
GORAM: Graph-oriented ORAM for Efficient Ego-centric
Queries on Federated Graphs

Xiaoyu Fan
Tsinghua University and Ant Group

fxy23@mails.tsinghua.edu.cn

Kun Chen
Ant Group

ck413941@antgroup.com

Jiping Yu
Tsinghua University and Ant Group

yjp19@mails.tsinghua.edu.cn

Xiaowei Zhu
Ant Group

robert.zxw@antgroup.com

Yunyi Chen
Tsinghua University and Ant Group

cyy23@mails.tsinghua.edu.cn

Huanchen Zhang
Tsinghua University and Shanghai Qi

Zhi Institute
huanchen@tsinghua.edu.cn

Wei Xu
Tsinghua University and Shanghai Qi

Zhi Institute
weixu@tsinghua.edu.cn

ABSTRACT
Ego-centric queries, focusing on a target vertex and its direct neigh-
bors, are essential for various applications. Enabling such queries
on graphs owned by mutually distrustful data providers without
breaching privacy holds promise for more comprehensive results.

In this paper, we propose GORAM, a graph-oriented data struc-
ture that enables efficient ego-centric queries on federated graphs
with strong privacy guarantees. GORAM leverages secure multi-
party computation (MPC) and ensures that no information about
the graphs or the querying keys is exposed during the process. For
practical performance, GORAM partitions the federated graph and
constructs an Oblivious RAM (ORAM)-inspired index atop these
partitions. This design enables each ego-centric query to process
only a single partition, which can be accessed fast and securely.

Utilizing GORAM, we develop a prototype querying engine on a
real-worldMPC framework.We then conduct a comprehensive eval-
uation using five commonly used queries similar to the LinkBench
workload description [11] on both synthetic and real-world graphs.
Our evaluation shows that all five queries can be completed in just
58.1 milliseconds to 35.7 seconds, even on graphs with up to 41.6
million vertices and 1.4 billion edges. To the best of our knowledge,
this represents the first instance of processing billion-scale graphs
with practical performance on MPC.

PVLDB Reference Format:
Xiaoyu Fan, Kun Chen, Jiping Yu, Xiaowei Zhu, Yunyi Chen, Huanchen
Zhang, and Wei Xu. GORAM: Graph-oriented ORAM for Efficient
Ego-centric Queries on Federated Graphs. PVLDB, 18(10): 3601 - 3614, 2025.
doi:10.14778/3748191.3748218

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:10.14778/3748191.3748218

* Wei Xu, Huanchen Zhang, and Kun Chen are the corresponding authors.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Fannxy/GORAM-ABY3.

1 INTRODUCTION
Privacy-preserving federated query engines allow data providers to
collaboratively compute the query results while keeping the inputs
and all the intermediate results private. The purpose of this paper
is to support federated queries on graphs, specifically the crucial
ego-centric queries that target a specified vertex and all its direct
neighbors. This basic type of query has numerous applications,
particularly when multiple parties can cooperate. For example,
by analyzing the relations among suspicious accounts, banks can
detect money laundering from the transaction graphs [46, 54]. As
LinkBench [11] reports, neighbor filtering on the given account, a
typical ego-centric query, constitutes 55.6% of all queries at Meta.
In fact, all queries in LinkBench are ego-centric.

The above motivating examples demonstrate that it is crucial to
keep both the graph and the query keys private. Ego-centric queries
are efficient in plaintext but rely on optimizations like popular
vertex caching [19, 65], which conflict with privacy requirements.
Unlike tabular data, where the schema is public and we only need
to protect the data and query keys, the graph structure information
also needs to be protected. E.g., whether a particular vertex or
edge exists and the distribution of vertex degrees. For example,
disclosing an edge in the transaction graph could expose sensitive
relationships between accounts, thus necessitating protection.

One typical method to implement private queries on federated
data is to use secure multi-party computation (MPC) [66] through-
out the query process [12, 13, 17, 41, 59]. MPC is a cryptographic
technique that allows multiple parties to jointly compute a function
on their private inputs, guaranteeing that no information is leaked.

The straightforward idea for graph is to encode the entire ad-
jacency matrix in MPC [16], thereby hiding the entire graph. Un-
fortunately, it requires 𝑂 ( |𝑉 |2) space, where |𝑉 | is the number of
vertices. As real-world graphs are sparse [26], allocating space for
all the possible edges is impractical. Nayak et al. [52] hide graph

3601

https://doi.org/10.14778/3748191.3748218
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748218
https://github.com/Fannxy/GORAM-ABY3
https://www.acm.org/publications/policies/artifact-review-and-badging-current


structure by encoding every vertex and edge as the same encrypted
tuple containing a source and destination ID (a vertex stores its ID
twice). This structure reduces the space overhead to 𝑂 ( |𝑉 | + |𝐸 |),
where |𝐸 | is the number of edges. Given that |𝑉 | + |𝐸 | ≪ |𝑉 |2 for
real-world graphs, this representation is popular [10, 39, 47, 48, 52].
However, protecting the query key requires scanning the entire list,
incurring 𝑂 ( |𝑉 | + |𝐸 |) time.

We observe that despite the space-inefficiency, using Oblivious
RAM (ORAM) [32, 67], which allows accessing the 𝑖th element of an
array in sublinear time without revealing 𝑖 , we can secretly access
any element of an adjacency matrix sublinearly. Our key idea is
that if we can split the edge list into multiple partitions and build a
matrix on top of the partitions, we can reduce the space size and
only scan one partition for each query.

We propose GORAM, a graph-oriented data structure for efficient
ego-centric queries on large federated graphs with strong privacy
guarantees. GORAM splits the vertices into multiple chunks and seg-
ments the graph into a “matrix” of edge lists. Each edge list contains
all edges starting from vertices in the row’s chunk and destinations
in the column’s. The graph is then organized as multiple partitions,
each containing all the information needed for each ego-centric
query. Logically, all partitions together contain the entire edge list,
and the matrix serves as a secure index. Using GORAM, we can lo-
cate a particular partition sublinearly, and we only need to scan the
partition, greatly reducing running time (Section 4.2). While cur-
rent ORAM only supports addressing a single element, we extend
the idea to access a full partition, maximizing benefits from vec-
torization and parallelism (Section 4.3). While GORAM is designed
agnostic to underlying MPC protocols, we find that some widely
used protocols, e.g., ABY3 [50], allow us to design a constant-round
shuffling protocol, vastly accelerating ORAM initiation (Section 4.4).
Built on GORAM, we implement five ego-centric queries, including
edge existence, 1-hop neighbors, neighbors filtering, etc., covering all
LinkBench queries [11](Section 5).

We evaluate the above queries on three real-world and thirty
synthetic graphs with varied distributions and sizes. Results in
Section 7 show remarkable efficiency and scalability of GORAM. On
the largest graph, Twitter [18], with more than 41.6 million vertices
and 1.4 billion edges, all queries complete within 35.7 seconds, with
the fastest taking only 58.1 milliseconds, showing 2 to 3 orders of
magnitude speedup over the existing secure graph data structures.
Initialization only requires less than 3.0 minutes. We provide a
detailed performance analysis using the synthetic graphs and show
that GORAM outperforms the existing data structures across varied
distributions and sizes. To our knowledge, GORAM is the first to
support secure computation on graphs with more than one billion
edges - 2-orders-of-magnitude larger than the prior arts [10, 39, 48].

In summary, our contributions include:
(1) We propose GORAM, a graph-oriented data structure to sup-

port efficient sublinear ego-centric queries on federated graphs,
guaranteeing strong privacy.

(2) We design comprehensive optimizations for practical perfor-
mance on large-scale graphs, including local processing, lifecycle
parallelisms, and a constant-round shuffling protocol.

(3) We develop a prototype secure querying engine based on
GORAM and evaluate it comprehensively using five commonly used

queries on 33 synthetic and real-world graphs, demonstrating re-
markable efficiency and scalability.

2 CRYPTOGRAPHY BACKGROUND
2.1 Secure Multi-party Computation (MPC)
MPC allows multiple distrusting parties to jointly compute a func-
tion while keeping the inputs private.
Secret sharing is popular in MPC [66]. A (𝑡 ,𝑛)-secret sharing
schema splits data 𝑥 to 𝑛 parties, satisfying that any 𝑡 parties can
reconstruct 𝑥 while fewer parties learn nothing about 𝑥 . Similar
to [10, 29, 41, 50], GORAM adopts the efficient (2, 3) boolean se-
cret sharing. This scheme splits 𝑥 into (𝑥1,𝑥2,𝑥3) with each 𝑥𝑖
(𝑖 ∈ {1, 2, 3}) being uniformly random and 𝑥 ≡ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 (⊕
denotes bitwise XOR). Each party 𝑖 owns two shares (𝑥𝑖 ,𝑥𝑖+1) cycli-
cally. Thus, one party learns nothing about 𝑥 , whereas any two can
reconstruct it. Denote the boolean secret shares (𝑥1,𝑥2,𝑥3) as 𝑥.
Secure operations. For a variety of operations (op) such as XOR,
AND, OR, +, ×, and comparisons (>, ≥,=), we can use the MPC
protocols (OP) to compute 𝑧 = op(𝑥 ,𝑦) collaboratively and se-
curely: 𝑧 = OP(𝑥, 𝑦), where efficient arithmetic operations
rely on transforming 𝑥 into 𝑥𝐴 such that 𝑥 ≡ 𝑥𝐴1 + 𝑥

𝐴
2 + 𝑥

𝐴
3

(mod 2𝑘 ) [27, 50]. 𝑥𝐴 denotes the arithmetric shares. Except for
XOR and +, other operations require at least one round of commu-
nication among the computation parties. It is common to batch the
operations to amortize the communication cost [41, 50].
Security guarantees. A well-designed MPC protocol guaran-
tees privacy and correctness against an adversary model. Com-
mon classifications include semi-honest vs. malicious, i.e., whether
the corrupted parties can deviate from the protocol, and honest-
vs. dishonest- majority, contingent on the corruption proportion.
GORAM adopts all its MPC protocols from ABY3 [50] and Araki
et al. [10], thus inheriting their semi-honest and honest-majority
adversary model, same as [10, 29, 41, 50].

2.2 Oblivious RAM (ORAM)
Oblivious RAM (ORAM) [32] implements oblivious indexing, i.e.,
accessing the 𝑖th element in an array while keeping 𝑖 secret. ORAM
offers two desirable properties: (1) it hides the access patterns,
i.e., for any two indices 𝑖 , 𝑗 , servers performing the access cannot
distinguish whether the index is 𝑖 or 𝑗 , protecting the privacy of the
query keys; (2) it enables sub-linear-complexity accesses, thereby
providing scalability. The classic ORAM, e.g., Path ORAM [57], is
designed for the client-server scenario, where a single client stores
and retrieves her private data on a single untrusted server [32].
Distributed ORAM (DORAM) extends ORAM to a multi-party
setting by secret-sharing the data across several computation
servers [45]. Given a secret-shared index 𝑖, the servers can jointly
access 𝑎𝑟𝑟 [𝑖] = 𝑎𝑟𝑟[𝑖] without leaking the index.We build the
index of GORAM by extending the classic Square-root ORAM [67].
Note that GORAM is agnostic to the DORAM implementations, and
we choose Square-root ORAM because it has two properties in
addition to simplicity: (1) it offers sublinear access time, and (2) it
circumvents the reliance on any specific “MPC-friendly” ciphers
like LowMC [7] that was later cryptanalyzed by [42]. Section 4.1
provides more details about Square-root ORAM and Section 8 dis-
cusses other DORAM structures [20, 28, 29, 58, 67].

