝑉𝑆𝐸 = 3311, where 𝑥 is the number of SSTables flushed from the beginning
of this compaction. If these keys are queried before the compaction completes, however, GRF may
incorrectly report that they are at level 2. We, therefore, add the following check: if a 𝐾𝑆𝐸 is larger
than the current 𝑉𝑆𝐸, and a compaction is taking place, we know that the key was inserted during
the compaction and it should currently be in sorted run 𝑇 + 𝑥 in level 0.
A similar problem occurs when mem-table flush is allowed during a last-level compaction,

where the GRF is under reconstruction. For example, if the current 𝑉𝑆𝐸 is 3331, and a last-level
compaction is on-going, newly flushed keys should record their 𝐾𝑆𝐸s as 𝑥001. The above approach
does not work when dealing with queries to these keys during the last-level compaction because
the “wrapped-around” 𝐾𝑆𝐸 is no longer larger than the 𝑉𝑆𝐸. We, therefore, introduce a waiting
buffer in memory to hold these to-be-flushed keys (along with their 𝐾𝑆𝐸s) temporarily until the
last-level compaction is completed. If a query key is found in the waiting buffer, we can infer that
it is currently in sorted run 𝑇 + 𝑥 in level 0. The waiting buffer is merged to the GRF when it is
rebuilt after the compaction. The size of the waiting buffer is typically small because most LSM
trees limit the maximum number of SSTables allowed in level 0.
Generalization 2: Partitioned Merge and Spooky. If the entire LSM tree uses partitioned merge,
it can be regarded as multiple small LSM trees with full merge, and each small LSM tree will have a
disjoint GRF and an independent VSE. These disjoint GRFs can be retrained individually. All other
operations remain the same. For Spooky, when performing a partitioned merge from level 𝐿 − 2 to
level 𝐿 − 1, concurrent flushes and compactions could happen in the upper levels. We again use the
temporary waiting buffer to handle queries during this period. Note that at most 1

𝑇 2 of the total
keys will be inserted into the waiting buffer. Assuming 𝑇 = 10 and the keys are 64-bit integers, the
waiting buffer will cause an additional 0.8 bpk in the worst case.
Generalization 3: Leveling Policy. The Shape Encoding for the leveling policy records the
number of compactions (up to 𝑇 ) that already happened at each level rather than the shape of the
LSM tree, as in the tiering policy. We can still use the SE to determine a key’s current sorted run. If
the workload contains a large number of deletes and updates, we will estimate a 𝑇 ′ > 𝑇 to delay
the scheduled compaction so that each level can approach its capacity before compaction. The
parameter in Shape Encoding is thus set to 𝑇 ′ in this scenario.
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Generalization 4: Different Size Ratios. For LSM trees that adopt different size ratios for
different levels (i.e., different levels have different maximum numbers of sorted runs) [17, 33, 46],
Shape Encoding still applies but with a variable-length position for each level. This does not affect
SE decoding in GRF because the indicators are parsed first to determine the number of positions
(as well as the corresponding number of bits) to read next.
Generalization 5 Adaptive Compaction Policies. There is also research on adjusting the
compaction policy adaptively according to the workload [46]. GRF requires the compaction policy
to remain unchanged within the same compaction round. Upon starting a new compaction round,
the LSM tree is free to change its compaction policy as long as it follows the basic requirements for
using GRF, as described before.

6 EVALUATION
6.1 Setup, Datasets and Workloads
Setup: Our experiments were conducted on a machine with the following specifications: an AMD
EPYC 7742 64-Core Processor, 512MB of L3 cache, and two SSDs (800GB Intel Optane SSD DC
P5800X and 3TB D7-P5620 NVMe SSD) connected to it. Without further statement, we used the
Optane SSD for our experiments. The machine ran Ubuntu 20.04. Throughout the experiments,
we used a RocksDB setup with an LSM-tree of size ratio 10 and a lazy leveling compaction policy.
We also use the state-of-the-art compaction granularity Spooky during compaction. The memory
write buffer was set to 8MB. Fence pointers were maintained for each disk page, and filters were
constructed for every file with a default memory allocation of 10 bpk (for SuRF, we used 14 bpk by
default). An 8MB block cache was allocated for data blocks. We used 64-bit integer keys and 256
bytes of value for each key. We enabled direct I/Os for both read and write operations. The number
of background threads was set to 4. We started with an empty LSM tree and inserted keys until the
LSM tree was just prior to the last-level compaction, which occurred when the system contained
the highest number of runs. Then we evaluated different types of queries on it to emphasize each
filter’s worst-case performance.
Dataset: For our experiments, we use datasets from SOSD [42].

