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Abstract—Directly performing operations on compressed data
has been proven to be a big success facing Big Data problems in
modern data management systems. These systems have demon-
strated significant compression benefits and performance improve-
ment for data analytics applications. However, current systems
only focus on data queries, while a complete Big Data system
must support both data query and data manipulation. To solve
this problem, we develop CompressDB, which is a new storage
engine that can support data processing for databases without
decompression. CompressDB has the following advantages. First,
CompressDB utilizes context-free grammar to compress data, and
supports both data query and data manipulation. Second, for
adaptability, we integrate CompressDB to file systems so that a
wide range of databases can directly use CompressDB without any
change. Third, we enable operation pushdown to storage so that
we can perform data query and manipulation in storage systems
without bringing large data to memory for high efficiency. We
validate the efficacy of CompressDB supporting various kinds of
database systems, including SQLite, MySQL, LevelDB, MongoDB,
ClickHouse, and Neo4j. We evaluate our method using seven real-
world datasets with various lengths, structures, and content in
both single node and cluster environments. Experiments show that
CompressDB achieves 40% throughput improvement and 44%
latency reduction, along with 1.75 compression ratio on average.

Index Terms—Compression, compressed data direct processing,
database systems.
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I. INTRODUCTION

MODERN Big Data systems use data compression to
shrink their storage footprint in the face of ever-

increasing data volumes. To avoid the overhead of constant
compression and decompression operations, existing research
systems have explored the idea of directly performing Big Data
operations on compressed data [1], [2], [3], [4]. These systems
have demonstrated significant compression ratio and perfor-
mance improvement at the same time for data analytics applica-
tions. Although existing solutions have demonstrated significant
potential for read-only query processing, a feature-complete Big
Data system must support both data query and data manipula-
tion. In particular, a system must support updates of random
records as well as insertion and deletion of records. Previous
solutions, however, do not natively support these functionalities,
and thus must decompress and re-compress a relatively large
chunk of data each time modification is incurred, leading to
significant performance overhead.

In this paper, we strive to fill in the missing piece by de-
veloping a highly efficient technique to support updates, in-
serts, and deletes directly on compressed data, thus enabling
a space-efficient Big Data system that supports both data query
and manipulation. This is a challenging task because existing
compression technologies are mostly optimized for compres-
sion ratio or read operations; the data structures used for com-
pressed data are not amenable to modifications. For example,
Succinct [1] is a database supporting queries over compressed
data; the compression technique is based on index and suffix
array [1], [5], [6], [7], [8], [9] where compressed elements are
dependent on each other, making it extremely inefficient if a
small unit of data needs updates. Another example is TADOC
(text analytics directly on compression) [2], [3], which achieves
a similar goal as Succinct but uses a rule-based compression
strategy. Rule-based compression is a data compression tech-
nology that uses a set of rules to represent the elements of the
original data. The dependencies among rules can be organized
in a directed graph structure without any cycles, denoted as a
DAG of rules. We plan to adopt the rule-based compression,
which can be explained from three levels: elements, rules, and
DAG.

Since large data are usually stored in disk, our idea is to
develop random update over compressed data in storage layer
based on rule compression. If we can integrate the compressed
data direct computing technology with the underlying storage
layer, then the databases built on it can automatically apply our
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technology. Besides, data operations can also be pushed down
to the storage layer for near-data computing.

However, in developing our idea, we meet the following three
challenges. The first challenge comes from the element level.
Previous TADOC processes data at word granularity, while
the storage systems usually organize data at a much larger
block granularity, such as 1 KB or 4 KB. Simply increasing
the processing granularity can reduce the compression effect,
because two large data blocks can have part of the same data. The
second challenge comes from the rule level. Random updates
involve great difficulties to handle, especially dealing with a
large amount of rules. In detail, random update on hierarchically
compressed data needs recursive rule split, which is extremely
inefficient when the DAG is deep [4]. The third challenge comes
from the DAG level. When we develop random updates over
compressed data in storage layer on the fly, the operations also
need to be implemented in the storage layer for efficiency. Be-
cause the access speed of the disk is much lower than the memory
speed, we need to guarantee that the amount of data taken from
disk by random access is as small as possible. Unfortunately,
not only the rule that needs to be modified, but also its recursive
parents need to be read into memory for updates. Even worse,
data holes or unfull data blocks can be generated. It is hard to
integrate these new data structures to the compressed data in real
time without incurring extra overhead.

We develop a new storage engine, called CompressDB, which
can support both data query and data manipulation directly on
compressed data and can support various database systems. We
make a key observation that rule-based compression method is
suitable for data manipulation if the depth1 of the DAG of rules
is limited to a shallow degree. First, it can provide direct data
manipulation without decompression. Second, it involves data
reuse that saves both time and space. Third, data manipulation
can be supported efficiently with simple rule operations. Specifi-
cally, CompressDB adopts rule-based compression and limits its
rule generation depth. Meanwhile, CompressDB can compress
and manipulate data in real time by operating grammatical rules.
Compared with the previous rule-based compression targeting
data analytics [3], we develop a series of novel designs: In
element level, we propose a new data structure of data holes
within rules. In rule level, we enable efficient rule positioning
and rule split for random update. In DAG level, we reduce the
depth of rule organization for efficiency. By leveraging new
data structures and algorithm designs, CompressDB is highly
efficient in data manipulation without decompression, which
has not been supported by previous compression systems. To
enable CompressDB to seamlessly support various databases,
we develop CompressDB in file systems. At the file system layer,
CompressDB can handle system calls like read and write, as
they can be reimplemented with operations like extract, replace,
append, etc. Accordingly, CompressDB can support different
types of database systems that run on the file systems (e.g.,
SQLite, MySQL, MongoDB, etc). These database systems rely
on the system calls handled by CompressDB. Thus, various data

1We define the depth of a DAG as the maximal length of a directed path from
the root to leaves.

types (e.g., integer, float, string, etc.) and operations (e.g., join,
select, insert, etc.) of database systems can be supported by
CompressDB. In addition, we develop more general operations
for CompressDB that are not supported by the file system,
such as insert and delete. Because these operations do not have
corresponding POSIX interface, we also provide a separate set
of APIs, which can be used efficiently. Our preliminary work
has been presented in [10]. Compared to the previous work, this
paper adds many technical details, including the tradeoffs such
as block size selection and the space-performance cost in the
experiments, and the validation of the performance improvement
of CompressDB on MySQL and Neo4j.

We validate the efficacy of CompressDB by supporting
various kinds of database systems, including SQLite [11],
MySQL [12], LevelDB [13], MongoDB [14], ClickHouse [15]
and Neo4j [16]. We evaluate our method using seven real-world
datasets with various lengths, structures, and content in both
single node and cluster environments. We use a five-node cluster
in the cloud with MooseFS [17], a high-performance network
distributed file system. MooseFS spreads data on cloud and pro-
vides high-throughput accesses to data. Compared to the original
baseline of MooseFS, our method achieves 40% throughput
improvement, 44% latency reduction, and 1.75 compression
ratio on average, which proves the effectiveness and efficiency
of our method. The paper makes the following key contributions:
� We develop efficient data manipulation operations, such

as insert, delete, and update, directly on compressed data.
Along with previous random access support, we enable
both data query and data manipulation.

� We develop CompressDB, a storage engine that is inte-
grated into file systems. CompressDB can support vari-
ous database systems seamlessly without modifying the
databases.

� We enable operation pushdown to storage systems, which
avoids unnecessary data movement between memory and
disks, thus improving processing efficiency on compressed
data.

II. PRELIMINARY

After a quick scan at these algorithms, we find that grammar-
based compression [18], [19], [20] is naturally suitable for
random update directly on compressed data. We use TADOC [2],
a representative rule based compression, for illustration.