3602



…

!!
!"

Data Providers

"#

"! "$

Computation Servers Clients

Submit

{ "! }!"#$! "

Query

Result

Figure 1: Logical Roles in Private Querying Process

Differences between classic ORAM and DORAM. Compared
with the classic client-server ORAM, DORAM is an MPC protocol
that securely implements a RAM functionality on top of secret-
shared data held by multiple computation servers. Therefore, DO-
RAM can be used in our federated setting, where the graph is
owned by multiple distrusting data providers. All the ORAMs in
the following denote Square-root ORAM.

3 OVERVIEW
GORAM is a query engine designed to support private, ego-centric
queries on federated graphs. There are three types of roles: (1) an
arbitrary number of data providers, each holding a part of the graph,
i.e.,private graph; (2) three computation servers that run the MPC
protocol to process queries; and (3) an arbitrary number of clients
who submit queries to the computation servers and receive the
results. Similar to [41], the roles are decoupled. Each party can hold
any combination of different roles, e.g., both a data provider and a
server. GORAM satisfies the following requirements:

(1) Functionality: we want to support arbitrary ego-centric
queries, allowing us to apply any filter or aggregation to a target
vertex or edge along with all its direct neighbors.

(2) Privacy: we want to keep two information private: (a) the
query keys, i.e., the target vertices or edges; and (b) the graph,
including the graph structure and the attributes of vertices and
edges. Also, the client who learns the result cannot infer which
data provider contributed to the result.

(3) Scalability:wewant to support real-world billion-edge graphs
and anticipate responses within a few seconds.

3.1 Formalization
Private ego-centric queries on federated graphs. We assume
a global directed graph 𝐺 = (𝑉 ,𝐸) is distributed among 𝑁 data
providers 𝑃𝑖 , 𝑖 ∈ [𝑁 ], [𝑁 ] = {1, 2, …,𝑁 }.𝑉 and 𝐸 denote the vertex
and edge sets, respectively. Each edge 𝑒 ∈ 𝐸 has a source and a desti-
nation vertex, 𝑣𝑠 and 𝑣𝑑 . We assume the edges (𝑣𝑠 , 𝑣𝑑 ) are different
because they may contain different attributes, e.g., timestamps [11].
We transform undirected graphs into directed ones by representing
each edge with two directed edges.

Each data provider 𝑃𝑖 owns a private graph𝐺𝑖 = (𝑉𝑖 ,𝐸𝑖 ), satisfy-
ing that 𝑉𝑖 ⊆ 𝑉 , 𝐸𝑖 ⊆ 𝐸. 𝐸 = ∪𝑖∈[𝑁 ]𝐸𝑖 is the set of all edges, and it
is always private.𝑉 is the set of all possible vertices, which is public.
Because the complexity of GORAM is independent of |𝑉 |, we can
safely set it to all the possible vertex names (e.g., a 64-bit ID), with-
out leaking any information about the vertex set. For data structures
that cannot support a large 𝑉 , e.g., adjacency matrix, we set 𝑉 as
the union of all𝑉𝑖 ’s and make it public. There are three semi-honest
computation servers 𝑆𝑖 , 𝑖 ∈ {1, 2, 3} holding the secret global graph
𝐺 = (𝑉 , 𝐸+) and carrying all the query processing. 𝐸+ ⊇ 𝐸 is
a superset of 𝐸 because it may contain dummy edges for privacy.

Each client can submit an ego-centric query with a secret key of
either a vertex 𝑣 or edge (𝑣𝑠, 𝑣𝑑) (𝑣 , 𝑣𝑠 , 𝑣𝑑 ∈ 𝑉 ) to the compu-
tation servers and receive the results. The ego-centric query can be
an arbitrary filter or aggregation on sub-graph𝐺sub = (𝑉sub,𝐸sub)
containing all the direct neighbors of the target vertex 𝑣 and the
corresponding edges (𝑣 , 𝑣∗) if (𝑣 , 𝑣∗) ∈ 𝐸, or all edges (𝑣𝑠 , 𝑣𝑑 ) ∈ 𝐸.
The relations of the logical roles are shown in Figure 1.

3.2 Security Properties
Threat model.We assume all roles semi-honest by inheriting the
threat model from the underlying ABY3 protocols, and there exists
an adversary who can compromise at most one computing server
and see all of its internal states, similar to [10, 12, 29, 41]. Note
that GORAM is agnostic to the underlying MPC settings and can
be adapted to settings with different numbers of parties or threat
models (e.g., malicious) once the required protocols are available.
Also, we assume the authentication of data providers is conducted
through the ring signature [53], a cryptographic technique enabling
anonymous authentication.
Security guarantees. GORAM provides two guarantees: (1) clients’
query key privacy: no other party can learn anything about the
client’s query key; (2) data providers’ graph privacy: no other party
can learn any information about the data provider’s private graph,
which includes the graph structure and the attributes of vertices and
edges. Additionally, the client who receives the query result learns
nothing except the result, including which provider contributed to
it. Section 6.1 shows how GORAM ensures these guarantees.

3.3 Strawman Solutions
Two classic data structures are used to present the secure graph,
i.e.,adjacency matrix (Mat) [16] and edge list (List) [10, 47, 48, 52].
Based on Mat. With the public vertex set 𝑉 , data providers can
locally construct the |𝑉 |2 adjacency matrix, encrypt it into the
secret-shared matrix, and transfer the shares to the computation
servers. Each server adds up the𝑁 secret matrices to form the secret
matrix of the global graph 𝐺 . Because Mat is a |𝑉 | × |𝑉 | matrix,
we can directly adopt the ORAM for efficient access. Specifically,
we build two ORAMs, adj-VORAM, operating over |𝑉 | matrix rows
(source vertices), and adj-EORAM, operating over an array of |𝑉 |2
matrix elements (edges). For a vertex query on 𝑣𝑖 , we access the
𝑖th row from the adj-VORAM, which contains |𝑉 | elements, each
representing the edge number between 𝑣𝑖 and 𝑣 𝑗 , 𝑗 ∈ [|𝑉 |]. For
an edge query on (𝑣𝑖 , 𝑣 𝑗 ), we access the element 𝑖 ∗ |𝑉 | + 𝑗 from
the adj-EORAM, which contains the number of edge (𝑣𝑖 , 𝑣 𝑗 ). Mat is
simple but never practical because: (1) It requires𝑂 ( |𝑉 |2) space cost,
which is impractical for real-world sparse graphs [6, 11, 26, 64]. (2)
To limit𝑉 , we need to expose the actual vertex set, instead of just the
possible namespace, public to all parties, leaking the information of
the global set (e.g., the global customer list). (3) We cannot support
multi-graph, i.e., edges with different attributes, which is desirable
in applications like transactions.
Based on List. Each data provider 𝑃𝑖 can simply create a secret-
shared list of its edges (𝑢, 𝑣), and other attributes like times-
tamps. Unlike the prior 𝑂 ( |𝑉 | + |𝐸 |) vertex-edge tuple lists [52],
ego-centric queries require only 𝑂 ( |𝐸 |) edge list, further reducing
the storage. The compute servers can then concatenate the 𝑁 secret

3603



VORAM

EORAM
… …

!!

!"

!#

Secret Sharing Computation in Servers 

Secure Index

( #! , #" )

#

Private 
Graphs

Private 
Graph 

Partitions

Global Graph Partitions

GORAM Structure

Secret Edge

Secret Vertex

1) Local 
Process

2) Graph 
Integrate

3) Secure Index 
Construct

④③②①

⑧⑦⑥⑤

⑫⑪⑩⑨

⑯⑮⑭⑬
…

a
b
c
d

⑨③⑤④

⑧⑥②⑫
⑬①⑩⑨

⑪⑮⑭⑦

⑫⑪⑩⑨

⑯⑮⑭⑬
⑧⑦⑥⑤

④③②①a
b

c
d

$

$

$

$

$

$

Shuffled by 
edge blocks.

Shuffled by 
rows.

%!

%"

%#

Figure 2: GORAM Initialization and Structure Overview Figure 3: Graph Partition (𝑘 = 2, |𝑉 | = 10)

lists to create the global edge list. The only information leaked to
the servers is each provider’s edge count, which can be protected
by appending extra 𝜖𝑖 dummy edges, i.e., (0, 0). Although the
edge list is much more compact, we must scan the entire List for
each ego-centric query because all the edges are encrypted, which
introduces 𝑂 ( |𝐸 |) complexity.
In summary, the two strawman solutions are either too costly on
storage or on access time. A viable solution should allow a compact
space while supporting sublinear access complexity.

3.4 GORAM Design
The idea of GORAM is to split the graph into a “matrix” of edge
lists. The matrix structure enables building ORAMs on top of the
graph, circumventing the need for a full scan for each query. The
use of internal edge lists averts the 𝑂 ( |𝑉 |2) space complexity. This
approach seeks to achieve both space- and query-efficiency.
GORAM Overview. As Figure 2 shows, GORAM is a secret-shared
data structure of the global graph 𝐺, held by the computation
servers. GORAM randomly shuffles the public vertex set 𝑉 , splits
it into 𝑏 vertex chunks and splits 𝐺 into a “matrix” of 𝑏2 blocks,
each block contains all the edges starting from and ending in two
vertex chunks, and each row of the blocks contains all the direct
neighbors of a vertex chunk. This gives us two types of partitions:
the block forms the partition for edge-centric queries, and the row
of the blocks constitutes the partition for vertex-centric queries.
GORAM then constructs VORAM and EORAM, which can securely
access the partition given the secret vertex or edge.

GORAM can be efficiently initialized through three steps: (1)
each data provider locally processes their private graph into secret-
shared partitions; (2) the computation servers integrate all the par-
titions of private graphs into the global graph 𝐺; and (3) the
computation servers construct the secure indices for the partitions.
Section 4 provides the details. Through GORAM, we can implement
arbitrary ego-centric queries easily. Clients submit a query with
a secret query key. For each query, computation servers receive
the secret key, find the partition using GORAM, compute the query
result on the partition, and return the result to the client. Section 5
shows five examples.

4 GRAPH-ORIENTED ORAM (GORAM)
To satisfy the requirements in Section 3, GORAM splits the global
graph 𝐺 into a “matrix” of edge lists, forming a 2d-partitioned data
structure, as Figure 3 shows. This structure groups every successive
𝑘 vertices into a chunk according to randomly shuffled IDs from the
range [|𝑉 |] = {1, 2, . . . , |𝑉 |}, thereby creating 𝑏 = ⌈ |𝑉 |

𝑘
⌉ chunks.

Then, it splits the global graph into 𝑏2 blocks of edge lists for
each pair of chunks. Specifically, each block (𝑠 ,𝑑) contains all the
edges {(𝑣𝑠 , 𝑣𝑑 )}, with 𝑣𝑠 and 𝑣𝑑 belonging to the 𝑠th and 𝑑th chunk,
respectively. To ensure security, each block is equalized in length
with dummy edges, making the blocks indistinguishable.