• Uniform Random: Keys are generated uniformly at random in the range
[
0, 250

]
.

• Normal: Keys are generated from normal distribution (𝑁 (𝜇 = 100, 𝜎 = 20)) and are linearly
scaled to range

[
0, 250

]
.

• osm: cell IDs from Open Street Map representing a location.
• book: book sale popularity data at Amazon.
• fb: unique Facebook user IDs.

Algorithms:We conducted experiments to show the performance of following algorithms.
• GRF: Our implementation with Shape Encoding.
• GRF_H: Another implementation with only one Huffman Encoded run ID for each key,
like Chucky. This version of GRF highlights the power of Shape Encoding in improving the
insertion speed of the LSM tree.

• Bloomfilter: This is the default filter policy in RocksDB.We follow the optimal configuration
of bloom filters provided in Dostoevsky[16] and Monkey[13].

• Chucky:We have implemented Chucky based on the cuckoo filter. Each key has only one
run ID, encoded by Huffman encoding. We compactly build Chucky with 95% load factor, but
we should notice that such a load factor may not always be easily achievable in real cases.

• Remix: To avoid the need for complete reconstruction during each flush, our Remix im-
plementation is only semi-sorted. Specifically, we do not enforce the sorting of run IDs
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Fig. 10. Point Query Performance on Optane SSD. Shadow part is Filter Probing Time.

within a segment based on their corresponding keys. Instead, we utilize a bitset within each
segment to indicate whether a sorted run needs to be searched when querying a key or key
range within that segment. While this implementation may result in slightly inferior query
performance compared to the original Remix, we believe it is more practical in real-world
scenarios due to its ease of maintenance.

• SuRF: SuRF stores unique prefixes (or longer) for each key with a compact trie structure.
We utilize the open-source implementation of SuRF. Real suffixes are recorded for each
experiment.

• REncoder: Rosetta [41] encodes range information into multiple layers of Bloom filters for
range queries. REncoder [52] further optimized Rosetta’s query speed by leveraging locality.
These two range filters store full keys approximately. Both Rosetta and REncoder are not
suitable for searching long ranges. We utilize the open-source implementation of REncoder.
We disable REncoder’s query workload sampling. Since REncoder outperforms Rosetta in all
aspects of performance, we do not include Rosetta as one of our baselines.

• SNARF:We utilize the open-source implementation of SNARF.

6.2 Influence of Bits per Key
In this section, we demonstrate the influence of memory budget on query performance. We vary
the number of bits per key for each filter from 6 to 14. We provide both end-to-end performance and
filter probing performance. In this section, all queries, whether point or range, are negative queries.
Short-range queries involve ranges less than 64. We use the latency of both 𝑆𝑒𝑒𝑘 and 𝑆𝑒𝑒𝑘 +𝑁𝑒𝑥𝑡 to
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Fig. 11. RangeQuery Performance on Optane SSD. Shadow part is Filter Probing Time for Seek and Short
Empty RangeQuery Workload. Shadow part is Seek + 20 Next Time for Seek + 50 Next Workload.

illustrate the performance of different data structures for positive long range queries. Throughout
figures from Figure 10 to Figure 12, the 𝑥-axis represents bpk.
Negative Query Performance. As shown in the figures from Figure 10a to Figure 11j, our GRF
exhibits the lowest latency among all algorithms, with only Chucky showing a similar performance
on empty point query. For empty queries, filter probing time significantly contributes to the overall
latency. Additionally, Chucky and GRF also achieve better FPR compared to other algorithms. These
two factors both contribute to the excellent performance of Chucky and GRF. While REncoder is
specifically designed for short negative range queries, it does not perform satisfactorily when bpk
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Fig. 12. Experiments on NVMe SSD (books dataset). The red line represents latency without any filters.