A. Rule-Based Compression

TADOC is a novel rule-based solution for compression-based
direct computing [2], [3], [4], which can be explained from three
levels: elements, rules, and DAG. 1) Element: The smallest indi-
visible minimum processing unit. An element can be either a rule
or a data unit such as a word from the original file. 2) Rule: String
of elements. TADOC uses a rule to represent repeated content,
and a rule consists of subrules and data units. 3) DAG: The
rule-compressed representation. The relations between different
rules can be organized as a directed acyclic graph (DAG).

Such a rule-based representation is much smaller than the
original data. With this method, TADOC recursively represents
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Fig. 1. Example of TADOC compression.

pieces of input data into a hierarchically compressed form, which
is of great benefits for analytics over compressed data, since a
rule can always be restored freely by explaining its elements,
regardless of the context in which the rule appears.

Rule Compression: Rule expression in TADOC is a kind
of compression, because each rule represents a repeated data
segment in the input. In Fig. 1(a), we show the original input,
which has two files. The symbolwi can represent a minimal data
unit, which can be a word, a character, or a data segment. TADOC
can transform the input to a set of rules, as shown in Fig. 1(b). In
Fig. 1(b), Ri represents a rule. R0 does not have in-edges, so we
also callR0 the root. To utilize the redundancy between files, TA-
DOC can compress different files together with a file boundary
spti inserted in R0. For example, spt1 in R0 is used to indicate
that the first file is represented as “R1, R1, R2” while the second
file “w2, R2”. Such a representation is lossless compression. To
restore data, we can recursively restore the rules from R0. For
example, to restore fileA, we need to restoreR1withR2 before
restoring R0, which is “w1, w2, w3, w4, w2, w3”. The relations
between the rules can be represented as a DAG, as shown in
Fig. 1(c).

Data Analytics: Based on the rule representation, we can
perform common data analytics directly on the rule compressed
data [4]. In detail, TADOC can convert the analytics task to a
DAG traversal problem with rule interpretation. We use word
count as an example to illustrate how to perform analytics
directly on TADOC compressed data by traversing the DAG,
as shown in Fig. 1(c). First, R2 transmits its local word counts
to its parents, R0 and R1. Second, R1 transmits its accumulated
word counts to its parent, R0. Third, R0 outputs the final result.
For the other data analytics tasks, they can also be transformed
into similar traversals based on rules.

Random Access: TADOC supports random access [3], [4] for
data query, which is essential for data analytics systems. Zhang
et al. [4] built special indexes for hierarchical compressed data.
They built indexes on word granularity, including word2rule for
words and rule2location for rules. In detail, the data structure
word2rule can be used to locate the rules containing a word, and
rule2location can be used to locate the offsets a rule appears in
the original input.

Limitation: Although TADOC already supports common data
analytics and random accesses, TADOC still has the following
three disadvantages, which limit its application to Big Data
systems.
� Element level: The smallest processing element of TADOC

is a word. The word granularity is too small to integrate
TADOC into current Big Data systems. Current systems

process data at block granularity, and the size of a block
can be 1 KB or 4 KB, regardless of the semantic and
grammatical rules.

� Rule level: The complicated organization of rules limits
TADOC’s efficient real-time random updates, which are
necessary to Big Data applications. The DAG of the rules
in TADOC can be very deep. For example, the depth for
dataset A (a 2 GB dataset detailed in Section VI-A) reaches
939 layers. Random updates require a bottom-up recursive
rule split, which causes serious impact on performance, es-
pecially for deep rules. Currently, TADOC does not support
delete, and can only insert new data into a separate file that
will be merged to the compressed format by recompression.

� DAG level: TADOC needs to load the whole DAG of
compressed data into memory before processing. This is
inefficient for operations that utilize only partial data stored
on disk. Specifically, due to the scale of Big Data, large
data are usually stored on disk. Hence, current TADOC is
extremely inefficient for Big Data applications.

B. Various Database Systems

One of the distinctive features of Big Data applications is
the diversity of data [21], [22], including structured relational
data, key-value data, and even unstructured text data. With the
development of Big Data technology, various database systems
appear [23], [24], and they have different advantages over diverse
situations. For example, relational databases support applica-
tions that require fine-grained data management, such as people,
finances, and objects, while key-value pair databases are suitable
for data management such as unstructured or wide tables that do
not require the definition of data schemas or highly variable
schemas. Therefore, it can be expected that more and more
databases will appear in the future.

Opportunity: There are now a variety of databases. Although
it is not practical to combine compressed data direct computing
technology with each database, we can still provide a way to
support different databases. In the context of new Big Data
applications, organizing, storing, and managing various types
of data with different management systems still depend on file
systems. Accordingly, we can provide a unified support in the
storage layer, which is also the motivation of this work.

III. DESIGN OVERVIEW

CompressDB: We develop a new storage engine, called
CompressDB, which can perform data processing for
databases without decompression. Insight. By redesigning
the system from the three levels for efficient random up-
dates, we can compress and manipulate data in real time by
operating grammatical rules.

Despite these difficulties, we still decide to develop Com-
pressDB in the storage layer, because storage space is much
larger than memory size. Accordingly, an element in Com-
pressDB represents a data unit like a data block, a rule represents
repeated content consisting of elements and subrules, and DAG
is the organization of rules, as discussed in Section II-A. In detail,
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in element level, we introduce the concept of data holes to allow
updates in large data blocks. In rule level, we develop hashing
and counting data structures for efficiently locating rules. In
DAG level, we limit the depth of the DAG to retain the cost of rule
split and merge within a small range. Such a design is of great
benefits to database applications, and can solve the challenges
mentioned in Section I. Database systems built on our storage
engine can enjoy the time and space benefits of compressed data
direct processing.

Novelty in Element Level Design: Allowing Data Holes Within
Rules. The block granularity used by the storage system is
fixed, unlike the word granularity in TADOC that has variable
length. Accordingly, we need to solve the alignment problem,
because the data that was originally aligned with the block size
can no longer be aligned with the block size after a random
update. However, the current storage system does not solve the
alignment problem: it only supports aligned insertion of data
blocks. Therefore, we propose a hole structure that allows data
holes in the block to be filled and aligned when misalignment
occurs, so that the storage system supports flexible random
updates. The operations of extract, search, count, insert, and
append used in [3], [4] have also been pushed down to the storage
layer utilizing the new design. Our method is compatible with
the file system to the greatest extent, detailed in Section IV-A.

Novelty in Rule Level Design: Efficiently Locating and Merg-
ing Rules. The rule organization of the DAG structure of TADOC
is too complicated for CompressDB. In TADOC, because a
node can correspond to multiple parents, the recursive rule split
makes the update extremely inefficient. Hence, we propose a
new design in rule level organization: Except the leaves, the rest
nodes are organized into a tree structure, and only the leaves
can contain data blocks. Such a design is of great help for
CompressDB. First, the split and merge operations for update on
rules can be greatly simplified, because each node has a unique
parent. Second, for locating data blocks, we can adopt a hash
table to track the data in leaves, and it can also quickly justify
whether a data block exists in a certain leaf node. Third, the data
holes in element level design can exist in only leaves, making
the data manipulation conducive.

Novelty in DAG Level Design: Limiting the Depth of Rules for
Efficient Random Updates: The depth of rules in previous TA-
DOC is very deep, which is mainly for reducing storage space.
The compression of TADOC comes from Sequitur [25], and a
deep depth can help reduce redundancy including rules. The
current TADOC is only used for data queries. The compressed
data are static and do not change. However, when we update the
compressed data, such as inserting a piece of content into a rule,
this can incur disastrous performance degradation. In detail, if
we directly insert the content to a rule, the inserted rule needs to
be split to two rules since it represents repeated content. Even
worse, the parents of the rule all need to be split recursively,
so the delicately compressed structure can also be disrupted.
Hence, we limit the depth of DAG.