It is worth noting that if an edge (𝑣𝑠 , 𝑣𝑑 ) exists, it is contained
in a single edge block (⌈ 𝑣𝑠

𝑘
⌉, ⌈ 𝑣𝑑

𝑘
⌉). For each vertex 𝑣 , all the direct

outing neighbors1 are included in the ⌈ 𝑣
𝑘
⌉th row of 𝑏 blocks. We

heuristically choose a 𝑘 based on the density of the graph because
many real-world graphs, like social graphs or transaction graphs,
have well-known characters 𝐷 [26]. Given that 𝐷 =

|𝐸 |
|𝑉 | is the

density of the graph, we use a default 𝑘 =
|𝑉 |

max(𝐷 ,8) , making 𝑏 in-
dependent of |𝑉 |. The max(𝐷 , 8) is to ensure that the number of
partitions is not too small to cause frequent ORAM re-initialization
demands (see Section 4.1 for details). The block and row of blocks
are the graph partitions for edge- and vertex-centric queries, re-
spectively. Obviously, only one partition needs to be processed for
each query. GORAM then builds the partitions as ORAMs to enable
secure and fast access.

4.1 Preliminaries of Square-root ORAM
Square-root ORAM [67] enables oblivious access to a secret-shared
array 𝐷 = {𝐷0, 𝐷1, . . . , 𝐷𝑛−1} at a secret-shared index 𝑖
(i.e., accessing 𝐷𝑖). The key idea is to shuffle 𝐷 to ˜︁𝐷 = 𝜋 (𝐷)
using a random permutation 𝜋 , and then build a secret-shared index
map on 𝜋 that translates a secret logical index 𝑖 to the correspond-
ing plaintext physical index 𝑝 (𝐷𝑖 ≡ ˜︁𝐷𝑝 ), thereby enabling direct ac-
cess. Specifically, after shuffling ˜︁𝐷 = 𝜋 (𝐷), Square-root ORAM
constructs the secret-shared permutation representation 𝜋, where
𝜋𝑖 records the location of 𝐷𝑖 in ˜︁𝐷 . We refer to this procedure as
ShuffleMem and Section 4.4 provides more details.

For each secret index 𝑖, Square-root ORAM computes the index
𝑝 = 𝜋𝑖, reveals 𝑝 to plaintext and access ˜︁𝐷𝑝 to obtain the
secret-shared element 𝐷𝑖. Note that computing 𝑝 = 𝜋𝑖 given
𝑖 is equivalent to an ORAM access problem, with data changes
from 𝐷 to 𝜋. Therefore, Square-root ORAM recursively applies
the same idea to build the index map of 𝜋 as ORAMs: it packs
every successive 𝑃 elements of 𝜋 into a single element, shuffling
and creating smaller ORAM on the packed |𝜋⃗ |

𝑃
elements recursively

until the size is no greater than a threshold 𝑇 (SectionIII D [67]).
Obliviousness guarantee. Each different logical index 𝑖 reveals
a different random plaintext physical index 𝑝 , thereby achieving
1If the bidirectional neighbors are interested, the incoming neighbors are included in
the ⌈ 𝑣

𝑘
⌉th column of the 2d-partition.

3604



oblivious access pattern. To address the issue when repeating the
same logical indices, Square-root ORAM employs a stash that stores
the accessed elements (SectionIII C [67]). For each logical index,
we first scan the stash to check for a match, then access the ORAM
using an updated secret index. If the logical index is not in the
stash, the update secret index remains the original logical index.
Otherwise, it is equal to an unused random index [67]. Every access
consists of a linear scan over the stash and a random ORAM access,
making any two indices indistinguishable.
Re-initialization. Only when the stash reaches capacity, we need
to rebuild the ORAM, which is different from other ORAM schemes
that require a re-initialization after each access. By default, the stash
size is set to 𝑇 =

√
𝑛, 𝑛 is the ORAM element count, which is the

same as the recursive threshold according to SectionIII D [67]. For
read-only accesses, ORAMs can be built continuously in the back-
ground, allowing immediate replacement with an unused ORAM
when the stash is full. Including the optimized𝑂 (𝑛) rebuilding (Sec-
tion 4.4), the average access cost over 𝑇 elements is 𝑂 (𝑃𝑇 log( 𝑛

𝑇
)).

4.2 GORAM Initialization and Access
The GORAM initialization involves three steps:
Step 1 - Each data provider locally partitions the private
graph. Because the global 𝑉 is public, each data provider 𝑃𝑖 can
locally split the private graph𝐺𝑖 into the same 𝑏2 blocks according
to the public 𝑘 . Each 𝑃𝑖 initializes 𝑏2 blocks using 𝑉 regardless
of the vertices actually owned in the private 𝑉𝑖 . 𝑃𝑖 then traverses
the edge list 𝐸𝑖 , pushing each edge (𝑣𝑠 , 𝑣𝑑 ) to block (𝑠 ,𝑑), where
⌈ 𝑣𝑠
𝑘
⌉ = 𝑠 and ⌈ 𝑣𝑑

𝑘
⌉ = 𝑑 , and sorting each block using the key 𝑣𝑠 | |𝑣𝑑

(i.e., concatenation of the source and destination vertices). A sorted
order is beneficial for some queries, e.g., NeighborsGet in Section 5.

To protect the edge distributions across blocks, 𝑃𝑖 pads each
block with dummy edges, i.e., (0, 0), to align all blocks to the maxi-
mum block size 𝑙𝑖 , thereby forming a (𝑏 × 𝑏 × 𝑙𝑖 ) graph partition.
Additionally, to protect the variations in 𝑙𝑖 across data providers, 𝑃𝑖
standardizes the partition size to a uniform parameter 𝑙 , which is
publicly set to a default value of 8 to avoid excessive padding. Specif-
ically, if 𝑙𝑖 ≤ 𝑙 , 𝑃𝑖 pads 𝑙 − 𝑙𝑖 dummy edges to each block. Otherwise,
𝑃𝑖 splits the (𝑏 × 𝑏 × 𝑙𝑖 ) partition into 𝑠𝑖 = ⌈ 𝑙𝑖

𝑙
⌉ sub-partitions, each

of size (𝑏 × 𝑏 × 𝑙). 𝑃𝑖 then encrypts each sub-partition into secret
shares and sends the shares to the computation servers through a
separate anonymous channel, authorized via the ring signature [53].
Step 2 -MPC servers globally integrate the private partitions.
In the view of the computation servers, 𝑁 + =

∑︁𝑖=𝑁
𝑖=1 𝑠𝑖 (𝑏 × 𝑏 × 𝑙)

secret matrices are received, each of which is random and thereby
indistinguishable from others. Denote each matrix as 𝐺𝑢 .Block.
Because of the anonymous channels, the servers cannot identify
which 𝐺𝑢 .Block comes from which data provider, thus protecting
the maximum block size 𝑙𝑖 of each 𝑃𝑖 . The servers run 𝑏2 secure
odd_even_merge_sort networks [38] concurrently to merge blocks
from each 𝐺𝑢 .Block, thereby constructing the global secret parti-
tioned graph, 𝐺 .Block. The size of 𝐺 .Block is (𝑏×𝑏×𝑙 ), 𝑙 = 𝑁 +𝑙 .
Step 3 - MPC servers construct the secure index. To enable
secure and efficient access to the target partition for each query,
GORAM builds the partitions as ORAMs. Specifically, we model the
partitioned graph 𝐺 .Block with two ORAMs for vertex- and edge-
centric queries as shown in Figure 2: (1) VORAM models 𝐺 .Block

as an array of 𝑏 partitions, each is one row of 𝑏 blocks; and (2)
EORAM models 𝐺 .Block as an array of 𝑏2 partitions, each is an
edge block. The indices of EORAM are the flattened indices of the
blocks, i.e., the index of block (𝑖 , 𝑗) is 𝑖𝑏 + 𝑗 .

The two sub-ORAMs are initialized in the following way, sim-
ilar to ORAM: (1) Shuffling the partitions according to a random
permutation 𝜋 , and storing the secret permutation representation
𝜋. We refer to this procedure as ShuffleMem, which is the primary
bottleneck. Section 4.4 provides a constant-round ShuffleMem for
the (2, 3)-secret shares to optimize this step. (2) Constructing the
index map that translates the logical index 𝑖 into a physical index
𝑝 pointing to the target partition, which is the same as Section 4.1.
Access the partition. After the initialization, the MPC servers
can jointly access GORAM as follows: (1) Given the target vertex
𝑣 (from the clients), the servers can compute the partition index
⌈ 𝑣

𝑘
⌉ and obtain the partition containing 𝑏𝑙 secret edges by access-

ing VORAM. This partition contains all the direct neighbors of 𝑣.
(2) Given the target edge (𝑣𝑠, 𝑣𝑑), the servers can compute the
partition index ⌈ 𝑣𝑠

𝑘
⌉ ∗𝑏 + ⌈ 𝑣𝑑

𝑘
⌉ and obtain the partition contain-

ing 𝑙 secret edges by accessing EORAM. This partition contains all
edges (𝑣𝑠, 𝑣𝑑) of the global graph if the edges exist.

For each given query, the servers only need to access one parti-
tion and scan it to obtain the result (see Section 5).
Batched update. To update the global graph, each data provider
can locally update the private graph 𝐺𝑖 and send the updated edge
blocks to the computation servers. The servers then update the
corresponding edge blocks in the global graph 𝐺 .Block and re-
construct the entire secure index, including the underlying ORAMs
and the index map, using the same procedure as Step 3.

4.3 Parallelization and Vectorization
GORAM is a parallel-friendly data structure. All stages in its lifecycle
can be accelerated through parallel processing.

In the local process stage, each data provider can independently
split the private graph 𝐺𝑖 into the 2d-partitioned format, during
which the edge blocks can be processed in parallel. During the global
integration, the primary bottleneck, i.e., the odd_even_merge_sort
of 𝑏2 edge blocks from 𝑁 + secret graphs {𝐺𝑢 .Block}𝑖=𝑁 +

𝑖=1 , can
be performed in at most 𝑏2 tasks in parallel. After obtaining the
𝑏 ×𝑏 × 𝑙 global graph partitions, we can split it into 𝑝 partition slices
for arbitrary 𝑝 ≤ 𝑙 because each edge block is a list of 𝑙 edges that
can be processed in parallel. Specifically, we split the 𝑏 × 𝑏 edge
blocks by edges into 𝑝 𝑏×𝑏×𝑙 ( 𝑗) partition slices, 𝑙 = ∑︁𝑝

𝑗=1 𝑙
( 𝑗) . Each

slice contains all the edge blocks but fewer edges per block. We can
then establish 𝑝 secure indices for each partition slice concurrently.
For each query, the 𝑝 partition slices can be accessed and processed
in parallel, and each slice can be processed as a single vector for
better performance (Section 5). The query result can be obtained
by merging the results of 𝑝 partition slices.