is below 14. For SuRF, SNARF and Remix, they have different CPU and I/O overhead but resulting
in similarly overall performance for negative queries.
Positive Range Query Performance.As depicted in Figure 11 our GRF achieves the lowest latency
for both 𝑆𝑒𝑒𝑘 and 𝑆𝑒𝑒𝑘 + 50𝑁𝑒𝑥𝑡 operations. For standalone seek operations, GRF is twice as fast as
Remix and SNARF. Remix is only slightly slower than SNARF due to lower CPU overhead. Although
𝑆𝑒𝑒𝑘’s latency is bounded by 1 I/O, the filter probing overhead is also significant, which is why
SNARF performs worse than GRF. However, for the 𝑆𝑒𝑒𝑘 + 50𝑁𝑒𝑥𝑡 (scan) operation, Remix, GRF,
SNARF, and SuRF all exhibit similar performance, with Remix and GRF slightly ahead. In addition,
the scan performance only minor improvements as the bpk increases. This is because necessary
I/O operations dominate the overall performance. We demonstrate that further optimization can
only be achieved through a more greedy compaction policy. Notably, REncoder can degrade the
performance of scan compared to a plain LSM tree because it cannot reduce I/O for such long
ranges4. Instead, it incurs heavy filter probing overhead.
Performance on NVMe SSD. We further tested each design’s performance on NVMe SSD, where
filter probing latency contributes little to the overall latency. We examined the latency of empty
point queries, empty short-range queries, and seeks. As shown in Figure 12, for empty queries,
GRF continues to exhibit significantly better performance compared to other baselines due to
advantanges on both CPU and I/O overhead. For seek, GRF demonstrates similar but slightly better
performance compared to Snarf. The CPU overhead for Snarf is less pronounced on NVMe SSDs.
4As REncoder does not support Seek and Next operations in the filter, we query the existence of the range from the seeked
key to the 50th key after it in REncoder.
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Fig. 13. Experiments on YCSB workloads.
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Fig. 14. Update Performance (YCSB A Workload).

However, Remix and SuRF, while having similar performance to Snarf on Optane SSD, performs
significantly worse than Snarf on NVMe SSD because of higher FPR.

6.3 YCSB Performance
YCSB consists a load phase for insertions and five distinct run phases (A through E), each with
varying query and update ratios: A) 50% queries, 50% updates. B) 95% queries, 5% updates. C) All
queries. D) 95% queries on recent keys, 5% insertions. E) 95% short-range queries, 5% insertions. We
used different number of threads (4, 8, 16, 32, 64) to execute the workloads. Since all queries follow
a Zipfian distribution, we employed a 1GB block cache to highlight each algorithm’s performance
on zipf workload. In YCSB C, with the skewed queries and 1GB block cache, the block cache hit
rate is about 50%. In each workload, we simulated performance for the worst-case scenario. After
completing both the load phase and the run phase, the LSM tree is positioned just before the
last-level compaction. In YCSB C, the LSM tree has the most number of sorted runs compared with
other workloads. We present the throughput-latency curve for Optane and NVMe SSDs in Figure
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Fig. 15. Experiments with Asynchronous I/O. Shadow part is the throughput with synchronous I/O.

13. In each curve, a higher latency data point indicates more threads. Our GRF outperforms other
baselines in all workloads with both SSDs due to its lower FPR and lighter CPU overhead. The
curves of our GRF are consistently Pareto optimal, achieving higher throughput with lower latency
and fewer threads.

6.4 Update Performance
Our GRFmay experience higher write amplification if the workload contains a significant number

of update operations and a leveling policy is applied to a non-last level. In this experiment, we
employ RocksDB’s default level policy (level 0 is a tiering level, and the other levels are leveling
levels) to test the performance of each algorithm on YCSBA. For GRF, each level will be compacted to
the next level after𝑇 compactions. As for the other algorithms, compaction is triggered when a level
reaches its capacity. All other configurations remain consistent with previous YCSB experiments.
As shown in Figure 14, GRF could outperform other baselines, even though it has higher write
amplification. Faster insertion speed and better I/O performance for query make the additional
write amplification caused by Shape Encoding’s requirements less serious.
6.5 Performance with Asynchronous I/O
Asynchronous I/O is a common approach to improve throughput by harnessing the large bandwidth
of modern SSDs. After locating a target data block and dispatching an I/O request to the SSD,
the CPU does not need to await the completion of the I/O operation; instead, it can proceed with
processing the next query. This approach may lead to an increase in query latency for each query
request, but there are situations where throughput takes precedence. As shown in Figure 15, Chucky
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Fig. 16. Experiments on compaction policy . The 𝑥 − 𝑎𝑥𝑖𝑠 stands for the number of leveling levels.