Difference From String Compression: CompressDB is dif-
ferent from string compression algorithms. First, the types of
data to be processed are different. CompressDB works in the
storage layer, which divides data into different data blocks,
regardless of data types. In contrast, string compression usually

Fig. 2. Overview of CompressDB.

handles text data. Second, the target platforms are different.
CompressDB is a storage engine aiming to support various Big
Data systems, which cannot be achieved by string compression
algorithms. Third, CompressDB provides a series of operations
and can interact with users to perform different data analytics and
manipulation tasks, while string compressions are more focused
on compression and specific tasks such as indexing.

IV. SYSTEM DESIGN

CompressDB works in the storage layer, so the database sys-
tems built on CompressDB can employ its ability of compressed
data direct computing automatically. In this section, we show the
detailed system design of CompressDB.

A. Overview of System Modules

We show the overview of our storage engine, CompressDB,
in Fig. 2, which can support various database systems. Com-
pressDB consists of three major modules: 1) data structure mod-
ule, 2) compression module, and 3) operation module. These
three modules support the database systems built on our storage
engine. The first data structure module provides necessary data
structures to both the compression module and the operation
module. The provided data structures include blockHashTable
for indicating the mapping relation from data content to block
location, blockRefCount recording the referenced number of
times of a block, and blockHole for handling holes caused by
update operations. The second compression module supports
hierarchically compression in file systems and can be applied
to various block-based file systems. The third operation module
can push down user operations to file systems. Importantly, our
operation pushdown techniques are transparent to users, so users
can still use the system in the same way as TADOC with random
update support.

Note that these modules are not independent of each other.
They work synergistically to address the various complexities
in all types of random updates. First, the data structure module is
the basis of the system, which provides necessary data structures
to both modules. Second, the compression module compresses
the input with the support of the data structure module, and
stores the compressed data in file systems for the operations
after pushdown. Third, the operation module operates on the
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Fig. 3. Illustration for compression and random updates.

TABLE I
DATASETS

TADOC-compressed data from compressor with the data struc-
ture support.

Operation Pushdown: To reduce data transmission cost, we
push down the operations to the storage layer. The operation
pushdown refers to that the data processing happens directly in
the file system layer (a lower software layer). It allows the direct
computing techniques to occur closer to data, with which Com-
pressDB can significantly reduce the amount of data accesses
to disk and accelerate all upper-level database applications.
Computation pushdown has been widely applied in database
machines [26], [27], [28], cloud databases [29], [30], [31], [32],
and memory [33]. We integrate CompressDB to systems like
FUSE and MooseFS so CompressDB can work in both single
and distributed environments. Similar idea has also been used in
different scenarios. For example, in relational model, storage-
related operators in relational algebra, such as scanning, filtering,
and projection, can be embedded into the storage layer [34], [35].
In graph models, the processes for obtaining vertices, edges,
and attributes of the graph can be integrated to the storage layer
reducing the amount of data transmitted to the upper layers [36],
[37]. However, these specialties have not been considered in
previous TADOC research [2], [3], [4].

Updating Parent Nodes: One prominent feature of Com-
pressDB is its simplicity in updating parents. In practice, even
for a small file of 2 GB (dataset D in Table I), d can reach 12
and n can reach 1,211,546. By limiting the number of parents
of non-leaf nodes to one, we reduce the complexity of updating
parents from O(nd) to O(d).

Depth of DAG: With the rule- and DAG-level design of
CompressDB, the changes caused by splitting and merging of
nodes are integrated to the same layer or upper layers, and thus
the depth of DAG does not increase.

Example: We show an example in Fig. 3 for illustration.
Fig. 3(a) shows the original data, while Fig. 3(b) shows the
compressed state, assuming db2 and db5 contain the same
content. Fig. 3(c) shows an insert example. Assume we insert
content (marked red in db3) before the db1 pointed by ptr”1. We
need to allocate a new db3 first and then write the content to it.
Note that the parent pointer (ptr”1 in ptr page2) of db1 needs
to be split into two pointers, which respectively point to db1
and the new block. Accordingly, we update the parent and add
a pointer ptr”2. This process should be performed recursively
(split the parent pointer of ptr page2) if ptr page2 does not have
enough space for ptr”2. Fortunately, the depth in the file tree is
not deep so the block split cost is marginal. Fig. 3(d) shows a
delete example. We delete the piece of content after we copy the
data block to a new one. Then, we update its parents recursively.
Fig. 3(e) shows a search example. We develop a novel parallel
block-level search strategy, which includes two phases. In the
first phase, we search the given content within each block in
parallel. In the second phase, we perform cross-block search.
We use a window with the same length as the pattern string, and
then let it slide at the junction of two adjacent blocks to search for
the cross-block occurrences of the given pattern string. Fig. 3(f)
shows a replace example, which can be achieved by insert and
delete.

Next, we explain in detail the three modules of data struc-
tures (Section IV-B), compressor (Section IV-C), and operation
pushdown (Section IV-D).

B. Data Structure Module

We show the data structure module in this part, which provides
necessary data structures to both the compression module and
the operation module. When designing the data structures re-
quired to support our method, we keep space overheads in mind
and try to make each newly introduced data structure useful
for more than one type of operation. Specifically, we introduce
three data structures, which we briefly explain as follows. We
provide more details on each data structure when we explain our
techniques for the five random update operations.
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1) blockHashTable: This data structure provides the mapping
from the hash value of a block to its block number. It can be
used to quickly locate a block location in both the compression
process of the compression module and the related operations
that need to quickly locate content such as search in the operation
pushdown module. Specifically, we use the hash value of the
block as the key and the block number as the value. In such
design, one key may have multiple values, as different blocks
(with different content) may share the same hash value. For
blocks with the same hash value, we need to further compare the
block contents to determine whether they are identical. Hence,
the system is resilient to hash collisions.

2) blockRefCount: This data structure records the number of
times a block is referenced in the file system. For example,
if a block is referenced twice, it means that the block occurs
twice in a file or occurs in two files. This indicator is extremely
useful in compressed storage systems, because a block can be
shared by multiple rules in TADOC. For example, it provides
the information on whether a block can be released before delete
operation, or whether a block can be modified before insert and
replace.

3) blockHole: This data structure provides the necessary in-
formation in update operations when “block hole” is generated.
This structure records the hole structure caused by insert and
delete operation. Note the file systems usually support only write
and read operations, with no insert or delete operations that can
generate a “hole” in blocks. In our random update such as insert,
the offset and size of insertion are not required to be aligned with
block size. Therefore, we have to add the data structures for holes
to make the offset and size aligned with block size so that the
insertion does not destroy the compression.

Computing Offset With Data Holes: After introducing data
holes, a common question is how to compute offset with data
holes. In our design, we add extra meta data to trace the offset
and size of each hole. Experiments show that the overhead of
data holes is less than 3%.

Space Consideration: The data structures, such as block hash
table, occupy large space and can be frequently updated. To
save storage space, these data structures are selectively stored
on disk or in memory. In detail, the data structure blockRefCount
is usually the largest one because it stores the reference counts of
all blocks. Therefore, we allocate a partition on disk to store all
the reference counts so that the compressed data will not be de-
stroyed in practice even after a remount (unmount and mount) or
failure (crash or poweroff) of file system. As for blockHashTable,
we put it in memory because they are not required to be kept
after a remount. As for blockHole, it takes up very little storage
space, so we keep it both in memory and on disk.

C. Compression Module

General Design: Our general design is that when data are
input into CompressDB for the first time, we use our rule
based method to compress the file to the system. In detail,
we regard each block as a node. The indirect nodes represent
rules while the data nodes represent leaves in TADOC. To
limit the depth of the DAG, we first view the original file
organization, which is usually organized as a tree structure.