4.4 Optimization on ShuffleMem Step
The ShuffleMem procedure dominates GORAM initialization, which
shuffles 𝑛 partitions according to a random permutation 𝜋 and
stores the secret permutation representation 𝜋. The original Shuf-
fleMem (i.e.,Waksman permutation network[67]) incurs 𝑂 (𝑛 log𝑛)

3605



1 𝑆1(𝐴,𝐵) 𝑆2(𝐵,𝐶) 𝑆3(𝐶 ,𝐴)
0) Construct the shares of 𝐿 = [𝑛].

2 𝐿𝐴 = 𝑍1 ⊕ 𝐿 𝐿𝐵 = 𝑍2 𝐿𝐶 = 𝑍3
3 ← 𝐿𝐴 ← 𝐿𝐵 ← 𝐿𝐶

1) Prepare the correlated randomness.
4 𝑍12 , 𝑍𝐿

12 , 𝐵̃ 𝑍12 , 𝑍𝐿
12 , 𝐵̃

5 𝜋12 and 𝜋−1
12 𝜋12 and 𝜋−1

12
6 𝑍23 , 𝑍𝐿

23 , 𝐿𝐶̃ 𝑍23 , 𝑍𝐿
23 , 𝐿𝐶̃

7 𝜋23 and 𝜋−1
23 𝜋23 and 𝜋−1

23
8 𝑍31 , 𝑍𝐿

31 , 𝐴̃, 𝐿𝐴̃ 𝑍31 , 𝑍𝐿
31 , 𝐴̃, 𝐿𝐴̃

9 𝜋31 and 𝜋−1
31 𝜋31 and 𝜋−1

31
2) Main protocol: computation and communications

10 𝑋1 = 𝜋12 (𝐴 ⊕ 𝐵 ⊕ 𝑍12) 𝑌1 = 𝜋12 (𝐶 ⊕ 𝑍12)
11 𝑋2 = 𝜋31 (𝑋1 ⊕ 𝑍31)
12 𝐿𝑌1 = 𝜋−1

23 (𝐿𝐵 ⊕ 𝑍𝐿
23) 𝐿𝑋1 = 𝜋−1

23 (𝐿𝐶 ⊕ 𝐿𝐴 ⊕ 𝑍𝐿
23)

13 𝐿𝑋2 = 𝜋−1
31 (𝐿𝑋1 ⊕ 𝑍𝐿

31)
14 𝑋2 ↔ 𝐿𝑌1 𝑌1 ↔ 𝐿𝑋2
15 𝑌2 = 𝜋31 (𝑌1 ⊕ 𝑍31)
16 𝑋3 = 𝜋23 (𝑋2 ⊕ 𝑍23) 𝑌3 = 𝜋23 (𝑌2 ⊕ 𝑍23)
17 𝐶1˜ = 𝑋3 ⊕ 𝐵̃ 𝐶2˜ = 𝑌3 ⊕ 𝐴̃
18 𝐿𝑌2 = 𝜋−1

31 (𝐿𝑌1 ⊕ 𝑍𝐿
31)

19 𝐿𝑌3 = 𝜋−1
12 (𝐿𝑌2 ⊕ 𝑍𝐿

12) 𝐿𝑋3 = 𝜋−1
12 (𝐿𝑋2 ⊕ 𝑍𝐿

12)
20 𝐿𝐵1

˜ = 𝐿𝑌3 ⊕ 𝐿𝐴̃ 𝐿𝐵2
˜ = 𝐿𝑋3 ⊕ 𝐿𝐶̃

21 𝐿𝐵1 ↔ 𝐿𝐵2 𝐶1˜ ↔ 𝐶2˜
22 𝐶̃ = 𝐶1˜ ⊕𝐶2˜ 𝐶̃ = 𝐶1˜ ⊕𝐶2˜
23 𝐿𝐵̃ = 𝐿𝐵1

˜ ⊕ 𝐿𝐵2
˜ 𝐿𝐵̃ = 𝐿𝐵1

˜ ⊕ 𝐿𝐵2
˜

3) Output
24 𝐴̃, 𝐵̃, 𝐿𝐴̃ , 𝐿𝐵̃ 𝐵̃, 𝐶̃ , 𝐿𝐵̃ , 𝐿𝐶̃ 𝐶̃ , 𝐴̃, 𝐿𝐶̃ , 𝐿𝐴̃

Protocol 1: ShuffleMem Build Protocol ΠShufMem - Lightgray op-
erations are our extensions of Araki et al. [10] to compute 𝜋⃗.

communication and computation. GORAM optimizes this with a
constant-round 𝑂 (𝑛) protocol.
The ShuffleMem procedure. The computation servers begin with a
secret shared array 𝐷 = {𝐷0, 𝐷1, . . . , 𝐷𝑛−1} of 𝑛 partitions.
At the end of the protocol, the computation servers output two se-
cret shared arrays ˜︁𝐷 and 𝜋, where ˜︁𝐷 is a permutation of𝐷 under
some random permutation 𝜋 and 𝜋 is the secret-shared permuta-
tion representation of 𝜋 . The permutation 𝜋 is a bijection mapping
from 𝐷 to itself that moves the 𝑖th partition 𝐷𝑖 to place 𝜋 (𝑖). The
permutation result ˜︁𝐷 = {˜︁𝐷0, ˜︁𝐷1, . . . , ˜︁𝐷𝑛−1} = 𝜋 (𝐷) satisfies that
𝐷𝑖 = ˜︁𝐷𝜋 (𝑖) ,∀𝑖 ∈ {0, 1, . . . 𝑛 − 1}. The permutation representation 𝜋
explicitly records the location of each 𝐷𝑖 in ˜︁𝐷 in its 𝑖th element 𝜋𝑖 .
Key idea of constant-round construction. We design the
constant-round ShuffleMem by extending Araki et al. [10], which
computes ˜︁𝐷 in𝑂 (𝑛) complexity and𝑂 (1) communication rounds
using (2, 3)-secret sharing. The key idea is to compute 𝜋 simulta-
neously by leveraging the properties of permutations:
∗ Permutations are composable, i.e., 𝜋1◦𝜋2 is also a permutation

such that (𝜋1 ◦ 𝜋2) (𝑥) = 𝜋1 (𝜋2 (𝑥)) given array 𝑥 .
∗ Permutations are inversible, for each permutation 𝜋 , there

exists 𝜋−1 such that (𝜋−1 ◦ 𝜋) (𝑥) ≡ 𝑥 .
∗ The permutation representation 𝜋 = 𝜋−1 (𝐿), where 𝐿 =

{0, 1, . . . ,𝑛 − 1}, 𝑛 is the size of 𝑥 .
Specifically, Araki et al. [10] implement the random shuffle

by letting the computation servers collaboratively apply three
random permutations 𝜋12, 𝜋31 and 𝜋23. They compute ˜︁𝐷 =

𝜋23 ◦𝜋31 ◦𝜋12 (𝐷) = 𝜋 (𝐷). The randomness of the final permu-
tation 𝜋 is guaranteed by the fact that each computation server only
knows two out of the three random permutations; consequently,
the overall permutation 𝜋 remains random to any server. Using the
same collaborative shuffle procedure, we can compute the secret
permutation representation 𝜋 simultaneously by shuffling the

ranging array 𝐿 = {0, 1, . . . ,𝑛 − 1} using the inverse permutations
i.e., 𝜋 = 𝜋−1 (𝐿) = 𝜋−1

12 ◦ 𝜋
−1
31 ◦ 𝜋

−1
23 (𝐿).

ShuffleMem construction. Protocol 1 shows the ShuffleMem con-
struction. Each pair of computation servers 𝑆𝑖 and 𝑆 𝑗 share a com-
mon random seed 𝑠𝑖 ,𝑗 beforehand. As inputs to this protocol, each
computation server holds two out of the three shares𝐴,𝐵,𝐶 , where
𝐷 ≡ 𝐴 ⊕ 𝐵 ⊕ 𝐶 (Line 1). Also, the computation servers construct
the shares of the ranging array 𝐿 ≡ 𝐿𝐴 ⊕ 𝐿𝐵 ⊕ 𝐿𝐶 . Specifically,
𝑆1, 𝑆2 and 𝑆3 at first construct an array of secret shares on zeros,
i.e., 𝑍1 ⊕ 𝑍2 ⊕ 𝑍3 ≡ 0⃗, |0⃗| = 𝑛, which requires no interactions us-
ing [50]. Each 𝑍𝑖 is uniformly random and is only known to 𝑆𝑖 . 𝑆1
locally computes 𝐿𝐴 = 𝑍1 ⊕ 𝐿 and each server sends its share to
the previous server to obtain the secret shares of 𝐿 (step 0, Lines
2-3). The first step is to set up the correlated randomness using the
pairwise random seed. Variables with the same notation mean the
same value, e.g., 𝑍12 is the same random value shared by 𝑆1 and 𝑆2.
Also, each pair of 𝑆𝑖 and 𝑆 𝑗 generates a random permutation 𝜋𝑖 ,𝑗
and the inverse permutation 𝜋−1

𝑖 ,𝑗 (Lines 4-9).
The computation servers then compute the result shares in

Lines 10-23, during which there are two invariants held: (1) All
the computed 𝑋𝑖 ⊕ 𝑌𝑖 is a permutation of 𝐷 and (2) 𝐿𝑋𝑖 ⊕ 𝐿𝑌𝑖
is an inverse permutation of 𝐿. For example, 𝑋1 ⊕ 𝑌1 = 𝜋12 (𝐴 ⊕
𝐵 ⊕ 𝑍12) ⊕ 𝜋12 (𝐶 ⊕ 𝑍12) = 𝜋12 (𝐴 ⊕ 𝐵 ⊕ 𝐶) = 𝜋12 (𝐷) (Line 10),
𝐿𝑌1 ⊕ 𝐿𝑋1 = 𝜋−1

23 (𝐿𝐵 ⊕ 𝑍
𝐿
23) ⊕ 𝜋

−1
23 (𝐿𝐶 ⊕ 𝐿𝐴 ⊕ 𝑍

𝐿
23) = 𝜋

−1
23 (𝐿) (Line

12). That is, during the main protocol, the servers sequentially com-
pute 𝑋1 ⊕ 𝑌1 = 𝜋12 (𝐷), 𝑋2 ⊕ 𝑌2 = (𝜋31 ◦ 𝜋12) (𝐷) (Lines 11 and 15)
and 𝑋3 ⊕ 𝑌3 = (𝜋23 ◦ 𝜋31 ◦ 𝜋12) (𝐷) (Line 16), which constitutes
the final shares of 𝜋 (𝐷), 𝜋 = 𝜋23 ◦ 𝜋31 ◦ 𝜋12. The permutation
representation 𝜋 = 𝜋−1 (𝐿) = (𝜋−1

12 ◦ 𝜋
−1
31 ◦ 𝜋

−1
23 ) (𝐿) is constructed

similarly in the reverse order.
Correctness. From the two invariants, it is straightforward to see
the correctness of ShuffleMem Protocol 1. Because the final shares
satisfy that 𝐴̃ ⊕ 𝐵̃ ⊕ 𝐶̃ = 𝑋3˜ ⊕ 𝑌3̃ = 𝜋 (𝐷), and 𝐿𝐴̃ ⊕ 𝐿𝐵̃ ⊕ 𝐿𝐶̃ =

𝐿𝑋3˜ ⊕ 𝐿𝑌3˜ = 𝜋−1 (𝐿), the correctness is guaranteed.
Security. Protocol 1 satisfies Theorem 1.We provide a sketch proof
here and the complete proof is shown in the technical report [31].
Theorem 1. Protocol 1 securely implements the ShuffleMem pro-
cedure against any semi-honest adversary controlling at most one
computation server.