and GRF significantly outperform all other algorithms with asynchronous I/O. Global filters did
not exhibit advantages for positive queries in previous experiments on NVMe SSD. However, with
asynchronous I/O, the throughput of global filters increases significantly, while the throughput of
other algorithms improves only slightly. This is because global filters have lower CPU overhead
and can parallelize more I/O operations. These experiments further highlight the growing need for
a global filter in LSM trees.

6.6 Influence of Compaction Policy
We present the influence of different compaction policies. Our LSM tree has a total of 4 levels.
Previous experiments are conducted with 1 leveling levels. We vary the number of leveling levels.
3 leveling levels represent the default setting in RocksDB. In Figure16, we observe that our GRF
achieves the best query performance for all compaction policies on all datasets. Regarding insertion,
we find that without workload shifts, our GRF has similar or even lower write latency compared to
other algorithms and the plain LSM tree. To highlight the effect of Shape Encoding, we also use
Huffman encoding as Chucky. Our results show that a global range filter with Huffman Encoding
has significantly higher write latency because the compaction processes frequently change the run
IDs, which is expensive for GRF_H. Another important observation is that other algorithms with
3 leveling levels can hardly outperform GRF with 1 leveling level (except for 𝑆𝑒𝑒𝑘 + 𝑁𝑒𝑥𝑡 ). This
suggests that GRF can utilize a lazier compaction policy in real-world scenarios.
6.7 Influence of workload
We conduct experiments using a hybrid dataset to simulate a workload shift. We use one dataset to
build the model in the last level and insert keys from another dataset into the upper levels. We also
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Fig. 17. Experiments on highly skewed workload.

conduct experiments with highly skewed query workloads, where most of the related data blocks
are cached in memory.
Performance on Highly Skewed Workload. As illustrated in Figure 17, our GRF significantly
improves query speed, ranging from 2x to 10x compared to other algorithms in the case of skewed
query workloads. Filters build locally can hardly help and may even do harm to the query per-
formance. For skewed query workloads, most of the relevant data blocks are cached in memory.
Probing a local filter can only avoid binary searching a small in-memory data block, which is
inefficient. Probing a SNARF may need longer time than binary searching the cached data block.
Similarly, in the case of 𝑆𝑒𝑒𝑘 operations only Remix and GRF exhibit significantly faster performance.
Additionally, GRF is 2x faster compared to Remix.
Performance under Workload Shift As depicted in Figure 18, our GRF exhibits higher insert
latency but maintains the lowest latency for all types of queries. In cases where keys in non-last
levels follow different distributions or come from different real datasets compared to the last level,
GRF can lead to skewed access patterns to compressed blocks, causing some compressed blocks
to containing more and more entries, which results in longer insertion times. In addition, the
insertion skew also triggers periodic garbage collections, contributing to an average write latency
of approximately 1 microsecond. To solve the problem, we can split those large compressed blocks,
with additional 64-bits boundary for each block. This is a trade-off between space and insertion
speed. We found that by allocating more bits to upper-level keys, our GRF can still outperform all
other algorithms for all types of queries.
7 CONCLUSION
In this paper, we introduced GRF, the first practical global range filter for LSM trees. We recognized
the growing demand for reducing filter probing overhead in LSM trees and identified issues with
existing global filter design approaches. Our proposed Shape Encoding not only enhances insertion
speed but also makes the global filter MVCC-friendly. Our experiments demonstrate that GRF
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Fig. 18. Experiments on hybrid dataset.

significantly outperforms other algorithms across various query types and even slightly improves
insertion speed in typical scenarios.
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