Second, we use the blockHashTable to identify the identical
blocks, and merge their upper-level pointers pointing to the
same block. Third, we update the blockRefCount for references.
With such design, the compression process becomes lightweight
and the depth of the DAG is shallow, which is practical to file
systems. Then, when users update the data, we can perform
the operations on the compressed data directly (detailed in
Section IV-D).

Case Study: We show an example of data compression in
Fig. 3(a), and use a simplified inode map for illustration. There
are five pointers in the root. Three of them are direct pointers,
and each direct pointer points to one data block leaf. The other
two are indirect pointers pointing to subrules, and every subrule
node further points to three leaves of data blocks. The colors of
the data blocks indicate the content, and blocks with the same
color have the same content. Therefore, Fig. 3(a) indicates that
a file includes seven data blocks and more than half of them are
redundant. Note that both indirect rules and leaf nodes need to be
stored in file systems. However, we find that leaf nodes account
for more than 99% of the storage space, so we mainly consider
how to compress the leaves by managing the map from indirect
rules to leaves, as shown in Fig. 3(b).

We identify and merge the redundant blocks by letting their
pointers point to only one block. In Fig. 3(b), although different
colors of data blocks appear more than once, we only store
them once, with multiple pointers pointing to these blocks. Now,
except for indirect rules, only three data blocks need to be stored
in the file system for this file, thus achieving data compression.
Further, the indirect rules can also be compressed. For example,
the two indirect nodes in blue point to the same blocks, which
can be merged.

Integration to File Systems: When we integrate our solution
to file systems, we have two options about when to launch the
compressor for modification: file-level compression, and block-
level compression.

The first option is file-level compression, which is to check
all data blocks of a file after all modifications of the file. In
file systems, read or modification to a file should be performed
after an open call, and ends with a close call. This option means
that we need to check all the blocks of a file after a close call,
even for a small modification. Moreover, as shown in Fig. 3,
the index structure in inode could be complicated, so interaction
between different modifications can be time-consuming, even is
performed only after a close of a file. Hence, we abandon this
design.

The second option is block-level compression, which is to
check the related data block after each modification. At block
level, any read or modification to a block should be performed
after a block get call, and ends with a block release call. Here, the
get call loads the block from disk to memory, while the release
call releases the block after any read or modification by callers.
With this design, we only need a single check for each release,
without the requirement to interact or trace all modified blocks.
Therefore, we use this design to launch our compressor for each
modification.

Detailed Design: In this part, we show our detailed design
about how to use the blockHashTable data structure to identify
repeated content, and then perform compression. Assume that
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every block has its own unique block number and can be accessed
by the block number. For the hash table, we create a map from
the content of blocks to the block numbers, and use string s
to represent the content of a block. The key is the content of
the block, denoted as s, while the value is the block number. In
the hashing process, we hash s to a 64 b long unsigned integer
hashed_s and calculate bucket_number by “hashed_s mod
length” to assign a bucket for each key. The parameter length
is the size of hash table.

After the hashing and modular operation, db1 and db2 are
hashed to bucket 1, indicating that a hash collision occurs. We
use linked lists to solve the collision problem. When a data block
is released, we can perform a hashing and a modular operation to
obtain the value. If a previous data block has repeated content, its
block number should be in the corresponding bucket. Accord-
ingly, we need to traverse the bucket to identify the repeated
blocks. In detail, we check whether the content of the block
corresponding to each block number in the bucket is duplicated
with the current block.

Algorithm: The pseudocode of the compression is shown in
Algorithm 1. Any modification to the file triggers the compres-
sion. The input of Algorithm 1 includes the current block, a
temporary block, and a pointer to the current block in the inode.
The current block is the block to be changed. We have updated
the release call in the block-level process, so the modification
does not take effect immediately in file systems. The modifica-
tion is stored in a temporary block, so we need to cooperate with
the temporary block. Moreover, if the current block is the same
as another block, the pointer of the current block in the inode
also needs to point to the identified block. The detailed process
is shown as follows.

First, we perform a hashing process for the content of
the temporary block to find if there is a repeated block via
hash_find_duplicate, as shown in Line 1.

Second, if a repeated block is found, we then check the
reference count of the current block, as shown from Lines 2 to
8. If the reference count is one, there is no other pointer pointing
to current block and the block can be released (Lines 3 to 4).
Otherwise, we subtract the reference count by one (Line 6). Next,
we need to set the current pointer pointing to the repeated block
by setting the value of the current pointer to the repeated block’s
number, and add one to its reference count (Lines 7 and 8).

Third, if a repeated block is not found, we still need to check
the reference count of the current block. If the reference count
is one, we can see that no pointer points to the current block so
we can modify the block (Line 12). In detail, we need to change
the record of the current block in the hash table, as the content is
changed (Lines 11 to 13). If the reference count is larger than one,
we need to subtract one from the reference count and allocate a
new block to store the modified content. Then, the pointer of the
current block should be set to the new block and we should add
the record of the new block to the hash table (Lines 15 to 18).

After these steps, the modification to the current block has
been handled for data compression.

Complexity Analysis: The complexity in the first and second
steps of Algorithm 1 is O(1), since these steps involve only
limited operations such as hashing, fetching or modifying the

Algorithm 1: Compression in CompressDB.

reference count of blocks, deleting a record in the hash table, and
freeing blocks. For the third step, the update operation in Line 12
takes O(1) time, as the size of the block is fixed. Similarly, the
complexity for the update in Line 18 is also O(1), while the
complexity for the other parts is O(1). Hence, the complexity
for Algorithm 1 is O(1).

Additional I/Os: When a block shares the same hash value
as a record in the hash table, additional I/Os may occur. In our
complexity analysis, we treat these I/Os as regular operations,
like arithmetic add and division. Therefore, the performance of
these hash table operations may be primarily influenced by the
number of I/Os required when the relevant blocks are not in
memory.

Specifically, the operation hash_find_duplicate()
compares blocks only when multiple blocks share the same
hash value. This comparison checks for identical content or
hash collisions. If the block is not in memory, additional I/Os
are required. Similarly,delete_record() searches the hash
table, requiring additional I/Os if the block is not in memory.
In contrast, add_record() does not require comparisons or
additional I/Os since it is used when the block content is not in
the hash table.

D. Operation Module

We next introduce the operations in the operation module.
These operations, including extract, replace, insert, delete,
search, and count, can be pushed down to the storage layer.
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Fig. 4. Traditional solution for insert.

Fig. 5. Loss of compression.

Insert: This operation inserts content directly to the com-
pressed data, without interfering with other operations. In this
part, we first analyze the current file update operations in file
systems. Second, we introduce our insert solution. Third, we
analyze the influence of insert on the other operations.

1) Analysis on Previous Update Operations: We analyze
previous update operations before showing our design.

The first update operation we analyze in file systems is the
fallocate system call, which can quickly preallocate or deallocate
data blocks in file systems. We show an example in Fig. 4(a),
which inserts two data blocks into the data block sequence by
modifying metadata in inode. However, fallocate has a critical
drawback that the size of the inserted data needs to be an integer
multiple of the block size. This restriction makes fallocate less
practical so we abandon it.

The second update operation we analyze is the read and write
system calls. Assume that we use read and write to insert data
with the size of len at offset, as shown in Fig. 4(b). We have
to read all content after offset, append the read content at the
end of the data to be inserted, and then write all of these data
at the offset of the file. Unfortunately, although this approach
does not require the offset or len to be an integer multiple of
the block size and can be applied for arbitrary insertion, it has
two major disadvantages: (1) large read/write size cost, and (2)
potential compression benefit loss. As shown in Fig. 5(a), block
sequences A and B are the same, so we need to store only one
of them, according to the compression technique. However, if
we insert a piece of data to the first block of sequence B, as
shown in Fig. 5 (b), every corresponding block of these two
block sequences becomes different. Therefore, the benefits of
compression technology are greatly reduced.