Proof. (sketch) We prove Theorem 1 with the real-ideal para-
digm [21]. Let A denotes the real-world adversary and S denotes
the simulator, which simulates the view of A in the ideal world.
Protocol 1 is secure if for all A, there exists a simulator S, such
that for all inputs and for all corrupted party 𝑆𝑖 , 𝑖 ∈ [3],

View(A) ≡ View(S) (1)
For each possible corrupted 𝑆𝑖 , all the messages it receives are

uniformly random in its view. This is achieved by masking all the
messages 𝑆𝑖 receives with at least one randomness that 𝑆𝑖 does
not know. Therefore, we can construct the simulator S by ran-
domly sampling all the messages that A receives. The View(S) is
uniformly random and therefore indistinguishable from View(A).

□

5 QUERYING GRAPHS THROUGH GORAM
We provide five ego-centric query examples, covering all queries
listed in LinkBench [11]. The other queries can be similarly achieved.

3606



Algorithm 1: EdgeExist (MPC servers compute)
Inputs :Target edge (𝑣𝑠, 𝑣𝑑 ) .
Output :flag indicating whether the target edge exist in global𝐺 .

1 Compute the secret partition ID 𝑖 =  ⌈ 𝑣𝑠
𝑘
⌉ ∗ 𝑏 + ⌈ 𝑣𝑑

𝑘
⌉;

2 Fetch the target edge partition 𝐵← EORAM.access(𝑖) , where
𝐵 contains 𝑙 source_nodes and dest_nodes;

// Vectorized edges comparisons.
3 Construct 𝑣𝑠⃗ and 𝑣𝑑⃗  by expanding 𝑣𝑠 and 𝑣𝑑  𝑙 times;
4 Compute masks← EQ (𝑣𝑠⃗, 𝐵.source_nodes) ;
5 Compute maskd← EQ (𝑣𝑑⃗ , 𝐵.dest_nodes) ;
6 Compute mask← AND(masks, maskd) ;
// Aggregating the result through OR.

7 while len(mask) > 1 do
8 Pad 0 to mask to be even ;
9 Split mask half-by-half to maskl and maskr;

10 Aggregate mask← OR(maskl, maskr) ;
11 end
12 return flag = mask to the client.

Algorithm 2: NeighborsCount (MPC servers compute)
Inputs :Target vertex 𝑣.
Output :num𝐴 , the number of 𝑣’s outing neighbors.

1 Compute the secret partition ID 𝑖 =  ⌈ 𝑣
𝑘
⌉;

2 Fetch the target edge partition 𝐵← VORAM.access(𝑖) , where
𝐵 contains (𝑏𝑙) source_nodes and dest_nodes;

// Filtering real neighbors using vectorization.
3 Construct 𝑣 by expanding 𝑣 𝑏𝑙 times;
4 Compute mask← EQ (𝑣, 𝐵.source_nodes) ;
5 Obtain the arith shares mask𝐴 ← B2A(mask) ;
6 Compute num𝐴 ← SUM(mask𝐴) ;
7 return num𝐴 to the client.

Algorithm 3: NeighborsGet (MPC servers compute)
Inputs :Target vertex 𝑣.
Output :neighbors, the unique outing neighbor’s IDs of 𝑣.

1 Compute the secret partition ID 𝑖 =  ⌈ 𝑣
𝑘
⌉;

2 Fetch the target edge blocks 𝐵← VORAM.access(𝑖) , where 𝐵
contains (𝑏𝑙) source_nodes and dest_nodes;

// 1) Filtering real neighbors.
3 Construct 𝑣 by expanding 𝑣 𝑏𝑙 times;
4 Compute mask← EQ (𝑣𝑠⃗, 𝐵.source_nodes) ;
5 Compute candidate← MUL(mask, 𝐵.dest_nodes) ;
// 2) De-duplicating neighbors.

6 same_mask← NEQ (candidate[1:] , candidate[:−1] ) ;
7 Compute same_mask.append(1) ;
8 Compute neighbors← MUL(same_mask, candidate) ;
9 Compute neighbors← SHUFFLE(neighbors) ;

10 return neighbors to the client.

For each query, the client submits the secret query key to the servers.
The servers access one secret-shared partition through GORAM,
process it using the following protocols, and send the resulting
shares to the client. During the process no information is leaked
except the final results, which only the client can reconstruct.

5.1 Basic Queries
EdgeExist Algorithm 1 checks whether an edge (𝑣𝑠 , 𝑣𝑑 ) exists. We
first access EORAM using secret index ⌈ 𝑣𝑠

𝑘
⌉ ∗ 𝑏 + ⌈ 𝑣𝑑

𝑘
⌉, then

compare all the edges in the partition using vectorization. The
result is a secret mask indicating which edge is equivalent to the
given edge. We obtain the result by aggregating mask using OR.
NeighborsCount Algorithm 2 counts the number of vertex 𝑣 ’s
outing neighbors. We refer to VORAM for the partition containing
all its outing neighbors using secret index ⌈ 𝑣

𝑘
⌉. We obtain the

result by comparing all starting vertices to 𝑣 and summing up
the comparison result. To perform the summation with minimum
communications, we transform mask to mask𝐴 first.
NeighborsGet Algorithm 3 extracts all the 1-hop outing neighbors
of 𝑣 while hiding the number of edges between each neighbor and
𝑣 . The first 3 lines access the target partition and compare all the
starting vertices with 𝑣 to construct mask, indicating the edges
started from 𝑣 . Then, we multiply the mask and the destination
vertices to obtain candidate. Each element is 0 or 𝑢 if 𝑢 is an
outing neighbor of 𝑣 . The number of 𝑢 implies the number of
edges between 𝑢 and 𝑣 , we then de-duplicate candidate in lines
5-8. Because the construction stage sorts the edges by key 𝑣 | |𝑢, all
the same outing neighbors in candidate are located successively
as a group. We apply a single shifted NEQ on candidate to com-
pute same_mask, where only the last neighbor in each group
is 1, while the rest are 0. By multiplying same_mask and
candidate, the duplicate neighbors are masked as 0. Because
the gap between two successive neighbors 𝑢𝑖 ,𝑢𝑖+1 still implies how
many 𝑢𝑖+1 exist, we apply SHUFFLE to permute this information.

5.2 Complex queries
We provide two complex queries by extending the above queries.
Cycle-identification. Identifying whether the transactions across
multiple suspicious accounts form a cycle is an effective way for
money laundering detection [46, 54], which can be achieved by
submitting multiple EdgeExist queries. For example, given three
vertices 𝑣1, 𝑣2 and 𝑣3, by submitting EdgeExist queries on edges
(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣1) and their reverse edges, the client can de-
tect whether a cycle exists among the three vertices.
Neighbors-filtering queries are one of the most common queries
on graphs with attributes, i.e., each edge has attributes like cre-
ation timestamp and transaction amounts. We can implement
these queries by extending the basic queries with filters. For
instance, association range queries [11] that count the outing
edges created after a provided timestamp can be implemented
by extending NeighborsCount with an extra comparison to com-
pute whether the creation timestamp is greater than the given
timestamp before counting the result. Specifically, we compute
t_mask← GT(timestamp field, given threshold) and update
the neighbors mask in the 3rd line of Algorithm 2 to mask =

AND(mask, t_mask).

6 SECURITY AND COMPLEXITY ANALYSIS
6.1 Security Analysis

End-to-end security. We illustrate the security guarantees of
GORAM by showing that no involved party (data providers, clients,

3607



Table 1: Complexity Summarization (see Section 7.3 for empirical comparison and technical report [31] for derivation. )

Data Structures
Initialization Partition Access

Partition Processing for Basic Queries

EdgeExist NeighborsCount NeighborsGet

Comp Round Comp Round Comp Round Comp Round Comp Round

Mat
adj-VORAM

𝑂 (𝑁 |𝑉 |2)
3 +2log𝑃 (

|𝑉 |
𝑇
) 𝑂 (𝑃𝑇 log𝑃 (

|𝑉 |
𝑇
)) 𝑂 (log𝑃 (

|𝑉 |
𝑇
))

𝑂 (1) 𝑂 (1) 𝑂 ( |𝑉 |) 𝑂 (1) 𝑂 ( |𝑉 |) 𝑂 (1)
adj-EORAM 3 +2log𝑃 (

|𝑉 |2
𝑇
) 𝑂 (𝑃𝑇 log𝑃 (

|𝑉 |2
𝑇
)) 𝑂 (log𝑃 (

|𝑉 |2
𝑇
))

List 𝑂 ( |𝐸 | log( |𝐸 |) log(𝑁 )) log( |𝐸 |) log(𝑁 ) 𝑂 (1) NA 𝑂 ( |𝐸 |) 𝑂 (log( |𝐸 |)) 𝑂 ( |𝐸 |) 𝑂 (1) 𝑂 ( |𝐸 |) 𝑂 (1)

GORAM
VORAM

𝑂 (𝑏2𝑙 log(𝑙) log(𝑁 +))
3 + log(𝑙) log(𝑁 +)+ 2log𝑃 ( 𝑏𝑇 ) 𝑂 (𝑃𝑇 log𝑃 ( 𝑏𝑇 )) 𝑂 (log𝑃 ( 𝑏𝑇 )) 𝑂 (𝑙) 𝑂 (log(𝑙)) 𝑂 (𝑏𝑙) 𝑂 (1) 𝑂 (𝑏𝑙) 𝑂 (1)

EORAM 3 + log(𝑙) log(𝑁 +)+ 2log𝑃 ( 𝑏
2
𝑇
) 𝑂 (𝑃𝑇 log𝑃 ( 𝑏

2
𝑇
)) 𝑂 (log𝑃 ( 𝑏

2
𝑇
))

𝑃 and 𝑇 denote the pack and stash size of ORAM. 𝑏, 𝑙 are the configuration parameters of 2d-partition, where 𝑏 =
|𝑉 |
𝑘

=
|𝐸 |
|𝑉 | = 𝐷 is the graph density. The Round complexities with the

𝑂 (·) notation is in the unit of secure operations like EQ, and the Partition Access complexities are the averaged complexity of successive 𝑇 queries.

Table 2: Parameters of Real-world Graphs

Graph |𝑉 | |𝐸 | |𝐸 | / |𝑉 | 𝑘 𝑏 𝑙 𝑏𝑙 𝑏2𝑙 / |𝐸 | |𝑉 |2/𝑏2𝑙

Slashdot 82.2K 948.5K 11.5 10.2K 8 25.4K 203.5K 1.7 4.1K
DBLP 524.2K 706.3K 1.3 65.5K 8 15.7K 126.0K 1.4 272.6K
Twitter 41.7M 1.5G 35.3 650.8K 64 1.1M 71.8M 3.1 377.1K

and computation servers) can learn anything about the private
graphs and the query keys.

(1) Each data provider learns nothing because they only submit
secret-shared graph partitions to the servers.

(2) Each client learns nothing except the final results because
they only submit secret-shared keys to the servers and receive
results obtained from the global graph.

(3) During GORAM initialization and query process, the compu-
tation servers only execute MPC protocols on 𝑁 + indistinguishable
𝑏×𝑏×𝑙 secret-shared 2d-partitions and secret-shared query keys and
learn nothing except the above public parameters. These protocols
are executed in the standardmodular compositionmanner [21] obliv-
iously, i.e., the execution paths are indistinguishable for any inputs
with the same size, which ensures that the overall computation per-
formed by the servers inherits the same security guarantees of the
underlying protocols. These include the ABY3 protocols [50], the
underlying Square-root ORAM protocol, and the proposed Shuffle-
Mem protocol whose security is proven in Theorem 1. Consequently,
the only potential source of private information for the servers is
the sizes of the input matrices, i.e., 𝑏, 𝑙 and the total matrices num-
ber 𝑁 +. Among these, 𝑙 is a public parameter, and 𝑏 = ⌈ |𝑉 |

𝑘
⌉ is

derived from two public parameters, |𝑉 | and 𝑘 . The number of the
matrices, 𝑁 +, only reveals the partition size of the global graph and
cannot be traced back to any specific data provider because of the
anonymous authentication.

6.2 Complexities Analysis
Complexity summarization. Table 1 summarizes the complexi-
ties of initialization, partition access, and basic query processing
using GORAM and the strawman solutions. GORAM’s initializa-
tion is bottlenecked by the 𝑂 (𝑏2𝑙 log(𝑙) log(𝑁 +)) merge sort on
𝑁 + partitioned graphs (Section 4.2). Partition access complexity is
𝑂 (𝑃𝑇 log𝑃 ( 𝑏𝑇 )) or𝑂 (𝑃𝑇 log𝑃 ( 𝑏

2
𝑇
)) for VORAM and EORAM, respec-

tively (Section 4). Partition processing is linear to the partition size
(Section 5.1). The discussion of complexities on Mat and List is left
to Section 7.1, and Section 7.3 provides the comparisons across the
three data structures. Technical report [31] provides the derivation.

Partition size 𝑙 analysis. Table 1 shows that the performance
of GORAM depends on 𝑙 = 𝑁 +𝑙 (Section 4.2), which is related to
the graph topology and the intrinsic randomness of GORAM. We
analyze the distributions of 𝑙 across five distributed graphs using
the Monte Carlo method. Our findings in Section 7.3 indicate that,
across all distributions, 𝑙 lies in a small range and is notably smaller
than the total edge count, i.e., 𝑙 ≪ |𝐸 |, indicating that GORAM can
effectively process queries by accessing only one partition. The
worst-case 𝑙 = |𝐸 | is unlikely in practice because it requires: (1)
all the edges in the graph only involve at most 2𝑘 vertices, 𝑘 for
starting vertices and 𝑘 for the endings, and (2) the graph forms a
bipartite graph starting from and ending in two chunks after the
random permutation in the initialization (Section 4). Also, 𝑙 < 𝑘2

for most graphs, meaning that the size of GORAM is smaller than
the full |𝑉 |2 adjacency matrix. The unlikely case 𝑙 ≥ 𝑘2 happens
only when two randomly assigned vertex chunks contain more
edges than a complete bipartite graph.

7 EVALUATION
7.1 Evaluation Setup
Setup.We implement the GORAM prototype based on ABY3 [50].
All values are 64-bit secret shares.We use three computation servers,
each equipped with 16 × 2.0 GHz Intel CPU cores, 512 GB memory
and 10 Gbps full duplex Ethernet with an average round-trip-time
(RTT) of 0.12 ms. We also use a WAN network with 900 Mbps
bandwidth and 20 ms RTT to evaluate the query performance as a
sensitivity analysis to network settings. Note that we use the entire
memory just to support a larger-scale Mat baseline.
Workload. We use graphs of two types over all five queries in
Section 5. First, we use three real-world graphs, i.e., Slashdot [6],
DBLP [64], and Twitter [18], with the number of edges ranging
from less than 1 million to more than 1 billion. Table 2 lists the key
parameters of these graphs. For micro-benchmarks, we use thirty
synthetic graphs of five edge distributions with |𝑉 | ∈ [1K, 32K]
from igraph [33]. Table 3 summarizes their key parameters.
Strawman solutions for comparison. Since there are no prior
systems that provide the same functionality as GORAM, we im-
plement the strawman solutions in Section 3.3, upon which we
implement the same queries. We also add vectorization and paral-
lelism, wherever applicable, to minimize the performance difference
from implementation quality. In fact, much of the low-level code is
shared with GORAM, including the ORAM and all the protocols.

3608



Figure 4: Queries on Real-world Graphs * y-axes are in log-scale. Queries on Twitter are in 16 threads and the others are single-threaded.

Figure 5: Queries on WAN Network

ForMat, we first implement the three basic queries: (1) EdgeExist
on (𝑣𝑖, 𝑣 𝑗 ): we extract the element (𝑖 , 𝑗) from adj-EORAM (Sec-
tion 3.3) and compare it to 0; (2) NeighborsCount: we access adj-
VORAM and sum up the number of edges; and (3) NeighborsGet: we
access adj-VORAM, and compare the elements with 0 through GT
to hide the exact number of edges, and then return the result to
the client. CycleIdentify is then implemented by composing six
EdgeExist, the same asGORAM. We ignore NeighborsFilter because
Mat can not support multi-graphs, as Section 3.3 analyzed. For List,
we implement all queries by scanning the whole edge list, reusing
GORAM’s implementation on each partition.
Execution timemeasurements.All the reported execution times
are the wall-clock time measured on the computation servers from
the start to the end of the initialization or query processing. We
report the average from 5 runs. For GORAM and Mat that require
ORAM accesses, the query processing time is the averaged time
of successive 𝑇 queries , where 𝑇 is the stash size, and we use
𝑇 =

√︁
#(items in ORAM), the default setting in [67].

7.2 Performance on Real-world Graphs
We first provide an overview of GORAM performance using three
real-world graphs with 700K to 1.4 billion edges. The graph param-
eters are shown in Table 2, including the number of vertices |𝑉 |,
edges |𝐸 |, partitions 𝑏, and the partition size 𝑙 and 𝑏𝑙 for EORAM and
VORAM. All the parameters are default values following Section 4.
Overall Query Performance. The first row of Figure 4 shows the
query execution time using vectorization. We use single-threading
for smaller graphs and 16 threads for large Twitter.

For Slashdot [6] and DBLP [64], GORAM completes all the queries
within 126.4 ms. To our knowledge, this is the only system that sup-
ports sub-second ego-centric queries on these graphs with strong
privacy guarantees. In comparison, Mat gets out of memory even

with the entire 512 GB of memory per server, and List is 15.9× and
4.2× slower on average on these two graphs.

For Twitter, GORAM takes 58.1 ms to 35.7 seconds to complete all
queries, achieving a remarkable average speedup of 473.5× over List.
Across all queries, GORAM achieves more significant speedups for
EdgeExist and CycleIdentify, with 856.3× and 1445.6× speedups,
respectively. This is because these two queries use EORAM, with
which we only need to access one of the 𝑏2 = 4096 edge blocks
with 1.1M edges, which is less than 0.8‰ of the total edges. Instead,
the other three use the VORAM that accesses one row of the 𝑏 = 64
edge blocks, which contain 71.2M edges, accounting 4.9% for the
total edges. Figure 5 shows the performance of GORAM and List on
WAN. We can see that even on a limited network bandwidth with
20 ms latency, GORAM completes all the queries in an average of
33.4 seconds. On the contrary, List costs 1057.2 seconds in average.
Fast query execution comes fromprocessing less data. To ver-
ify that the execution time reduction indeed comes from reduced
computation through partitioning, we also measure the total bytes
transferred in each query on each graph. The second row in Figure 4
shows the results, which are consistent with execution time - we
observe an average communication reduction of 78.4% compared to
List. Also, the maximum reduction of 99.9% is observed in EdgeExist

and CycleIdentify, for the same reason above.
Fast query execution also comes from parallel execution.
Query performance on large graphs also benefits from paralleliza-
tion, as shown in Figure 6. On the large Twitter, we observe that
using 16 threads, we can achieve an average speedup of 6.3× across
the five queries over a single thread. We observe that except for
NeighborsGet, we can achieve almost linear scalability using up to
16 threads. The slight derivation from linear scalability is because
8 threads already accelerate the computation to sub-second levels;
addingmore threads providesminimal speedupwhile increasing the
aggregation overhead. NeighborsGet does not parallel well because
the SHUFFLE procedure (line 8 in Algo. 3) needs to process the entire
partition to permute the result, which is inherently sequential.
Initialization performance. Unlike List, both VORAM and EO-
RAM require a non-trivial initialization step to construct the secure
indices (Section 4.2). While the two smaller graphs only take a few
seconds, it takes dozens of minutes on the large Twitter using a
naive sequential algorithm. However, we can parallelize the ini-
tialization using multiple threads, as shown in Section 4.3. In this

3609



Figure 6: Parallelism on Twitter [18] (Queries)

Figure 7: Parallelism on Twitter [18] (Initialization)

Figure 8: Deployment Cost

way, we can construct both VORAM and EORAM for the billion-edge-
scale graph within 2.9 minutes using 16 threads. Figure 7 shows
the experiments using different numbers of threads. We observe an
average speedup with 16 threads is 9.4× over a single thread, and
at this setting, we have saturated the 10 Gbps network bandwidth.
Deployment cost. Figure 8 shows the deployment cost of GORAM
using Twitter graph, varying the number of data providers from
1 to 8 and using two configuration parameters, 𝑙 = 8 and 1024
(Section 4.2). We evenly split the edge list of Twitter into 8 parts,
each assigned to a data provider running with 16 CPU cores. Fig-
ure 8 breaks down the costs into: (1) Partition initialization, which
transforms the local edge lists into 2d-partitions; (2) Secret sharing
encryption, which encrypts the 2d-partitions into secret shares; and
(3) Secure transmission, which transmits the secret shares through
multiple anonymous channels to the computation servers (Step1 in
Section 4.2). The first two are measured on the data provider side,
and the last is measured on the computation server, from secure
channel setup with all data providers to receipt of all secret shares.
We can see that the secure transmission time dominates, and this
cost decreases as 𝑙 increases. Increasing 𝑙 from 8 to 1024 reduces the
overall deployment time with 8 data providers from 11.4 minutes
to 91.0 seconds. This is because there are 𝑁 + =

∑︁𝑁
𝑖=1 ⌈

𝑙

𝑙
⌉ channels

to be established, and smaller 𝑙 leads to more channels. Larger 𝑙 re-
duces deployment cost but increases the query latency because data
providers need to pad more edges to be multiples of 𝑙 . Developers
can tune 𝑙 to prioritize the deployment cost or query speed.

7.3 Micro-benchmarks
We benchmark GORAM on 30 synthetic graphs using three basic
queries against strawman solutions. All tests are single-threaded to
highlight the benefits of GORAM structure.