2) Our Design: Our design should overcome the shortcomings
of the initial update operations of the file systems, and maintain
the advantages of their methods. On the one hand, to ensure high
performance, we should perform insert by inserting data blocks
directly into the block sequence. Inserting blocks into a block
sequence is time-efficient because only the metadata in inode
has been modified. On the other hand, to support flexible insert,
we should support insert for arbitrary offset and len. However,
inserts that are not an integer multiple of the block size generate
holes. As discussed in Section IV-B, the blockHole data structure

is in-memory metadata stored in inode and records the location
and size of each hole, which can be used to solve this problem. In
our solution, if an insert is not aligned with block size, we add a
blockHole instance to make sure the alignment for the insertion
to data blocks.

3) Case Study: We show an example in Fig. 3(c). An insert is
performed before the seventh data block (db1 pointed by ptr”1)
of this file, and its length len is unaligned with the block size.
We add a new block (db3) where the gray part represents a
block hole (implemented by the blockHole data structure). By
redirecting ptr”1 from db1 to db3, we have successfully inserted
the unaligned content without disturbing the data layout of all
the other blocks.

4) Detailed Design: The detailed design for inserting len data
at offset is as follows. First, we allocate �(offset+ len)/n�
new data blocks, where len represents the length of the inserted
data and n is the block size. Second, if the len is not an integer
multiple of block size, which means that a hole is going to be
generated, we use blockHole to fill in the blank at the end. Third,
we input the inserted data with the related block into the new
blocks and redirect the pointers for the changed blocks to the
new ones.

5) Influence of insertto the Other Operations: Next, we il-
lustrate how our solution cooperates with the other operations.
Since the holes caused by insert exist in the block sequence
but with meaningless content, we need to skip these holes when
performing the other operations such as extract and replace. The
operations need to carefully check and skip the holes with the
help of blockHole structure. To make insert compatible with the
other operations, we need to regard the blocks with holes as
regular blocks and perform hashing to adapt to the compression
techniques in replace. After such a patch, our insert is both
efficient and flexible because only metadata need to be modified
about holes for alignment. Moreover, it is obvious that we have
eliminated the compression loss in Fig. 5.

6) Complexity Analysis of Insert: We mainly focus on the IO
operations, which include filling the blank part with blockHole,
and writing the inserted data into new data blocks. These op-
erations dominate the major time. Since we have to write the
inserted data into storage and add a hole if necessary, the time
complexity should be O(m+ n), where n is the block size and
m is the size of data to be inserted. Because the size of blockHole
is less than the data block size, the space cost is O(n).

Delete: The delete operation removes len length data from
the offset position. The offset and len can also be misaligned to
the block size, so we need to utilize the blockHole data structure
by adding data holes to make the remaining data aligned. As
to data holes, repairing holes is equivalent to data movement
since we need to move the data close to holes for merging. Data
movement is expensive in file systems, and we should avoid
frequent data movements.

Our design: We develop delete with the blockHole data
structure. We show an example in Fig. 6(a). The deletion can
start in one block and end in another block, which are block#1
and block#2 in Fig. 6(a). The remaining data in the blocks
involved in the delete operation can also be misaligned, so we
allow holes in the operated data blocks. Moreover, since delete
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Fig. 6. Delete in CompressDB.

operations can incur a large number of holes, we develop a hole
merging process. In detail, in a delete operation, when the blocks
involved in a delete operation have more than one hole, we can
rearrange the remaining data in the front part of the involved
block sequence, and release the hole space if the size of the
merged holes is larger than a block size.

Detailed Design: We have the following design to perform
the delete operation in detail. First, we need to check if there are
holes in the involved block sequence, which need to be merged
into one hole. Second, we move the remaining data in the front
part of the block sequence. Third, we check if there are redundant
blocks because the size of the merged holes can be larger than
the block size. If so, we remove the redundant blocks and update
the blockHole data structure.

Complexity Analysis: The complexity of delete is influenced
by three parts: (1) moving the remained data forward, which
is the yellow part in Fig. 6(a), (2) adding a block hole to fill
the blank part with blockHole, and (3) checking blockHole,
rearranging blockHole, and releasing the hole space. For the
first part, because the remained data size is less than block size,
the time complexity for data movement is O(n), where n is the
block size. For the second part, the complexity of adding a block
hole is O(1). For the third part, although checking and releasing
take O(1) time, the rearrangement takes O(n) time, since the
rearranged data size is less than block size. Therefore, the time
complexity of delete is O(n).

Extract: In this part, we show how extract cooperates with
the compression technique. To perform extract, our method
traverses the data blocks in sequence from inode. The inode
contains the mapping relations from file to data blocks, which
means that any offset in a file can be transformed to an offset in a
data block, as shown in Fig. 3(a). For example, assume the block
size is 1,024 bytes. Then, the offset 1,536 in file corresponds to
the offset 512 in the second block of the block sequence indicated
by the mapping relation in inode. Accordingly, to perform the
extract operation for a file, we just need to obtain the offset from
inode and traverse from the offset in data block. We can see that
any offset in a file still corresponds to an offset in the data block
though their pointers have been changed.

Complexity Analysis: The complexity of extract is dominated
by two parts. The first part is to find the data blocks from the hash
table, whose complexity is O(1). The second part is responsible
for reading the data, whose complexity is O(m), where m is the
size of the extracted data. Hence, the time complexity of extract
is O(m).

Replace: Replace is an operation that is used to replace one
or more bytes of the content of a file. Cooperating with inode,
we can map the offset of the content to be replaced in the file to
an offset in another data block, and then replace the content in

the new data block. However, in TADOC compression, a rule of
a data block can be shared and referenced by multiple pointers,
so we cannot modify the content in a data block directly. To
solve this problem, we allocate another block for modification
and change the pointers for rule split. We show an example
in Fig. 3(f). Assume that the file has seven data blocks and
the replace target lies in the second data block (db2 pointed
by ptr2). The second block has been referenced twice, so we
cannot change its content directly. Accordingly, we allocate a
new data block, set ptr2 to the new one, and then write the
modified content to the new block. In Fig. 3(f), the orange block
is a newly allocated one and the red arrow represents a pointer
modification. Note that after the modification to a data block,
we should also check if the new block is a repeated block by
using blockHashTable.

Note that replace is different from “delete+insert”. In Com-
pressDB, replace directly overwrites the content on the old data
instead of deleting and then inserting it. We do not use the
“delete+insert” design because it needs to release space first,
and then reallocate and write new content. This process can
introduce additional overhead including creation and deletion
of data blocks, and merging and splitting of rules.

Complexity Analysis: The replace complexity is influenced
by three parts. The first part is to allocate new data blocks and
store the modified content. Assume that the duplication ratio
is r and the size of content to be modified is m. Then, its
complexity is O(r ×m), since the data volume to be stored
is r ×m. The second part for redirecting pointers and the third
part for checking with blockHashTable have O(1) complexity.
Therefore, the complexity for replace is O(r ×m).

Search: The search operation returns the offsets for the con-
tent of a user’s query. This operation consists of three major
stages. The first stage is in-block search, which calculates the
offsets when the content of the query completely falls within a
block. In detail, each block can appear more than once in the
original file and the offsets for each block can be obtained from
inode. After obtaining the local offsets of the required content
for each block in parallel, we can calculate the final offsets by
adding the local offsets with the offsets of the blocks containing
the required content. Note that repeated blocks appear only once
in our compressed format. The reuse brings significant time
saving for computation and data transmission. The second stage
is a cross-block search. Assume the length of the content for
the query is m and the block size is s. We need to check all
the m-length cross-block content of the “�m/s�” consecutive
blocks in parallel. The third stage is a merging stage, which
merges the in- and cross-block results and returns the result.