Table 3: Synthetic Graphs
Graph Types Generation Methods Average Degree
k_regular K_Regular [1] 7.5
bipartite Random_Bipartite [2] 134.4
random Erdos_Renyi [3] 268.8
powerlaw Barabasi [4] 523.7
geometric GRG [5] 1198.5

Table 4: Parameters of Synthetic Graphs (|𝑉 |=32K)
Graph Type |𝐸 | 𝑘 𝑏 𝑙 𝑏𝑙 𝑏2𝑙/ |𝐸 |
k_regular 0.2M 4096 8 3960 31.8K 1.03
bipartite 13.4M 64 512 88 44.5K 1.72
random 26.8M 32 1024 56 57.3K 2.19
powerlaw 52.3M 16 2048 48 98.3K 3.85
geometric 105.0M 8 4096 32 131.1K 5.11

Adaption to various distributed graphs. Each distribution
presents a different density, i.e. vertex degree 𝐷 =

|𝐸 |
|𝑉 | . Table 3

shows the average degrees. k_regular is the sparsest, and geometric

is the densest. We present the default configuration parameters 𝑘 ,
vertex chunk numbers 𝑏, the partition sizes for EORAM (𝑙 ) and VO-
RAM (𝑏𝑙) in Table 4, all of them are default parameters of GORAM
(see Section 4). The ratio 𝑏2𝑙

|𝐸 | further shows the amplification factor
of GORAMwith padded edges compared to the original edge list. For
sparse k_regular, GORAM uses 𝑘 up to 4096, while for geometric, 𝑘
gets as small as 8. Recall that a key property when we partition is
that all outgoing edges of a vertex are within a single row of the
2d-partition. Thus, when the graph is sparse, we can partition it into
fewer chunks, i.e., smaller 𝑏 =

|𝑉 |
𝑘
, enjoying the benefits of quicker

partition access time. However, on a dense graph, we partition it
into more chunks to make each partition smaller, thereby reducing
the partition scanning time per query.
Partition size 𝑙 distributions across diverse distributed graphs
are shown in Figure 9, derived through theMonte Carlomethod. We
generate 10𝐾 graphs for each distribution, each with 32𝐾 vertices.
For each graph, we randomly permute the vertices using different
random seeds and construct the 2d-partitioned structure to obtain
the partition size 𝑙 as Section 4 illustrates without padding. As Fig-
ure 9 shows, the range of 𝑙 is relatively narrow for all distributions.
E.g., 𝑙 varies within a range of 188 in k_regular and only varies
within a range of 11 in random graph. Notably, the partition size 𝑙 is
significantly smaller than |𝐸 | for all five graph types (see Table 4),
suggesting that GORAM often significantly outperforms List.
Query execution time. Each row of Figure 10 presents the exe-
cution time of a query across different graph densities from the
sparsest to the densest, using both GORAM and the two strawman
solutions. Overall, we observe that GORAM delivers highly efficient

3610



Figure 9: Distribution of Partition Size 𝑙 on Varied Distributed Graphs (|𝑉 | = 32𝐾).

Figure 10: Online Performance Overview

Figure 11: Initialization Cost

query responses across all 90 test cases (6 sizes × 5 graph distribu-
tions × 3 queries), offering an average query completion time of
22.0 ms. We provide a detailed performance analysis below.
Performance vs. graph density and size. Mat is the least sensi-
tive to graph density (e.g., all around 26 ms across the first row),
because its performance only depends on |𝑉 | (see Table 1). List, on
the contrary, is very sensitive to density, given its𝑂 ( |𝐸 |) query time.
GORAM works well across different densities, exhibiting sublinear
execution time on both |𝑉 | and the graph density. The trend in
execution time matches the theoretical complexities in Table 1.

For sparse graphs (first two columns in Figure 10),Mat performs
the worst on almost all |𝑉 | settings, as expected, because it spends
too much resource processing empty cells. List performs as well
as, or even better than GORAM on very small graphs (i.e., 1024
vertices) for NeighborsGet. This is because NeighborsGet requires
multiple secure comparison and multiplication operations, and the
communication round latency becomes the bottleneck for small

graphs. List, in this case, saves the communication rounds required
for partition access, providing advantages compared to GORAM.
However, the performance gets worse fast as |𝑉 | increases, because
the 𝑂 ( |𝐸 |) complexity of List quickly dominates the performance.

For dense graphs (last two columns in Figure 10),Mat gets closer
performance with GORAM as far as it supports the scale, but List
performs poorly except for the smallest cases. In fact, in the largest
version of the densest geometric graph, List can be as much as
703.6× slower because of its 𝑂 ( |𝐸 |) complexity.
Performance with queries. Mat is always slower than GORAM
on NeighborsCount, because it takes 𝑂 (log( |𝑉 |)) time to access adj-
VORAMwhile GORAM only takes𝑂 (log(𝑏)), 𝑏 =

|𝑉 |
𝑘
. For EdgeExist,

although GORAM requires less ORAM access time, the advantage
is less significant because of the 𝑂 (log(𝑙)) rounds of OR for aggre-
gation (see Algo 1). However, Mat only needs a single round of
comparison. Therefore, Mat becomes closer to GORAM for denser

3611



Figure 12: ShuffleMem Construction (* the y-axes are in log-scale. )

graphs with larger 𝑙 . For NeighborsGet, GORAM and Mat perform
similarly except for the sparsest k_regular. This is because GORAM
requires multiple secure operations over vertex partition with 𝑏𝑙
edges whileMat only needs a single comparison on |𝑉 | matrix cells.
For denser graphs, this advantage offsets the higher overhead of
ORAM access, i.e., 𝑂 (log( |𝑉 |)) for Mat and 𝑂 (log(𝑏)) for GORAM.
Initialization performance. The first row in Figure 11 shows the
initialization cost when there is only one data provider, which is the
wall-clock time from data loading to secure indices construction
(List does not require establishing indices). The initialization cost
is linear to the graph sizes, i.e., |𝑉 |2 or |𝐸 |. Given the relationship
|𝐸 | < 𝑏2𝑙 < |𝑉 |2 among List, GORAM, and Mat, the initialization
costs follow the order: Mat > GORAM > List. Mat has the high-
est, constant cost on both sparse and dense graphs because of its
𝑂 ( |𝑉 |2) complexity. Mat runs out of memory building adj-EORAM
on all graphs with 32K vertices, even with 512 GB memory.
Initialization performance with multiple data providers.
The second row in Figure 11 presents the cost with multiple data
providers (1 to 8). We simulate the distributed graphs by randomly
assigning each edge of the synthetic graph with 16K vertices to
each data provider, which is the largest scale Mat supports. For
𝑁 > 1 data providers, both GORAM and List need to perform the
merge sort on 𝑁 + or 𝑁 ordered private graphs (see Section 4.2).
Merging adds the overhead, but the effect is limited because extra
workload is logarithmic, i.e., log(𝑁 ) or log(𝑁 +),𝑁 + ≈ 𝑙

𝑙
.

ShuffleMem construction comparison. Figure 12 compares the
cost of ShuffleMem construction of an array of 𝑛 secret-shared in-
tegers using Waksman permutation network, as adopted in [67],
and our optimized constant-round ShuffMem protocol introduced
in Section 4.4. The ShuffleMem construction is the main bottleneck
of building ORAM. We can see that GORAM significantly accel-
erates both computation and communication, achieving 17.4× to
83.5× speedups and 97.5% to 98.8% communication savings as in-
put sizes increase. This is because our method reduces the origi-
nal 𝑂 (𝑛 log(𝑛)) computation and communication to 𝑂 (𝑛), thereby
showing better performance as input sizes increase. Furthermore,
unlike Waksman network, which necessitates an expensive switch
operation, amounting to approximately ≈ 6𝑛 communications per
layer in the 2 log(𝑛) depth network, GORAM only requires shares
transmission and XOR operations that do not need communications.

8 RELATEDWORK
We discuss the prior arts related to GORAM.
Secure federated databases focus on conducting public SQL
queries protecting the individual tuples. Examples include [13–
15, 34, 41, 59]. For each query, these databases analyze the state-
ments and run secure protocols on the required data to obtain the

result. Based on the above progress, Aljuaid et al. [8, 9] proposes to
process federated graph queries by directly translating the graph
queries into SQL through [36]. Compared with these public query
systems, we focus on ego-centric queries with private query keys.
Secure graph processing with theoretical guarantees. Beyond
the Mat and List introduced in Section 3.3, there are proposals
leveraging Structured Encryption (SE) [25] to query graphs securely.
They focus on encrypting the graph in a way that can be privately
queried [30, 40, 49, 62]. However, they require a shared key be-
tween the data provider and the client and, consequently, cannot be
directly extended to allow multiple data providers and third-party
clients. Other studies [43, 56] focus on private analytics over a set
of devices organized as a graph, a topic orthogonal to our work.
Graph processing under other security settings. Numerous
proposals focus on graph queries guaranteeing differential privacy
(DP) like [35, 37, 43, 47, 48, 55, 60, 61]. They focus on protecting
inputs from the results. In addition to the unavoidably inaccurate
results, they pay less attention to the information leakage during the
computation. E.g., FEAT [43] leaks noisy vertex degrees, which may
be close approximations to control errors.GORAM, however, focuses
on protecting all the information during the computation except the
result, which is orthogonal to DP’s goal. TEE-based approaches [22–
24, 63] are vulnerable to side-channel attacks [44, 51].
DORAM implementations. FLORAM [29] and DuORAM [58]
focus on high-latency and low-bandwidth settings. They trade a
linear computation complexity for reduced communications. 3PC-
DORAM [20], GigaORAM [29], and Square-root ORAM [67] strug-
gle for sub-linear complexity. GigaORAM and 3PC-DORAM rely on
the Shared-In Shared-Out Pseudo Random Functions (SISO-PRF) based
on LowMC [7], which has known cryptanalysis [42]. GORAM builds
its indices on Square-root ORAM, ensuring sublinear complexity
and robust security guarantee.

9 CONCLUSION AND FUTUREWORK
We propose GORAM, the first step towards achieving efficient pri-
vate ego-centric queries on federated graphs. GORAM introduces a
methodology for reducing the to-be-processed data sizes in secure
computations, relying on query-specific data partitioning and se-
cure indices. We hope this method can be generalized to other appli-
cations beyond ego-centric queries. Extensive evaluations validate
that GORAM achieves practical performance on real-world graphs,
even with 1.4 billion edges. For future work, we aim to expand
GORAM’s capabilities for more advanced applications, including
complex graph queries like path filtering and pattern matching,
while also optimizing its performance and scalability.

ACKNOWLEDGMENTS
We thank Professor Wenguang Chen for his help during the design
of GORAM. We also thank the anonymous reviewers for their valu-
able feedback. This work is supported in part by the National Key
R&D Program of China 2023YFC3304802, National Natural Science
Foundation of China (NSFC) Grant U2268202 and 62176135, and
Ant Group Research Intern Program.

REFERENCES
[1] 2006. https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#K_

Regular

3612

https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#K_Regular
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#K_Regular


[2] 2006. https://igraph.org/python/api/0.9.11/igraph.Graph.html#Random_
Bipartite

[3] 2006. https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#
Erdos_Renyi

[4] 2006. https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#
Barabasi

[5] 2006. https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#
_GRG

[6] 2009. Community Structure in Large Networks: Natural Cluster Sizes and the
Absence of Large Well-Defined Clusters.. In Internet Mathematics.

[7] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. 2015. Ciphers for MPC and FHE. In Advances in Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCYRPT).