Complexity Analysis: The complexity is determined by the
string matching algorithm, which is KMP (Knuth Morris Pratt)
[38] in our solution. The KMP complexity isO(M +N), where
M is the length of the pattern string, and N is the length of the
long text. As in our search scenario, the time of the first stage
is O(k × (m+ n)), where m is the size of the pattern string, k
is the number of blocks, and n is the block size. For the second
stage, a cross-block search takesO(m) time. The data has �s/n�
data blocks, so the second stage performs cross-block searching
�s/n� − 1 times, taking O(�s/n� ×m) time. The third stage

Authorized licensed use limited to: Peking University. Downloaded on May 11,2024 at 14:23:04 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: COMPRESSED DATA DIRECT COMPUTING FOR DATABASES 1911

takes O(1) time. Therefore, the complexity of search is O(k ×
(m+ n) + �s/n� ×m) = O(�s/n� ×m+ k × n).

Append: This operation appends data at the end of a file.
Similar to replace, it can be implemented by allocating new
blocks and performing a replace on the newly allocated con-
tent. However, to achieve better performance, we do not want
to allocate first. Instead, we check whether it is necessary to
allocate. For example, if the content to append is repeated with
a previous block, we just need to add a pointer pointing to the
previous block without block allocation. Otherwise, we allocate
new blocks for append and fill the new blocks with the appended
content. Note that append is different from insert. CompressDB
stores the end positions of files in meta data, and append uses this
data structure to quickly locate the end of the file and add data.
In contrast, insert needs to support inserting data in different
positions, which takes more time to find the insert position.
Besides, insert is more likely to bring new data holes due to
the alignment issues.

Count: This operation returns the frequency for the content of
a user’s query. Similar to search, we can obtain the frequencies
from both in- and cross-block traversals. Note that the frequen-
cies for each block can be provided by blockHashTable, which
can be used directly among in-block scan for time-saving.

V. IMPLEMENTATION

We develop CompressDB in real storage systems, including
FUSE [39] and MooseFS [17], for validation. The FUSE system
(Filesystem in Userspace) [39] allows us to conveniently con-
struct a file system in user space without caring about the code of
the Linux system kernel. MooseFS [17] is a high-performance
network distributed file system implemented in C language.
MooseFS spreads data on commodity hardwares, and provides
high-throughput accesses to data, which is suitable for Big Data
scenarios. After integration, each operation acts as a separate
call in userspace. The extract operation extracts a piece of
content, which is similar to the read system call. The replace
operation modifies a file at arbitrary offset, which is similar to the
write system call. The insert operation performs insertions, and
the delete operation performs deletions. The search operation
returns offsets for a certain word. The count operation counts the
appearances of a given word. For each of these operations, we
develop sequential and distributed versions, written in C/C++. In
addition to these six modules, our solution generates necessary
data structures in memory on the fly, such as blockHashTable,
blockRefCount, and blockHole, as discussed in Section IV-B.

Interaction With Database Systems: Databases can seam-
lessly use our processing on compression technology. In detail,
we mount a file system in a directory, and then system calls
on this directory are handled by CompressDB. If the database
system is set to store data in this directory, it can automatically
enjoy the benefits of direct computing on compressed data,
because CompressDB can handle the system calls like read
and write. We also develop a separate set of APIs for the other
operations with no corresponding posix interface (e.g., insert,
search, and delete). In our experiment, we call these interfaces
and pass parameters and results through unix sockets. In practice,

the database can also interact with CompressDB through the
unix socket, but the database needs to be modified to adapt to
this design.

Applicability: CompressDB is a storage engine whose major
application is to support diverse database systems. It seamlessly
supports different databases without modifying their code. The
only thing users need to do is to set the system directory to that of
CompressDB. In general, CompressDB is suitable for analytics
and manipulation on data with a large amount of redundancy.
For other domains, it may still work, but has not been verified.

VI. EVALUATION

A. Methodology

Evaluated Methods: The baseline used in our evaluation
is the original system without CompressDB. For single node
evaluation, the baseline refers to the original FUSE [39]. For
the distributed environment, the baseline refers to the original
MooseFS [17]. We denote the search using linear scan over files
in parallel as “baseline”, and the baseline with LZ4 compression
as “baseline (LZ4)”. We develop CompressDB based on exist-
ing systems, including FUSE on single node and MooseFS in
distributed environment, denoted as “CompressDB”. Moreover,
we can perform normal compression in CompressDB, which is
denoted as “CompressDB (LZ4)”. Note that applications need
to decompress the data with LZ4 before using the data. Our
comparison to baseline examines whether our proposed solution
can deliver higher or comparable performance to the normal
systems on random updates and accesses. If so, it validates
the promise of our solution in making CompressDB the first
storage engine that efficiently supports both data query and data
manipulation while preserving hierarchically-compressed data
direct computing.

Database Systems: We use six common databases in our eval-
uation, including SQLite [11], MongoDB [14], LevelDB [13],
ClickHouse [15], MySQL [12], and Neo4j [16].

Datasets: We use seven datasets in our evaluation, as shown in
Table I. The sizes shown in Table I represent the original uncom-
pressed sizes of the files. These datasets are composed of real-
world documents of various lengths, structures, and content, and
have been widely used in previous studies [2], [3], [4]. Datasets
A, B, and C are collections of web documents downloaded
from the Wikipedia database [40]. Dataset D is a Wikipedia
dataset composed of four large files. Dataset E represents NSF
Research Award Abstracts (NSFRAA) dataset downloaded from
UCI Machine Learning Repository [41]. Dataset E consists of a
large number of small files, and is used to evaluate performance
on small files. Dataset F is a real-world structured dataset from
an Internet company, which is used for traffic forecasting and
intervention. Dataset G is a graph dataset from International
Consortium of Investigative Journalists [42].

Benchmark: Datasets A, B, C, D, and E are all unstructured
document datasets, and are used to evaluate the performance
of databases, including SQLite, MySQL, LevelDB, and Mon-
goDB. Dataset F is a structured dataset and is employed to
evaluate the performance of ClickHouse. Dataset G is used to
evaluate the performance of Neo4j. For datasets A to F, we
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Fig. 7. CompressDB in supporting different databases.

randomly generate 500,000 query statements, of which 50%
are write and 50% are read. For dataset G, we use Galaxybase
benchmark [43] for evaluation. We use statements from different
databases to simulate reading and writing. For example, we use
the SQL statement select for read and the statement update for
write in SQLite, MySQL and ClickHouse. In LevelDB, we use
Get and Put for read and write respectively. In MongoDB, we
use find_one and insert_one in the pymongo library for read and
write.

Platforms: We use two platforms in our experiments. For large
datasets A, B, and C, we build a five node cluster in cloud. Each
node includes an Intel Xeon 8369HB CPU at 3.30 GHz with
16 GB memory. The hard disk on each node is 400 GB ESSD
with 50 thousand IOPS. For small datasets D to G, we use a single
node machine equipped with an Intel i9-9900K CPU and 64 GB
memory. The hard disk in this machine is WDC WD60EZAZ,
a 6 TB WD BLUE 3.5” PC HARD DRIVE with 5400 RPM
and 256 MB Cache. The operating system of both platforms is
Ubuntu 18.04.5.

B. End-to-End Performance Evaluation

We evaluate the performance of CompressDB upon four
popular and diversified databases introduced in Section VI-A.