[8] Nouf Aljuaid, Alexei Lisitsa, and Sven Schewe. 2023. Secure Joint Querying Over
Federated Graph Databases Utilizing SMPC Protocols.. In ICISSP .

[9] Nouf Aljuaid, Alexei Lisitsa, and Sven Schewe. 2024. Efficient and Secure Multi-
party Querying over Federated Graph Databases. In International Conference on
Data Science, Technology and Applications (DATA).

[10] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,
and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[11] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: a Database Benchmark based on the Facebook
Social Graph. In Proceedings of the International Conference on Management of
Data (SIGMOD).

[12] Gilad Asharov, Koki Hamada, Ryo Kikuchi, Ariel Nof, Benny Pinkas, and Junichi
Tomida. 2023. Secure Statistical Analysis onMultiple Datasets: Join and Group-By.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[13] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N Kho, and Jennie
Rogers. 2017. SMCQL: Secure Query Processing for Private Data Networks.. In
Proceedings of the VLDB Endowment.

[14] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
2018. Shrinkwrap: efficient SQL query processing in differentially private data
federations. In Proceedings of the VLDB Endowment.

[15] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. SAQE:
Practical Privacy-preserving Approximate Query Processing for Data Federations.
In Proceedings of the VLDB Endowment.

[16] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. 2013. Data-oblivious
Graph Algorithms for Secure Computation and Outsourcing. In Proceedings of
the ACM Asia Conference on Computer and Communications Security (ASIA-CCS).

[17] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework
for Fast Privacy-preserving Computations. In European Symposium on Research
in Computer Security (ESORICS). Springer.

[18] Paolo Boldi and Sebastiano Vigna. 2004. The Webgraph Framework I: Compres-
sion Techniques. In Proceedings of the International Conference on World Wide
Web (WWW).

[19] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO:Facebook’s Distributed Data Store for The Social Graph. In USENIX Annual
Technical Conference (ATC).

[20] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. 2020. Efficient
3-party Distributed ORAM. In Security and Cryptography for Networks (SCN).

[21] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-
cols. In Journal of CRYPTOLOGY .

[22] Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Rasool Jalili. 2024. GraphOS: Towards Oblivious Graph
Processing. In Proceedings of the VLDB Endowment.

[23] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. 2022. Towards Practical
Oblivious Join. In Proceedings of the International Conference on Management of
Data (SIGMOD).

[24] Zhao Chang, Lei Zou, and Feifei Li. 2016. Privacy Preserving Subgraph Matching
on Large Graphs in Cloud. In Proceedings of the International Conference on
Management of Data (SIGMOD).

[25] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT).

[26] Fan Chung. 2010. Graph Theory in the Information Age. In Notices of the AMS.
[27] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for Efficient Mixed-protocol Secure Two-party Computation.. In The Net-
work and Distributed System Security Symposium (NDSS).

[28] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for Secure Computation. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[29] Brett Falk, Rafail Ostrovsky, Matan Shtepel, and Jacob Zhang. 2023. GigaDORAM:
breaking the billion address barrier. In Proceedings of the USENIX Conference on
Security Symposium (USENIX Security).

[30] Francesca Falzon, Esha Ghosh, Kenneth G Paterson, and Roberto Tamassia. 2024.
PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest Path
Queries. In Proceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS).

[31] Xiaoyu Fan, Kun Chen, Jiping Yu, Xiaowei Zhu, Yunyi Chen, Huanchen Zhang,
and Wei Xu. 2024. GORAM: Graph-oriented ORAM for Efficient Ego-centric
Queries on Federated Graphs (Technical Report). arXiv preprint arXiv:2410.02234
(2024). https://arxiv.org/pdf/2410.02234

[32] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. In Journal of the ACM (JACM).

[33] Tamás Nepusz Gábor Csárdi. 2006. The igraph Software Package for Complex
Network Research. In InterJournal Complex Systems.

[34] Feng Han, Lan Zhang, Hanwen Feng, Weiran Liu, and Xiangyang Li. 2022. Scape:
Scalable collaborative analytics system on private database with malicious secu-
rity. In IEEE International Conference on Data Engineering (ICDE).

[35] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2021. Locally Differen-
tially Private Analysis of Graph Statistics. In Proceedings of the USENIX Conference
on Security Symposium (USENIX Security).

[36] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande,
and Mike Stonebraker. 2014. Vertexica: Your Relational Friend for Graph Analyt-
ics!. In Proceedings of the VLDB Endowment.

[37] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev.
2011. Private Analysis of Graph Structure. In Proceedings of the VLDB Endowment.

[38] Donald E Knuth. 1973. The Art of Computer Programming, VOL. 3: Searching
and Sorting (The Odd Even Mergesort Network Section). In Reading MA: Addison-
Wisley.

[39] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2024.
Graphiti: Secure Graph Computation Made More Scalable. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS).

[40] Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Joseph K Liu, Yuhong Liu, and Dongxi
Liu. 2019. GraphSE2 : An Encrypted Graph Database for Privacy-preserving Social
Search. In Proceedings of the ACM Asia Conference on Computer and Communica-
tions Security (ASIA-CCS).

[41] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. 2023.
SECRECY: Secure Collaborative Analytics in Untrusted Clouds. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI).

[42] Fukang Liu, Takanori Isobe, and Willi Meier. 2021. Cryptanalysis of Full LowMC
and LowMC-M with Algebraic Techniques. In Advances in Annual International
Cryptology Conference (CRYPTO).

[43] Shang Liu, Yang Cao, Takao Murakami, Weiran Liu, Seng Pei Liew, Tsubasa
Takahashi, Jinfei Liu, and Masatoshi Yoshikawa. 2023. Federated Graph Analytics
with Differential Privacy. In International Workshop on Federated Learning for
Distributed Data Mining.

[44] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. 2021. A Survey
of Microarchitectural Side-channel Vulnerabilities, Attacks, and Defenses in
Cryptography. In ACM Computing Surveys (CSUR).

[45] Steve Lu and Rafail Ostrovsky. 2013. Distributed Oblivious RAM for Secure
Two-party Computation. In Theory of Cryptography Conference (TCC).

[46] Nav Mathur. 2021. Graph Technology for Financial Services. Neo4j.
https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-in-Financial%20Services-
white-paper.pdf (White Paper).

[47] Sahar Mazloom and S Dov Gordon. 2018. Secure Computation with Differen-
tially Private Access Patterns. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS).

[48] Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S Dov Gordon. 2020. Secure
Parallel Computation on National Scale Volumes of Data. In Proceedings of the
USENIX Conference on Security Symposium (USENIX Security).

[49] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. 2015. GRECS:
Graph Encryption for Approximate Shortest Distance Queries. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS).

[50] PaymanMohassel and Peter Rindal. 2018. ABY3: AMixed Protocol Framework for
Machine Learning. In ACM SIGSAC conference on computer and communications
security (CCS).

[51] Antonio Muñoz, Ruben Rios, Rodrigo Román, and Javier López. 2023. A survey
on the (in) security of trusted execution environments. In Computers & Security.
Elsevier.

[52] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,
and Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In IEEE
Symposium on Security and Privacy (S&P).

[53] Shen Noether, Adam Mackenzie, et al. 2016. Ring Confidential Transactions.
Ledger (2016).

[54] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large Dynamic
Graphs. In Proceedings of the VLDB Endowment.

[55] Leyla Roohi, Benjamin IP Rubinstein, and Vanessa Teague. 2019. Differentially-
private Two-party Egocentric Betweenness Centrality. In IEEE INFOCOM Confer-
ence on Computer Communications.

3613

https://igraph.org/python/api/0.9.11/igraph.Graph.html#Random_Bipartite
https://igraph.org/python/api/0.9.11/igraph.Graph.html#Random_Bipartite
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#Erdos_Renyi
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#Erdos_Renyi
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#Barabasi
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#Barabasi
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#_GRG
https://igraph.org/python/api/0.9.11/igraph._igraph.GraphBase.html#_GRG
https://arxiv.org/pdf/2410.02234
https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-in-Financial%20Services-white-paper.pdf
https://go.neo4j.com/rs/710-RRC-335/images/Neo4j-in-Financial%20Services-white-paper.pdf


[56] Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel, and Andreas
Haeberlen. 2021. Mycelium: Large-scale distributed graph queries with differen-
tial privacy. In Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles (SOSP).

[57] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM:
an extremely simple oblivious RAM protocol. In Journal of the ACM (JACM).

[58] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. 2023. DuORAM: A Bandwidth-
Efficient Distributed ORAM for 2-and 3-Party Computation. In Proceedings of the
USENIX Conference on Security Symposium (USENIX Security).

[59] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei
Lapets, and Azer Bestavros. 2019. Conclave: Secure Multi-party Computation
on Big Data. In Proceedings of The European Conference on Computer Systems
(EuroSys).

[60] Songlei Wang, Yifeng Zheng, and Xiaohua Jia. 2024. GraphGuard: Private Time-
Constrained Pattern Detection Over Streaming Graphs in the Cloud. In USENIX
Security Symposium (USENIX Security).

[61] Songlei Wang, Yifeng Zheng, Xiaohua Jia, Qian Wang, and Cong Wang. 2023.
MAGO: Maliciously Secure Subgraph Counting on Decentralized Social Graphs.

In IEEE Transactions on Information Forensics and Security (TIFS).
[62] Songlei Wang, Yifeng Zheng, Xiaohua Jia, and Xun Yi. 2022. PeGraph: A System

for Privacy-Preserving and Efficient Search Over Encrypted Social Graphs. In
IEEE Transactions on Information Forensics and Security (TIFS).

[63] Lyu Xu, Byron Choi, Yun Peng, Jianliang Xu, and Sourav S Bhowmick. 2023. A
framework for privacy preserving localized graph pattern query processing. In
Proceedings of the International Conference on Management of Data (SIGMOD).

[64] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-
munities Based on Ground-truth. In Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics.

[65] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. A large-scale analysis of hundreds
of in-memory key-value cache clusters at twitter. In ACM Transactions on Storage
(TOS).

[66] A. C. Yao. 1986. How to Generate and Exchange Secrets. In 27th Annual Sympo-
sium on Foundations of Computer Science (FOCS).

[67] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. 2016. Revisiting Square-root ORAM: Efficient Random
Access in Multi-party Computation. In IEEE Symposium on Security and Privacy
(S&P).

3614


	Abstract
	1 Introduction
	2 Cryptography Background
	2.1 Secure Multi-party Computation (MPC)
	2.2 Oblivious RAM (ORAM)

	3 Overview
	3.1 Formalization
	3.2 Security Properties
	3.3 Strawman Solutions
	3.4 GORAM Design

	4 Graph-Oriented ORAM (GORAM)
	4.1 Preliminaries of Square-root ORAM
	4.2 GORAM Initialization and Access
	4.3 Parallelization and Vectorization
	4.4 Optimization on ShuffleMem Step

	5 Querying Graphs through GORAM
	5.1 Basic Queries
	5.2 Complex queries

	6 Security and Complexity Analysis
	6.1 Security Analysis
	6.2 Complexities Analysis

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Performance on Real-world Graphs
	7.3 Micro-benchmarks

	8 Related Work
	9 Conclusion and Future Work
	References