Throughput: We show the throughput results in Fig. 7(a).
On average, the databases using CompressDB achieve 40%
throughput improvement over the baseline. We have the follow-
ing findings. First, CompressDB achieves the highest throughput
for the large datasets A, B, and C. For small datasets D, E, F
and G, CompressDB (LZ4) or CompressDB can achieve the
highest throughput. Second, different databases exhibit various
performance behaviors. For example, the throughputs for differ-
ent datasets are close in MongoDB, but are diverse in SQLite
and LevelDB. The reason is that MongoDB is a document-based
database, which is more complicated to search for an item by
a key. Third, the throughputs of small datasets can be higher
than those of large datasets. The reason is that the small datasets
are processed on single node, which does not involve extra data
transmission overhead between different nodes.

Latency: We show the latency results in Fig. 7(b). We measure
the latency by recording the latency of each operation, and
then calculating the average latency of each type of operation.
On average, the databases using CompressDB achieve 44% la-
tency reduction over the baseline. CompressDB achieves latency
benefits in all cases. First, because our storage engine reduces
the amount of data read from disk, the data preparation time
has been reduced. On average, the latency is 9.41 ms, and the

standard deviation is 11.43. The latencies of 90% operations
are within 43.56 ms. For tail latencies, 5% operations are more
than 55.58 ms. Second, large datasets exhibit higher latency.
The reason is that datasets A, B, and C are processed in the dis-
tributed environment, which have data transmission overhead.
Third, SQLite exhibits the lowest latency. The reason is that we
perform data search by its primary key and the data are arranged
sequentially in the order of primary key.

C. Evaluation of Individual Operations

We show the throughput for different datasets in Fig. 8.
Generally, the operations of CompressDB achieve much higher
throughput over the original file system and the performance
of different operations varies. In detail, extract achieves the
highest performance. The reason is that the read operation is
usually faster than the write operation. Append and replace
achieve moderate throughputs. The reason is that they can reuse
the repeated content with minimal modification. For replace, it
operates on the compressed DAG structure with the overhead of
rule split. Insert and delete have the relatively low performance.
The reason is the relatively high complexities when handling
data holes with the blockHole data structure, as discussed in
Section IV-D.

We have the following findings. First, experiments show that
CompressDB significantly outperforms the baseline system. On
average, for large datasets A, B, and C, CompressDB achieves
34.41× speedup over the baseline. For small datasets D and
E, CompressDB achieves 43.79× higher throughput over the
original file system. Second, although the throughput of insert
and delete is relatively moderate, they achieve extremely high
speedups, which relates to the benefits of data reuse between
data blocks. In the original system, insert and delete involve
massive reads and writes of data blocks. Third, extract, append,
and replace achieve moderate speedups, though their throughput
is high. The reason is that data in MooseFS are separated into
different nodes, which decreases the write benefits.

Fig. 9 shows the latency results of the operations on the
cloud. The latency is defined as the duration from the start
time to the end time of the operation. On average, CompressDB
achieves 93.16 ms latency. The standard deviation is 55.14, and
the latencies of 90% operations are within 180.94 ms. For tail
latencies, 5% operations are more than 337.83 ms. In detail,
extract achieves the lowest latency among the datasets. The
reason is that extract does not involve write operations. Search
and count have the highest latency, which is due to the full range
traversal.
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Fig. 8. Throughput of different systems.

Fig. 9. Latency of different systems.

Fig. 10. Improving database capacity.

Interleaving Operations: We measure the influence of in-
terleaving operations on the overall performance. In detail,
we mix the seven types of operations, and each type of op-
eration accounts for around 14%. Performing 100,000 mixed
random operations, we find that compared with executing each
operation independently, the performance of extract, replace,
search, append, and count decreases by 13.57%, 7.36%, 14.17%,
4.41%, and 18.44%, respectively, while insert and delete remain
the same. However, the trend of performance gains for direct
computing of compressed data does not change, and 18.82%
performance improvement can still be maintained under mixed
workloads.

D. Space Savings

Improving Compression in Databases: CompressDB can im-
prove the capability of traditional databases from both time and
space perspectives. Fig. 10 shows the performance of baseline
and CompressDB under different compression ratios. We can
see that CompressDB significantly improves the baseline per-
formance under the same compression ratio, especially when the
compression ratio is low. In the case of providing the same per-
formance, CompressDB can also deliver a higher compression
ratio.

We also measure the space savings with the metric of com-
pression ratio, which is defined as the size of the original data
divided by the size of the compressed data. The default block

TABLE II
COMPRESSION RATIOS FOR SPACE SAVINGS

Fig. 11. Block size influence on compression ratio.

size is 1024 bytes. The result is shown in Table II. CompressDB
achieves 1.75 compression ratio, and CompressDB with LZ4
achieves 9.88 on average, which improves the space saving
of LZ4 with 1.85%. We have the following findings. First,
CompressDB achieves better results with larger dataset. The
reason is that large datasets can involve more redundant data,
which provides more compression opportunities. Second, even
for small datasets, CompressDB still achieve clear space savings.
Third, CompressDB with LZ4 achieves better compression ratio
than LZ4, which provides a new chance to enhance compression.

We have the insight that “CompressDB (LZ4)” is a good
choice for applications requiring high compression ratio because
“CompressDB (LZ4)” can compress all datasets well and offer
high throughput on smaller datasets.

E. Design Tradeoffs

Block Size Influence: We analyze the block size influence on
compression ratio in this part. Fig. 11 shows the compression
ratio of different datasets with different block sizes. For large
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datasets A, B, and C, we do not show the compression ratio with
small block size due to long measurement time. We observe that
smaller block size can increase the compression ratio, since data
are more likely to be repeated in the case of small granularity.
For small datasets, a small block size is important due to the
undesirable compression ratio when the block is large. Please
note that in Fig. 11, we have not factored in the reference count
overhead for different block sizes. Therefore, when selecting
the block size based on compression ratios, it is also essential to
ensure that this overhead remains both acceptable and negligible.
We utilize a 4-byte integer to store the reference count for each
block. Typically, the storage space overhead for reference count-
ing amounts to approximately 4× capacity/block_size.
For instance, when using a block size of 1,024 bytes, this results
in an insignificant space overhead of around 0.39%, which we
consider negligible.

Theoretical Analysis: We attempt to analyze the relationship
between block size and compression efficiency theoretically.
Assume that duplicate blocks follow a uniform distribution. With
any given block, we denote the probability that another block
has identical content as pn, when block size is n. We believe
that pn mainly relies on the specific dataset for a fixed block
size, n. Now, if we adjust the block size to 2× n, combining
2 blocks into a block group, with any given block group, the
probability that another block group has identical content is
p2n. Consequently, as the block size increases, the probability
of finding duplicate blocks decreases rapidly, leading to a worse
compression ratio with larger block sizes. As discussed in Sec-
tion IV-C, we employ a hash table in compression. If the block
size decreases from n to n

2 , potentially, twice as many hash table
operations are required to handle the same amount of data. Since
hash table operations may involve I/Os, the operational overhead
becomes unacceptable if the block size becomes too small.

Time versus Space: CompressDB focuses on direct computing
on compressed data for various databases, and seeks a bal-
ance between compression ratio and processing time, which
is beneficial in practice. In contrast, the LZ4 method targets
a high compression ratio. Consequently, its compression and
decompression processes cause large time overhead, especially
on large datasets, making it less practical when dealing with
large data. As shown in Fig. 7, “baseline (LZ4)” decreases the
performance of the baseline without compression by 52.4% to
88.9% on the large datasets A, B, and C. As for CompressDB,
it delivers the highest performance on large datasets, which is
30.1% to 59.8% higher over the performance of “baseline”.
Although its compression ratio is moderate, it can provide stable
performance improvement. As discussed in Section VI-B, for the
large datasets A, B, and C, CompressDB can provide the optimal
performance. For the small datasets D, E, F and G, CompressDB
(LZ4) or CompressDB can achieve the highest performance. The
tradeoff between time and space is also affected by the block
size. As discussed in the above paragraph, smaller block size can
increase the compression ratio. However, small block size also
brings large metadata load, massive pointer operations, large
hash table, and a large number of rules, which incurs time cost.
We show the relation between space overhead and performance
exchange of CompressDB in Fig. 12. The space overhead refers

Fig. 12. Tradeoff between space and performance.

TABLE III
MEMORY CONSUMPTION

to the extra space overhead compared to the storage size with
the 1 KB granularity. The performance exchange is denoted as
the ratio difference from the optimal to the test value. Fig. 12
shows that we can trade performance for space, and vice versa.

Space Wasted in Data Holes: The design of blockHole brings
high speed of operations but causes memory overhead. We add
an analysis of space-wastage of different data update patterns,
including 1) 100% insert, 2) 30% insert with 70% delete, 3) 50%
insert with 50% delete, 4) 70% insert with 30% delete, and 5)
100% delete. These two types of operations mainly influence the
generation of data holes. We generate ten thousand operations
for each pattern analysis, and each operation manipulates 128
bytes on average. Experiments show that their average ratios
of space-wastage are 0.043%, 0.026%, 0.025%, 0.024%, and
0.027%, respectively.

Memory Consumption: We evaluate and show the memory
overhead of hash table for different datasets in Table III. Note
that for the large datasets of B and C, we only consider the
memory consumption on single machine. We find that the block-
HashTable memory consumption is negligible, which occupies
less than 2% of the original size of the datasets.

As for block hole, the memory space occupied by each block
hole does not exceed the space it occupies on the disk. On
average, assuming each insert and delete operation utilizes half
a block (typically 512 bytes), this significantly surpasses the
memory usage of each hole (32 bytes). As discussed in the space
wasted in data holes, the disk space wasted on holes is minimal.
Therefore, the memory overhead caused by block holes should
also be minimal.

Depth of Rules: We explore the depths from 2 to 10 for
different datasets and experiments show that 4 can be the optimal
in most cases. The reason is that deep levels of DAG can incur
high latency to locate the required content. The time complexity
of locating data is O(d), where d represents the depth. We
find the time used on locating 220 blocks can increase about
10 ms each time the depth increases by one. For comparison,
performing extract operations on 220 blocks consumes 55 ms
with depth set to 4. This means that the locating overhead can be
unacceptable if the levels are too deep. In contrast, shallow levels
of depth cannot reduce data redundancy efficiently. Besides,
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since we choose the block as the basic element in DAG, the
block size limits the maximum number of a node’s children.

Hash Table Rebuild: During the mounting process, we do not
rebuild the hash table. Instead, we create a new empty hash
table. Reference count and hole locations are stored both in
memory and on disk, ensuring that CompressDB maintains data
consistency with all existing compressed files. Although using
an empty hash table may affect the compression effectiveness
potentially, it greatly improves the mount time. Note that in all
our experiments, we assume that the file system is mounted once
and will not be remounted.

F. Detailed Analysis

Comparison With LSM Method: Prior compression meth-
ods can use LSM-style (log-structured merge tree) method to
periodically merge and compress data. In this part, we ex-
plore the additional advantage of the proposed method with
the LSM method. We use LevelDB for illustration. LevelDB
uses LSM-style for data format, whose compression is or-
thogonal to CompressDB, so they can work together. Experi-
ments show that if we enable default compression on LevelDB
(Snappy Compression), “CompressDB+LevelDB” can provide
extra 23.8% performance improvement on random reads, 5.3%
on random writes, and 10.8% space savings, compared with
“Baseline+LevelDB”. If we disable default compression on
LevelDB, “CompressDB+LevelDB” can provide extra 18.3%
performance improvement on random reads, 16.7% on ran-
dom writes, and 24% space savings, compared with “Base-
line+LevelDB”.

Comparison With Succinct: Succinct [1] is a data store
supporting queries directly on the compressed data. Succinct
supports extract, count, and search operations, but it does not
support data manipulation operations, such as insert, delete, and
update. Note that CompressDB works at storage space, while
Succinct works at userspace. Hence, they are orthogonal and can
work together. In detail, we can set the storage directory of Suc-
cinct to CompressDB, as discussed in Section V. Accordingly,
Succinct can compress data and write the Succinct-compressed
data into CompressDB. Then, CompressDB can further com-
press the data, and provide direct computing on these data. When
we compare Succinct and CompressDB separately, experiments
show that CompressDB can provide 40.4× faster extract and
1.9× faster search, but 90% slower count. The reason is that
Succinct involves array of suffixes, which can calculate the oc-
currence of a string efficiently without traversing the compressed
file. When we use them together, “CompressDB+Succinct” de-
livers 33%, 43%, and 3% performance improvements on extract,
count, and search, along with 23.9% space savings, compared
with Succinct.

VII. RELATED WORK

Compression in Traditional Databases: Compression is one
of the hot research topics in data science domain [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64]. Compression techniques
in traditional databases are mainly for storing more data, not for

faster data access [65], [66]. Under the premise of given system
resources, such as storage space, more data can be stored in
database systems [66], [67], [68], [69], [70]. Most compression
techniques in databases depend on context [68], [71], [72], [73],
[74]. The block/page size of the long-term IO-optimized B-Tree
after disk optimization is relatively large, which enables the
traditional data compression algorithm to obtain a relatively
large context. Therefore, the compression techniques based
on block/page granularity, including Snappy [71], lz4 [68],
gzip [72], bzip2 [73], and zstd [74], have been applied to various
Big Data management systems [67], [75], such as Hadoop,
Spark, Oracle Database, SQL Server, and IBM DB2. However,
when compression is enabled, the data processing speed drops
with it. Although database systems can deliver a dedicated
cache to cache the decompressed data to improve the access
performance of hot data, this incurs another problem of caching
space overhead. Worse still, when the cache misses, the entire
block still has to be decompressed. Fortunately, our solution
can address the above problem. CompressDB enables database
systems enjoy both space savings and time savings due to data
reuse.

Data Processing Directly on Compression: Classic data ana-
lytics on compression are built on suffix trees and arrays [8],
[9], [50], [76], [77], [78], [79], [80]. Suffix trees [5], [81]
consume less storage space, but with larger memory consump-
tion [82], [83]. Burrows-Wheeler Transform [6], [7] and suffix
arrays [84] provide more compact compression format, but
still have memory consumption issue [82]. FM-indexes [7],
[85], [86], [87], [88] and compressed suffix array [89], [90],
[91], [92], [93] are more efficient alternatives, and Succinct [1]
supports database queries on compressed data. Different from
these works, CompressDB can be integrated into file systems
with both random update and access support, which provides
a much wider application scope. Another type of compression
strategy is based on grammatical compression, so operations are
directly built on grammar encoded strings [2], [4], [18], [19],
[94], [95], [96], [97], [98], [99], [100], [101], [102]. Different
from these works, CompressDB focuses on how to support
general update and access operations on compressed data in
Big Data systems. Moreover, the concept behind CompressDB
has versatile applications extending beyond its original domain.
It can be effectively applied in diverse areas such as stream
processing [103], graph analytics [104], and heterogeneous
computing [105].

VIII. CONCLUSION

We develop a novel storage engine, called CompressDB, for
enabling random updates directly on compressed data. Specif-
ically, we integrate CompressDB to file systems, which can
support various database systems. Moreover, CompressDB can
push down the operations to the storage layer. We discuss in
detail how the idea of random updates on compressed data
be materialized, and prepare a comprehensive experimental
analysis to show the advantages of CompressDB. Experiments
show that CompressDB significantly improves the performance
of common database systems, and saves space at the same time.
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